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The present paper is about the modeling of surface potential and threshold voltage of Fully Depleted
Silicon on Insulator MOSFET. The surface potential is calculated by solving the 3D Poisson’s equation an-
alytically. The appropriate boundary conditions are used in calculations. The effect of narrow channel
width and short channel length for suppression of SCE is analyzed. The narrow channel width effect in the
threshold voltage is analyzed for thin film Fully Depleted SOI MOSFET.
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1. INTRODUCTION

The scaling of the device now days reach to limit of
regime the parasitic effect comes very badly. To avoid
degradation of the device the SOI technology developed
and results are positively approached .The Fully De-
pleted SOI MOSFET is a most versatile used in Modern
electronics system .The SOI MOSFET’s are advanta-
geous over their bulk-silicon counterparts in terms of
short channel-induced threshold voltage reduction [1].
Short Channel Effect and Drain induced Barrier Lowe-
ring, Hot electron Effect, Threshold roll off are some
problems that to be addressed. The solution came in the
form of various modeling developed in a process of De-
vice Development. An analytical model for the surface
potential and the threshold voltage of a silicon-on-
insulator (SOI) MOSFET with electrically induced shal-
low source/drain (S/D) junctions was presented to
investigate the short-channel effects (SCEs)[2]. The
model was developed by using a two-dimensional (2-D)
Poisson’s equation, and considering the source / drain
resistance and the self-heating effect [3]. Further a new
complete short channel SOI MOSFET I-V model for
circuit simulation developed. This unified model is ap-
plicable for Fully Depleted, Partially Depleted, and
mixed-mode SOI MOSFET’s [4]. The various methods to
solve 1D, 2D analysis of SOI MOSFET were very inter-
esting areas for work [5-11].

In present model, 3D Poisson’s equation is solved by
using separation of variable method.The narrow width
effect and short channel effects are taken in account i.e.
channel length scaled down up to 30 nm and width
scaled down up to 40 nm. In Ultra-thin SOI MOSFET
reduction in threshold voltage by decreasing silicon film
thickness (¢5) up to 15 nm.

2. MODEL FORMULATION

The cross-sectional view of the fully depleted SOI
MOSFET is shown in Figure 1.

The Source-channel junction is located at y =0 and
channel drain junction located at y = Lgy. Here Lgs is
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the effective length of channel. The interface of Si-SiOs
are found in x = 0 and x = #s locations. Here the terms s,
toxf, toxv represent the thickness of Si film, front and
back gate oxide thickness. The potential applied on
front gate oxide and back gate oxide denoted by Vg and
Vb respectively.
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Fig. 1 - Crosssection view (x-y) of FDSOI MOSFET
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Fig. 2 — Cross-section view (x-y) of FD SOIMOSFET

Figure 2 shows the cross-sectional view(x-z) of the
fully depleted SOI MOSFET, the channel width of the
device is W. The side wall thickness is represented by
toxw and its interface junction located at z=0 and z= W.

The 3D Poisson’s equation for FDSOI MOSFET is
given by equation.
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Here Na represents the doping concentration and
@(x, y, 2) is the surface potential at (x, y, z) point. The
required boundary conditions to solve the Poisson’s
equations are given below as

tox dp x,y,z
¢ 0,y,z —Txf Esi— 5 Ix=0 Qift =ng_Vf]; 2)

&

oxf a(p xyz
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o xyw e g O 4Ol =V =V, (D

The above boundary conditions will be useful in
finding the solution of the Poisson’s equation of
MOSFET. There are various methods to solve the Pois-
son’s equation like Green Function technique. We are
using separation of variable method to solve 3D Pois-
son’s equation.

d? ¢l x
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_ qNgx

®)

z !
=0 ©)
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1z + 0 + 07 =0 (10)

The 1-D Poisson’s equation is represented by equa-
tion (8) and (9), (10) represents the 2-D and 3D Laplace
equation. Here @i(x), ¢'(x, ), @"'(x, y, z) are the solution
of 1D Poisson’s equation, 2D, 3D Laplace equation
respectively. The solution of 3D Poisson’s equation is
obtained by sum of the solution of equation (8), (9), (10).

exy,z =plx +¢@" x,y + ¢" x,y,z 11)

3. SOLUTION OF ®L X

The solution of equation (8) with help of Boundary
condition given as

tox del
(plx_ fgsttpxlxo Q{; = gf_‘ég (12)

€ox

t, d(plx
(plt + DXf Esi dx |x ts+Q1[ - Vgf Vfl;) (13)

After solving the above equation, solution can be
written as

@Ux) = @sb + Esp (ts — x) + % te—x (14)
Here pu = pi(ts) and Eu = =~ (45| 2o)

