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The paper describes the deformed Hamiltonian for Schrédinger equation with mixed harmonic poten-
tial known by sextic potential and the corresponding spectrum of energies which depended with 3-new
quantum numbers (j =1+ 1/2, ]) and s = 1/2 in the non-commutativity infinitesimal parameter 6.
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1. INTRODUCTION

The major of physics applications of quantum me-
chanics is based on the Schrédinger equation, it was
most successful in describing physics phenomena’s in 2
and 3 dimensional spaces and in a particular in the cen-
tral potentials at week energy to study the atoms nuclei,
molecules and their spectral behaviours, this theory will
correctly described phenomena only when the velocities
are small compared to the light [1-19]. The second revo-
lution in the last century it was the standard model, in
where the three fundamental forces in nature: electro-
magnetic, week and strong, are successful unfitted in the
framework of gauge field theories. But the last forth
forces, gravitation, its out of this model of unification.
The hop to get a new gauge theory, in which the four
forces at include in this theory, is possible, when the
symmetries will be huge, which satisfied by the notion of
the noncommutativity of space-time, which is extended
to the canonical commutation relations between position
coordinates and their momentums themselves. This new
concept considers a new revolution in the modern phys-
ics, and plays a crucial role in quantum mechanics par-
ticularly. The physics idea of a noncommutative space
satisfied by anew mathematical product, which replaces
the old ordinary product by a new one, known by star
product, noted by (*) [20-37]:

[x,x; ], =i6; 1)

Throughout this paper the natural unites are em-
ployed. The star product between two arbitrary func-
tions f(x) and g(x) in the first order of 6 defined as

follow:

F()* 8(2)=F(x) #(0)- L4 (0 () (0,8 (x)) @

It’s possible to apply the notion of the star product
to obtain the new NC commutator represented by
equation (1). Much effort has been put in to find the
approximation bound state solution in recent years to
the study of noncommutative canonical type quantum
mechanics, quantum field theory and string theory. We
apply those notions to a mixed harmonic potential
which the importance of this study appears in the field
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of fiber and also applicable to molecular physics [9]. A
Boopp's shift method will be used in our paper, Instead
of solving the non commutative Schrédinger equation
by using star product procedure:

(%%, | =16, @)

We replace the star product with usual product to-
gether with a Boopp's shift:
i

xi:xf%p, and p, = p; 4)

The parameters 67 are an antisymmetric real ma-
trix of dimension square length in the noncommutative
canonical-type space. The main aim of this article is to
give a new physics contribution in the context of the
non-commutativity of mixed harmonic potential in NC
2D space. This paper is organized as follows. In section
2, we present the notions of Boopp’s shift method. In
section 3, we present the Hydrogen atom in ordinary
2D space with mixed harmonic potential. In section 4
we derive the deformed Hydrogen atom Hamiltonian
with mixed harmonic potential. We apply the perturba-
tion theory to obtain the non-commutative modification
of the energy levels. Finally, in section 5, we draw our
conclusions.

2. THE BRIEFLY REVIEW OF BOOPP'S SHIFT
METHOD

As it 1s mentioned in the introduction, a Boopp's shift
method will be used in our paper, instead of solving the
non commutative Schrodinger equation by using star
product procedure; we replace the star product with usual
product together with a Boopp's shift [20, 36, 37, 40]:

Qei:xi*%”pj pi=p 1=12 ®)
62 =0 and 6*'=-0

Then, we can show that, the commutator[a%, 5}], in

NC 2D real space R(2), will be written as follows:
[%,5]=i60 (6)
Furthermore, the eq. (5) follows to write the two oper-

© 2015 Sumy State University


http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/

ABDELMADJID MAIRECHE

ators x and y as a function to old positions, as follows:

and &=y+§px (7

&—xfgp
277 2

Then, one can deduce the square %? and #*respec-
tively:

#=x’-0wp, and §”=y"+0p, ®)

Which allow obtaining the operator #?, in NC 2D
real space R, (2), as follows [37, 40]:

7 =r*-0L, 9)

Based, on the eq. (9), one can obtain, after a
straightforward calculation, the 3-important terms
which will be use to obtain the NC deformed Hamilto-
nian, in the next 4th section:

P2=r?o oL,
M =rt-20r°L, (10)

7 =r%-30r'L,

3. THE MIXED HARMONIC POTENTIAL IN
ORDINARY TWO DIMENSIONAL SPACES

We represent the Schriédinger equation with the
sextic potential (V(r):ar2+br4+cr6 ), which compa-

nied with 3-terms, the first describe the usual vibration
of electron, while the rest 2-terms are represents dou-
bly vibration of electron [9]. The best formulation is to

work on the polar coordinate ;“(r,qﬁ), in which we have

the general form of Schrodinger equation:

