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We study experimentally the photoluminescence of small glycine-coated silver nanoparticles and their 

application as the bio-imaging markers of the neural stem cells. In addition we study nanoparticle’s toxic 

effects on the neural stem cells. Glycine-coated silver nanoparticles were synthesized using a thermal re-

duction of silver nitrate in a glycine matrix and size-separated via centrifugation. The properties of the na-

noparticles were characterized using transmission electron microscopy, extinction and photoluminescence 

spectroscopy. Our results indicate that the nanoparticles have deleterious effects on the cells and showed 

an amplified increase in their death rates. In fixed cells the particles penetrate the membranes within an 

hour and 25 minutes of incubation, but do not penetrate into the body of the cell. 
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1. INTRODUCTION 
 

Recent advances in nanobiotechnology have demon-

strated nanoparticles (NPs) as potential drug delivery 

agents and luminescent biological labels for bio-

imaging [1,2]. Consequently, the ability to track and 

image the fate of NPs starting from the systemic down 

to the sub-cellular level is an essential factor in drug 

delivery system. In addition, monitoring morphological 

and functional alterations in the cells due to the thera-

peutic delivery is also gaining interest [3]. The devel-

opment of NPs and their bio-imaging applications sig-

nifies the need to study, examine, and monitor their 

toxicity [4]. In this study, we demonstrated the pene-

tration of glycine-coated silver NPs through the mem-

brane of the neural stem cells (NSCs). We found that 

glycine-coated NPs induce primarily apoptotic response 

in time-studies. In unison, these NPs were found to 

inhibit the proliferation of NSCs. Overall, the function-

al NPs could potentially be used for controlled drug 

release and fluorescence imaging of biological cells. 

The literature indicates that a considerable amount 

of research has focused on the generation and develop-

ment of NPs, however the study of silver NPs in bio-

imaging of the NSCs is a novel approach.  In this study, 

we establish that NSCs tend toward the 45% increased 

cell death when treated with silver NPs. Our studies 

indicate that NPs penetrate through the cell mem-

branes, however not into their body. 

The growing research interest in NSCs is driven by 

their possible application as a therapeutic tool in neu-

rodegenerative disorders caused by the loss of neural 

cells. NSCs exist in the developing central nervous 

system and are capable of differentiating into mature 

neurons and in some cases non-neuronal cells called 

neuroglia cells [5]. C17 cells (derived from developing 

mouse cerebellum) are the primary mammalian cell 

line used in these experiments. C17s are adherent cells 

and readily undergo apoptosis when environmental 

conditions are not ideal [6].  

Small noble metal NPs have been extensively stud-

ied because of their unique optical and electronic prop-

erties [7, 8] which lead to their numerous applications 

in biochemistry and medicine.  Namely, metal NPs 

offer opportunity for advancements in bio-imaging [9], 

improvement of solar cells [10], information storage 

[11], and other. 

We synthesized silver NPs through the thermal re-

duction in glycine matrix. The size separation was 

performed using centrifugation. The success of the 

synthesis and size separation is supported by the 

transmission electron microscopy (TEM) and optical 

extinction and photoluminescence (PL) spectroscopy 

characterization. The data supporting NPs characteri-

zation is presented in the following section. 
 

2. MATERIALS AND METHODS 
 

2.1 Nanoparticle synthesis and characterization 
 

Silver nitrate (100mg) and glycine (1g) were mixed 

and dissolved in 10 ml of distilled water. The water was 

then removed by evaporation with a rotoevap in order 

to prepare the solid phase mixture.  Thermal reduction 

of the solid phase mixture was completed at 445 K. The 

reduction of silver nitrate to solid silver was indicated 

as color of the mixture change from white to dark 

brown. To purify the product we sonicated and then 

filtered it with 2 micrometer filter. Next, the product 

was centrifuged with different relative centrifugal forc-

es (500g – 16000g). 

The samples containing NPs of different sizes were 

characterized by TEM to determine shapes and sizes of 

particles and confirm the efficiency of size separation 

by centrifugation. The size distribution of selected 
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sample is shown in Fig.1. The JEOL JEM-100CX elec-

tron microscope was used for the size characterization. 

Sample which contained smallest NPs of mean diame-

ters of 9 nm was later used in the bio-imaging and 

toxicity studies. Most of the particles had a spherical 

shape. 

Extinction and emission spectra of the sample are 

described in the section 3.1. 
 

 
 

Fig. 1 –TEM of silver nanoparticles of different sizes.  

 

2.2 Cell culture  
 

The C17.2 cell line adopted from the cerebellum of 

newborn mice are capable of differentiating into neu-

rons and are very sensitive to factors in their surround-

ing environments. The adherent C17.2 cell line was 

supplied by Dr. Evan Y. Snyder from Harvard Medical 
School, Boston, MA. C17.2 neural stem cells (NSC). 

