
 

t t 

 

 

 

PROCEEDINGS  OF  THE  INTERNATIONAL   CONFERENCE 

NANOMATERIALS:  APPLICATIONS   AND   PROPERTIES 

Vol. 4 No 2, 02NEA06(3pp) (2015) 
 

Thermodynamic Functions of Electron Gas in Strong Anisotropic Materials. Quantum Gas 
 

C.C. Tovstyuk* 

 
National University “Lviv Politechnik”, 12, Banderas St. 79013 Lviv, Ukraine 

 

(Received 10 June 2015; published online 26 August 2015) 

 

In this paper we report about the peculiarities of thermodynamic functions of quantum electron gas in 

layered crystals. In such materials the conductivity along the layers exceeds by several orders the conduc- 

tivity across layers. To these structures depend layered materials: YTe3, LaTe3, CeTe3, InSe, which are 

considered at low temperatures, as well as a number of organic conductors. There are many theoretical and 

experimental papers, indicated coexistence of equipotential energy surfaces of electrons in the form of cor- 

rugated cylinders and corrugated sheets. The thermodynamic functions for quantum electron gas are eval- 

uated and compared for two different dependences of energy on momentum. The same parameters are used 

in both models – they are effective masses and translation vectors for β - GaSe. Our investigations allowed 

explaining the temperature dependence of resistivity for strong anisotropic and isotropic crystals at law 

temperatures, received by experiment. We also analyzed the specific heat in such crystals and explained 

the anomaly, observed in such crystals and illustrated the imperfection of the Debye model. 
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1. MOTIVATION 

We consider a layered material with sharp anisot- 

ropy of electrical conductivity, where electrical conduc- 

tivity along the layers is several orders higher than 

across the layers. These structures include layered ma- 

terials YTe3, LaTe3, CeTe3 [1], InSe [2] at low tempera- 

tures, as well as a number of organic conductors [3]. 

Electron  energy  investigations  in  organic  conductors 

 

2. THE MODEL AND APPROACH 

The layered crystals contain atoms of two or more 

layers in the unit cell. The layers are binded by Van– 

der-Waals interactions, which, according to [8], contain 

only 2 - 3% of the chemical bindings inside the layer. 

For such materials the one-particle energy dependence 

on quasi momentum was introduced in [9 - 11] (SAD): 
 



indicated coexistence of equipotential surfaces in the E(k) k2  (1 cos z), (2.1) 
form of corrugated cylinders and corrugated sheets [4]. 2 22 

In  YTe3,  LaTe3,  CeTe3   equipotential  surface  energy, 
 ,  

2m 4m d2
 

(2.2) 

calculated from the first principles in [5] include weak 

dispersion along one direction. Two-dimensional metal- 

lic conductivity at low temperatures in InSe was exper- 

imentally confirmed by magneto resistance quantum 

oscillations in [2]. 

Even for quasi classical gas of electrons the compar- 

ison thermodynamic functions obtained for parabolic 

dispersion (PD) (energy - quadratic function of momen- 

tum) and for strong anisotropic equipotential surfaces 

(SAD) done in [6], pointed to feature the electron gas in 

layered structures. Namely, the heat capacity plotting 

after the anisotropy parameter has a pronounced max- 

imum, which was associated with the transition from 

closed to open equipotential surfaces. With the growth 

of anisotropy this maximum shifts to low temperatures, 

i.e. transition from closed to open surfaces occurs by 

lower values of energy. It was shown that the thermo- 

dynamic analysis reveals the shortcomings of the sin- 

gle-particle spectra of carriers [7]. A quasi-classical 

approximation is not applicable to materials with high 

concentration of carriers (metals) and semiconductors 

at low temperatures. This is the case we consider in 

this paper. 
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where mt effective mass of current carrier in the plane 

of layer, γ - half-width of the conduction band in the 
direction [001], z = kz∙d, d – translation this direction. 