[_2rlnoA+ar2 +br' +cr6j‘1‘(;) -B¥(r) Ay

Where A represent the Laplacienne operator in po-
lar coordinate and LI’(;') obtain by the method of sepa-
ration of coordinates as follows:

‘I’(;) - R:‘F’@®(¢) (12)

Where R, (r) and ®(¢) are the radial functions

and the angler function satisfied the two equations,
respectively:

1
d’R,, (r m* -

7()+ E-V(r)- 724 R, (r)=0 .
EPO) 2 (g)-0

dg”

Where m and E denote the two values of momen-

tum and energy, respectively. The standard solution of
®(¢) is given by [9]:
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CD(¢) = exp(iim¢) where m =0;1,2... (14)

And R, (r) determine from the equation:

R, (r)=exp (pm (r)) Z::o a, 2" (15)

Where:

P (7) =§ar2 +%ﬂr4 16
p

N

— 1
35 andc?—m+2

The radial functions of the (stationary state R,(,?)

and first excited states RS)) and corresponding ener-
gies (E, , E,) are determined from the relation, respec-
tively [9]:

R, ar _3b
exp[—irz —ﬁr“] ' oz
4fc 4
e, D)
RY 1Tk
b, \E . (ao tar )r (m+2)-ac(Lm)(2+24e(m+2))
exp[—rﬁr e J 3

Then, the complete normalized wave functions
(‘I—’(O) (;), () (;) ) and corresponding energies (E, , E, ),
respectively [9]:

(0 (;) = aorsﬁ exp(—ﬁr2 —gr‘l) E, = %
‘P(l)(;) = (ao +a1r2)r6_% exp(—ﬁr2 —fr“) (18)
El _ b(:J;) +
\/bz(m+2)—4c(1+m)(2+2«ﬁ(m+2))
N

And the generalized normalized wave function [9]:

g(?) (;) = (aO +ar’+ ...apr2p)r§% x

19
conp| e e o
afe 4

4. THE MIXED HARMONIC (SEXTIC) POTEN-
TIAL IN NC TWO DIMENSIONAL SPACES

Ry (2)

By applying the Boopp's shift method, the deformed
Hamiltonian operator, associated with sextic potential

Hy. ..., in the NC 2D space, determined from the
relation:
A
2m,

HNC—sext == + VNC—S (f‘) (20)

Where m,, is the rest masses, 7 is the operator po-
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sition in NC 2D space. The operator of sextic potential
in NC 2D space Vy_g(7) , take the form:

Vies ()= a#® +bi* +cr® (21)

Using the two equations (20) and (21) to write the
Schrodinger equation in NC 2D space as follows:

(_2:% Ve s(7) J'{’(;) _Er(r) @

Where E,. is the eigenvalues of energy in NC 2D

space associated with mixed harmonic potential. The
separation variable method to equation (22) gives:

w(r)= R’"(r)cp(qs) 23)

The radial function R, (r) and the angler function
®(¢) in NC 2D space satisfied, respectively:

1
2 mz—f
a8, (r) ()+ E-V(i)-—52%|R,(r)=0
r 7‘
(24)
d*0 (¢
d¢£ )+m2<1)(¢):0

As a direct result to the eq. (9), the different terms
of sextic potential V(#) will be:

ar* =ar® —abL,
bt = br* —2b0r°L, (25)
ci® = cr® —3cor'L,

Which allow writing the sextic potential in NC 2D
space as follows:

Viae-s(7)= V(1) + Ve por (1) (26)

Where V(r) is ordinary potential and the modified

term V

ert () 18 determined by the following equation:

Vieex—pert (r)= —H(a +2br? +3crt ) L, @27

We observe, that the term V.. (r) is propor-

tional to the smallness parameter 6, then we considers
as a perturbation term. A straightforward calculation,
lead to get the radial function in NC 2D space corre-
sponding V,,. .., (r)

LR povin-v, (;«)_m;Z R,(r)=0(28)

dr sex—pert

We apply the perturbation theory to obtain the
modification to the energy:
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B, = [V (1) Vi (r) ¥ () ds (29)
Where ds=rdrd¢g, the non-commutative modifica-

tion of the energy levels, in the first order of € corre-

sponding the stationary state E.,, determined by

using the equations (18), (27) and (29) to obtain:

Eyeo = 27rma0¢92 T (30)

a=1

Where m is eigenvalues of the operator of angular

momentum L, , and the three terms T, T? and T° are

given by:

T = a(j;r” exp(—ﬁr2 —%r“)dr

=2b f ro+? exp(

T% =3¢ [ r¥* exp(--4=
Jreetes(-k

We change the variable by introducesr? = X, and
then eq. (31) will be to the form:

T = &wj X exp(- b X - £ X?)ax

b
a2 2

ij"*Z exp( X - fXZ)dX (32)

e

T =

oo

T (5+3)-1 C
c i x( exp(—ﬁX—gx)dX

Now using the special integral [38]:

+00

[E exp(—ﬂx2 —yx)dx =

0

@) e )0 4] .