4. SOLUTION OF ¢’ x,y

The solution of equation (9) with the help of Bound-
ary condition which are given as
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o xy — L e W) =0 (15)
@ g =0 (16)
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0" %, Lgpr = Vi — @l(x) + Vg (18)
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Here the V' and V will be described as given below

lnumi + tofor lnumz
V= (19a)

iDnum
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Yr £ox
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. 1 . si
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X[2pyts = sin(2p )+ 52 [1—cos 2yt ] (199)
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1 rts
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Slyr V
Ngts rts
— T [ Vi — Y] T (19)

5. SOLUTIONOF @ X,y,Z

The solution of 3D Laplace equation is obtained by
using following Boundary conditions.
"xyz toxf a(prxyz
IV == == x=0 =0 (20

Loxb o1 x,y.z

(p X, ¥,z + Esi E |x=ts =0 (21)
§0” x,0z — 0 (22)
(P” XLgffZ — 0 (23)
" toxw _ 0
QR0 —le o SOIOE ) = Q =Ver =V, -
173 toxw a
QI g e S+ Q= Vo~V -

After solving the above equations the solution of 3D
Poisson’s equation in form of

¢" x,y,z = Mg [sinh{(xs;w — 2)} + sinh( x5,2)] X
sin( asy—Lggr ) . toxf
cos(@slesp) [sin(xB;) + eox &si COSPr X] (26)

Here ag, By, xsr» Mg, are described as given below
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Now the solution of equation (8), (9), (10) gives the
potential at point (x, y, z). The potential variation at the
interface i.e. x = 0 of uniformly doped SOI MOSFET for
various channel length is shown in Figure 3.The sur-
face potential calculated for SOI MOSFET. The poten-
tial plot gives the information about potential distribu-
tion in channel in front surface, middle in channel and
lower surface in channel. The Vg and Vg can be ex-
pressed to represent the external voltages
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Fig. 3 — Channel potential variation with normalized position
along the channel length at Vas=0.5V

Figure 3 shows the variation of the surface potential
along the channel length for different values of oxide
thickness. On increasing the value of oxide thickness tox
at both ends Gate lose control over the channel there by
increasing the Drain Induced Barrier Lowering
(DIBL).However continued decrease in the oxide thick-
ness definitely reduces the DIBL.
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Fig. 4 — Channel potential variation with normalized position
along the channel
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Figure 4 shows the variation of surface potential
along the channel for different values of Vas For FDSOI
MOSFET, the variation in surface potential along the
channel for n-channel Fully Depleted SOI MOSFET
with two different drain source voltage (Vas) i.e.
Vas=0.1 and Vus=0.01. The position of the minimum
surface potential lies near by the source region of the
gate due to the step function profile of surface poten-
tial. Also there is not much charge in the minimum
surface potential for higher values of Vu. Hence the
area near source region is screened from the change in
Vas. However, there is enhancement in the values of
surface potential near drain for increasing values of Vis.

6. MODEL OF THRESHOLD VOLTAGE FOR
NARROW CHANNEL FULLY DEPLETED SOI
MOSFET

In this section modeling of threshold voltage is pre-
sented for narrow width FD SOI MOSFET .The front
gate Threshold voltage (Vrr1) of narrow width SOI
MOSFET is defined as Vmm=Vg, when ¢(0,
yl. , WI2)=2 @ here y/ . is the position of surface po-
tential in lateral direction. By differentiating the equa-
tion (11) with respect to y at x=0 and z= W/2. Solving
the equation, the solution came in form.

The Bisection method is used to calculate

f 99 xyz
ymin' ay |x=0. y=y1]1(1in' z

w =0 27

On solving the equation (11) and (14),(19) and (26),
Vrrean be calculated as

VTF = VTFO - AV - AVirw (28)
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=i Sa Py sinh(B) xCmmetIE (31)

From above equations we can find some conclusions
like Vrro is not dependent on channel length and
width. So it represents the threshold voltage of long
and wide SOI MOSFET. V7m is varying with Lgy and
Vas but independent from channel width i.e. threshold
voltage reduction due to the shot channel effect. Vrrw is
the threshold voltage reduction due to narrow width
effect.
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7. RESULT AND DISCUSSION

Figure 5 and 7shows the variation of threshold volt-
age with channel length and drain to source voltage.
The threshold voltage rolls down with decreasing the
channel length because of increasing portion of the
larger work function gate as the channel length reduc-
es. This is a unique feature which gives FDSOI struc-
ture and added advantage when the device dimen-
sions are continuously shrinking. The total calculated
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threshold voltage is in close agreement with the same
computed using device simulator ATLAS 3D.

Figure 6 shows that the thickness of the silicon film
also plays a key role in reduction of threshold voltage
.When the device is on then the screen gate shields the
region under the gate from any drain voltage variations
and this way, screen gate absorbs any additional drain
to source voltage beyond saturation .This in turn leads
to reduction in threshold voltage.

8. CONCLUSION

The analytical model developed has been verified by
the results obtained by ATLAS 3-D device simulator.
Devices with gate length 30 nm have been simulated
keeping all other parameters same. The device parame-
ters used are as follows: t¢s=15nm, twx=3 nm,
Na=1x18cm?, W=40nm. Based on the analytical
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