Energy (2.1) (SAD) determines the availability of open 

and closed equipotential surfaces or evidence of a three- 

and two-dimensional electron gas. The obtained ther- 

modynamic functions were compared with those for 

parabolic dispersion (when the energy depends on the 

square momentum (PD)). For PD the expressions for 

thermodynamic functions are known [12]. The same 

parameters are used in both models – they are effective 

masses and translation vectors for – GaSe [13].To 

find the density of states at the equipotential surface 

we used the inversion theorem of the partition function 

[14]. The partition function for strong anisotropic mate- 

rial was obtained in [15]. The resulting density of 

states (DS) coincides with the expressions obtained 

earlier [16]. Comparing this density of states, with ob- 

tained for PD we see: 1) DS of SAD is significantly 

greater than for isotropic materials (PD)for small ener- 

gies (low frequencies), 2) For large energies (frequen- 

cies) DS of strongly anisotropic materials(SAD)is con- 

stant  and  much  smaller  than  in  isotropic  materials 

(PD), where DS increases with increasing energy as   ). 
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The following investigations were made using [17]. 
 



N g()fFD ()d ; 
0 



E g()fFD ()d ; (2.3) 
0  

 E    
 ln 1 exp

F
 

g()d. 
 

 

where EF – energy of Fermi level, kBT, g() – density 

of states fFD() – Fermi-Dirac function. Heat capacity and 

entropy were evaluated as derivation from energy and 
thermodynamic potential on temperature. They are: 

 

     
S(T ) k g() ln 1 e  g()f  ()  d

0 



 
  0 

 

FD 

   a  

C(T ) kg()f ()(1 f  
())  d

FD FD 

0   (2.4) 

Evaluations were performed for electron gas in a 

sample with volume of 1 cm3, which is 0.034 molls. 

 
3. THE RESULTS AND DISCUSSION 

 

The concentration of carriers plotting again the 

temperature for (SAD) shows stronger dependence on 

the temperature than in (PD). 

The number of carriers increases considerably 

stronger with the temperature for layered materials at 

low temperatures. It consists with a number of experi- 

mental works on resistivity of layer materials at low 

temperatures [18, 19]. This property is used in [19] for 

temperature sensor based on GaSe. The received de- 

pendences of heat capacity of the electron gas point to 
its    linear    temperature    dependence    CP T    with 

= 0.052 mJ∙mol –1K –2. For all cases entropy and heat 

capacity are well interpolated by linear dependences on 
temperature with different tangent angles, depending 

on the Fermi  energy.  At  small  Fermi-  energies 
(0.014 eV) the heat capacity of SAD electron gas de- 

pends stronger on the temperature than in PD materi- 
als. For large values of EF (1 eV) – on the contrary. The 

same tendency occurs for the temperature dependences 
of entropy. These contradictoral depending can be ex- 

plained by the Lifshitz phase transition - the transition 
from closed to open equipotential surfaces [21]. Figure 

1 shows the dependence of heat capacity and entropy of 
the Fermi energy evaluated at T 10 K. 

As we see from Fig. 1, a topological phase transition 

is noticeable in specific heat and entropy. The analyzed 

dependences for the internal energy and thermodynam- 

ic potential did not have any features. In experimental 

data [22] the anomalies in the Specific heat of the lay- 

ered material were observed, and they may have the 

same nature as in our investigations. Both these re- 

sults conclude the limited possibility of using Debye 

theory of heat capacity in layered materials. The entro- 

py dependence of the Fermi energy (Fig. 1b) is in good 

agreement with [23], where the entropy on two- 

dimensional gas was analyzed. 

 

 

 

 

 

 

 

 

 

 

b 

Fig. 1 – The dependence of specific heat (a) and entropy (b) of 

the Fermi energy 

 

4. CONCLUSIONS 

The thermodynamic functions for quantum electron 
gas are evaluated and compared for two different de- 
pendences of energy on momentum. The same parame- 

ters are used in both models – they are effective masses 

and translation vectors for - GaSe. 

The temperature dependences of electron concentra- 

tion for strong anisotropic case allowed us to explain the 

experimental data for resistivity, more increasing with 

temperature in strongly anisotropic materials (for low 

temperatures). 

We obtain the contradictory dependences of the ther- 

modynamic functions on temperature: bigger for strong 

anisotropic case for small Fermi - energies (with closed 

equipotential surfaces) and vice versa for big Fermi - en- 

ergies (with opened equipotential surfaces). It was shown 

that this contradiction can be explained by topological 

transition from closed to opened equipotential surfaces 

(Lifshic’s transition). Our analyzing of heat capacity al- 

lowed to explain theanomaly, obtained experimentally. It 

also illustrates the imperfection of the Debye model of 

heat capacity for strong anisotropic materials. 
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