To obtain the following results:

(\E) F 54—1 exp( )D_(§+1)(%)
16c2 2¢8

(%) r(5+2) exp( )D(M)( j (34)
16cZ Zc

[(5+3) exp(lzzg )D_(M) (ZL)

Which allow writing the non-commutative modifica-
tion of the energy levels E;; as follows

y+1
2

5+2
2

J

E,, =-m6S (a,b,c) (35)

Where, the factor S(a,b,c) given by:
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D .|
exp(chj 7(5+%)(2c§j

o _4 -

S(a,b,C)=a§ +b(’\/?) 2 (5+ )D (a+1)[ b‘} * ’ %) 5+2 exp(wclja(m)(%ij
2c8
s (36) _ A \E 5+3 exp( )D ( blj (41)
+§c(\ﬁ) 2 (5+%)D (5+2) [ le ’ ( ) 16t ) O g
2c8

%(%) [(5+4) exp( jD’(‘M)(%)

{ ) ] 166 2¢°

X exp 5 4, e
16¢° 7(,\ﬁ) §+ ll)exp(lﬁcE jDﬁ@H% (%)
The non-commutative modification of the energy Which allow to gives the non-commutative modifi-

levels Ejy. associated with the first order of 6, corre-

cation of the energy levels E ., .

sponding the first excited states, determined by using Now, the non-commutative modification of the en-

equations (18), (27) and (29) to obtain:

5
Eyo, =27m0 Y, A® 37)
a=1
Where A% are determined from:
1 _ 25+1 b 2 Ac.4
A Algr exp( e T )dr
A? %Trz‘y%exp(—irz—?”r“)dr
0 2
+00
3 _ 25+5 b 2 A4
A’ = A, (J)' r exp(—ﬁr -5 )dr (38)
At =4, [ r¥T exp(—%r2 —%r“)dr
0
5 25+9 b2 A4
A=A gr * exp(—ﬁr - )dr
And:
A, =aa, A, = (2ba§ + 2a1a0a)

A, = 3caf +4ba,a, +ala,
3 0 1% A, = 3ca?

If we change the variable, similarly to above correc-

tion, we can rewrite the eq. (39) as follow:

A i +3)-1 e
A= XU exp(- 22 X £ X*)dx
A, 1T (5+2)-1 G
A= XC exp(- 2= X £ X*)dX
A, 1T (543)-1 .
A= £ X% exp(—szX—7X2)dX
A=A £ XU exp(— = X - £ X?)dx
PR G (- x - L£x?)ax
T2 0 p o 2

We apply the above one get:

A, =6ca,a, + 2ba12 (39)

(40)

ergy levels Ey,, in the first order of 6, corresponding
the pt order excited states, using egs. (19), (27) and
(29) to get:

Ene, =-27mOA (42)

NCp

(43)

We summarize the obtained results of energies lev-
els (Enco msEncrm»Ency-m) corresponding first order

of 6 to the stationary state, the first existed states and
the pt* excited states respectively:
Enco-m = Eo + Eom
Enci-m = E1 +Eim (44)
ENC;}m = Ep + Epm

Then, we have, the explicitly obtained results:

Encoom =%—m98(a b,c)
=  me) \/bz m+2)- 4c(1+m)(2+2\/;(m+2))+
NCl-m = zf + NA (45)
+2n9(§Aa)m

a=1

Evepym=E,—27moA

Now, in order to construct the NC Hamiltonian, this
will be realized by two principal’s parts, the first de-
formed NC Hamiltonian H, g, will be construct on

based to egs. (11), (20) and (27), we can write:

Hyo s = —LAHU"2 +ort +er® |+
2m (46)

+[-0(a+26r* +30r* )L, |

For a better understanding of the physics content to
the operator H . g, we dives it to 2- operators, Hg,,,

02003-4



DEFORMED QUANTUM ENERGY SPECTRA...