Cells were grown in Dulbecco's modified Eagle's medi-

um (DMEM) and supplemented with HEPES, 

Pen/Strep, L-Glutamine, 10% FBS, and 5% Normal 

Horse Serum. Cells were cultured in normal/unaltered 
FBS media for five-weeks. Once 2×106 to 5×106 cells per 

ml of medium was grown, the cells were lysed and di-

vided. The cells were diluted to a factor of 1:200, and 

life stage passages 13-18 were used for these studies. 

 
2.3 Cell line treatment  

 

Neural stem cells were isolated and resuspended in 

the appropriate media. 1×106 cells/mL of the cell sus-

pension was used for manual cell counting. The re-

maining cell suspension was resuspended to 36×106 

cells per ml. For viability tests, NSCs were treated with 

glycine-coated silver NPs and localization tests were 

performed using 1% paraformaldehyde as the primary 

fixative to cease all metabolic activities in the NSCs.  
 

3. RESULTS 
 

3.1 Extinction and photoluminescence of silver 

nanoparticles 
 

Here we present extinction and PL emission spectra 

of the particles (shown on Fig.2). Extinction spectra (a) 

reveal surface-plasmon-resonance-related (SPR) peak, 

situated at 425 nm.  

The spectral range of the PL emission (Fig.2 b) coin-

cides with the SPR-related extinction spectral range. It 

can be rationalized by two theories: first, the interband 

transitions in silver, enhanced by the SPR, or second, 

the plasmon emission itself.  First theory is based on 

the idea of the interaction of the photons (emitted via 

the interband transition of the electron) with the elec-

tric field created by the oscillating free electrons (SPR) 

[12]. Second theory is based on radiative relaxation of 

the surface plasmon resonance [13]. 

Peak position in the PL spectrum (Fig.2 b) is slight-

ly red-shifted with respect to the extinction spectral 

peak (Fig.2 a). It was found at 448 nm. The red shift 

may be explained by the loss of energy via non-

radiative relaxation of the electrons prior to the emis-

sion. 
 

 
 

Fig. 2 – (a) Extinction (optical density) and 

(b) Photoluminescence spectra of nanoparticles of mean diam-

eter of 9 nm. 
 

Similarity of the extinction and PL emission spectra 

illustrates the fact that their mechanisms are related to 

the SPR.  
We picked the sample with the smallest NPs for bio-

imaging, because small particles have greater chance to 

penetrate through the cell membranes. Next section 

describes the fluorescence confocal microscopy of the 

neural stem cells incubated with the silver NPs. 

 

3.2 Bio-imaging  
 

We studied penetration of the nanoparticles into the 

fixed and live cells. As a control we used a sample of 

cells, without the particles to monitor healthy cells under 
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preferable conditions. Second sample of cells was kept 

under the same conditions, but in addition contained 

nanoparticles. The cells in the control sample were ad-

hered to the well and the cell division could be monitored 

as shown in Fig. 3. 
 

 
 

 

 

Fig. 3 – Confocal fluorescent and transmission image overlay 

of the control sample of neural stem cells without NPs. No 

background fluorescence is present. Cell division can be 

observed.  
 

Unlike in the control sample (Fig.3), cells in the 

sample with NPs weren’t adhered to the surface of the 

well shortly after the incubation, they maintained near-

spherical shapes during the experiment, and no cell 

proliferation was observed. The fluorescence signal due 

to NPs can be seen on Fig. 4b. NPs have caused toxic 

effect on the cells. The untreated NSCs show about 45% 

more viable cells than the NP-treated cells. The figure 

below illustrates the pronounced difference between 

the blank and the treated NSCs. 

 
Fig. 4 – Confocal fluorescence and transmission image overlay 

of the sample of neural stem cells (a) without NPs and (b) with 

NPs.  
 

We also studied NPs penetration through the cell 

membranes of the fixed cells in 3D (Fig.5). The experi-

ment was performed over 1 hour 25 minutes. Particles 

penetrated the cell membrane, but were not observed 

in the body of the cell (dark area in the center of the 

Fig.5a). It is possible that longer exposure to the NPs 

would allow them to go deeper onto the cell body. The 

so-called “Z-stack” on Fig.5a shows 9 focal planes, ob-

tained within 1 micrometer from each other. The com-

bination of all z-planes together (top view of a cell) is 

shown on (b).  
 

 
a b 

 

Fig. 5 – Confocal fluorescence microscopy of (s) Z-stack of the 

NSC with nanoparticles (a), Top view of all layers collected (b) 

 
4. CONCLUSIONS 

 

We showed that glycine-coated silver nanoparticles of 

mean diameters of 9 nm have surface-plasmon-

a) 

b) 

a) 

b) 

c) 
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resonance-related photoluminescence. They can pene-

trate membranes of fixed neural stem cells, and hence 

can serve as bio-imaging probes in fluorescence micros-

copy. The particles also cause morphology, proliferation 

and viability changes to the live cells, mostly causing cell 

death. This finding potentially can be used for targeted 

cell destruction.  
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