and H_, , as follows:
thcl =gy T Hsext—m (47)
Where the first operator is given by:
H, . =- A+ar® +br* +cr® (48)
m,
While the second operator H,, ,, is given by:
H,, , =—0(a+2br"+3cr*)L, (49)

Furthermore, if we choices, the parameter ¢ and
the vector of a magnetic field, which oriented with (Oz.)
axes, as follows [38]:

0=aB and B=Bk (50)

Where a is a proportional constant, and the mag-
netic moment;:g, after a straightforward calcula-
tion, we have the following important results [38]:

0L, =aJB-aSB (51)

Where (j = E+§), using two eqs. (49) and (51), we

can write the operator H as follows:

sext—m

H

sext—m

=a(a+2br2+3cr4)(:]§—Hz) (52)
Where H,, , determined from [39]:

H,=-SB (53)

0, (112)

Physically, the operator (48), as it is mentioned in
the section 3, represented a particle with spin inter-
acted with sextic potential in ordinary 2D space, while
the operator (52) represented two interactions between
a particle with spin (1/2) and a external magnetic field,
the first one represent the ordinary Zeeman effect and
the new interaction represent a coupling between the
total monument J and external magnetic field B.
Now, regarding to the relation (27), this can be rewrit-
ten to the form:

V.

sext—pert

(r)= 79(a +2br% + 3crt )§E (54)

Which allow writing, the perturbative term V,,, ()

as follows:

\%

sext—p

(r):—g(a+2br2 +3cr“)(j2 I —52) (55)

Furthermore, the operator (§Z) traduced physical-

ly, the coupling between spin and orbital momentum,
then, the modified energy levels (Eyqo_so»Enci_so) Pro-

duced, will be:
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E s, 0L, S(a,b,c) = spinup
Nov=80 = 2de 9L2ss(a,b,6) = spin down
E :b(m+2)+\/bz(m+2)—40(1+m)(2+2\/:(m+2)) .
NC1-SO 2% X \/E
272'9[115 i A= Spin up
' . (56)
2Ly 6 A* = spin down
a=1
Where L, and L, are given by:
=(I+3)(1+3)-1(1+1)-2
L]s ( 2)( 2) 1 (57)
Lo =(-3)(0+1)-11+1) -4

Then, the second part of NC Hamiltonian corre-
sponding noted by H_,,, and given from the relation:

H

sext2 = HsextO +H (58)

sext—so
Where the operator of spin-orbital interaction

H, takes the form:

hlc—so

H

=2 -2 =2
s :-9(a+2br2+3cr4)(J _1’-§ ) (59)
In another hand, it’s evidently to consider the infin-
itesimal parameter 6, the sum of 2- infinitesimal pa-
rameters and 6,, then the complete NC Hamiltonian

equal the sum of three fundamentals parts, the first
one, it has been seen from eq. (42), the second part, it
has been seen from eq. (43), while the last part, it has
seen from the eq. (563). Thus, the final expression of
deformed NC Hamiltonian H,__,, , takes the following

relation:

+H

HNC—sext =H sext—so (60)

sext

0 + Hsext—m

It’s worth to mention, that the above obtained NC
Hamiltonian, satisfied by applying the physical super-
position principal. Thus, the obtained NC Hamiltonian
was extended to describing, in addition the usual inter-
action, in 2D space, 2-new physics phonemes, the modi-
fied Zeeman effect and the spin orbital interaction,
which are introduced in the new theory automatically.
Regarding the eq. (60), we can deduce the total NC
quantum spectrum of Hydrogen atom with sextic po-
tential, Ey. (j,1,s,m), evidently equal the sum 3 values

( (an El) ) (ENCO—SO’ ENCl—SO)
H

sext—m

of energies
and (Eyco_>Enci_n)), corresponding (H,,,,
and H,

wext—so )» TESPEctively, as follows:

= spin up

3b {S(a,b,c)(—91m+6’2L1) 61)

Eyco = ﬁ + S(a,b,C)(—91 m4+ 92L2)3 spin down

And
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5 7b(m+2)+\Ibz(m+2)—4c(1+m)(2+2%(m+2))
NC1 = e N

27[[ i A“j(m&l +6,L;)= spin up
a=1

+

(62)
+ =
2/1'( > A”’)(mﬁl +L,6,)= spin down

a=1

5. CONCLUSION

The deformation spectrum is studied for the sextic
potential in NC 2D spaces in the case of low energy by
applying the Boopp's shift method to first order in the
non-commutativity parameter 6, the modified of the
energies levels at the fundamental state and first ex-
cited states are established. The new spectrums of en-
ergy are changed radically; it depended with 3 new
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