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The system of Nernst-Planck-Poisson equations is modified by including the gradient terms in the 

chemical potential expression. The gradient terms are important in the regions of significant inhomogenei-

ties, e. g. near the interface boundaries. These modified equations are used for investigating the particle 

density distribution in the vicinity of interphase boundary of a solid electrolyte. The differential equation 

of the fourth order for the problem of contact between two solid phases is formulated. Its analytic solution 

which describes non monotonic distribution of charge in both phases is obtained. It is shown that the gra-

dient component added in the transport equations makes a decisive contribution in the double layer region. 

The approach is further expanded to the system composed of bulk phases and the intergrain layer between 

them. The particle density distributions at different conditions are investigated. The quasy-one dimension-

al lattice model of the fuel cell is considered in the frame of kinetic Monte Carlo simulation. It is shown 

that the electrostatic interaction between ions makes a significant contribution to the activation energy of mi-

gration of the particles. On the other hand, the fluctuations of the energy barriers slightly increase the parti-

cle migration activation energy. It is found that at blocked electrodes in the near electrode regions electrical 

double layers are formed. The thickness of the electrical double layer is around few lattice constants. 
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1. INTRODUCTION 
 

Solid state ionics are widely used in fuel cells, 

chemical sensors, capacitors, current sources etc. They 

are characterized by high electric charged particle con-

centration and thus nanoscale density variations 
around of any spatial nonhomogeneity such as inter-

grain or interphase boundary. These charge density 

variations significantly influence electric conductivity 

and other characteristics of the devices where solid 

state ionics are used. 
The system of Nernst-Planck-Poisson (NPP) equa-

tions is widely used for investigating the electromigra-

tion mechanisms in various cases [1, 2]. The linearized 

NPP equations can describe the basic mechanisms of 

charge transport in the solid-state electrochemical sys-
tems and are convenient means for analytical consider-

ations. In accordance with these equations the total 

flux of particles in the medium is determined by the 

gradient of the electrochemical potential and consists of 

two components generated by the driving forces propor-
tional to the gradients of the electric potential and the 

concentration of particles that leads to the differential 

equations of the second order. This approach is success-

ful in analyzing the migration of particles within a sin-

gle phase with a small nonhomogeneity of the density 
distribution over the volume of the system and cannot 

be used in more complex cases of interface boundaries 

when the double layer structures require non monoton-

ic particle density distribution on the nanometer scale. 

In the latter case the density gradient contribution to 
the free energy and the chemical potential is quite im-

portant and leads to differential equations of the forth 

order that describe a nonuniform particle density dis-

tribution more consistently. 

Nonlinear versions of the NPP equations can hardly 

be solved analytically. For numerical investigation mo-

lecular dynamics (MD) and kinetic Monte Carlo (KMC) 

are more suitable methods because they give possibility 

more closely address physical nature of the systems 
under investigation. The former can be used to simu-

late the systems of the order of 105 atoms on time 

scales of the order of tens nanoseconds and requires 

more processing power. However, a large number of 

important processes occur on a time scale much longer 
than nanosecond range and KMC tools are better suit-

ed for studying such phenomena. Thus, analytical and 

KMC methods are used below for describing the particle 

and charge distribution variations on nanoscale. 

 

2. GRADIENT CONTRIBUTION TO THE FREE 

ENERGY AND CHEMICAL POTENTIAL 

 

2.1 Constitutive Equations 
 

When the system is nonhomogeneous in x direction 

a common representation [3, 4] of the free energy F 
through the deviation (x) of the density field (x) 

from its homogeneous value can be written as follows: 
 

   2
( ( )) ,    0,F f x x dx   





      (2.1) 

 

where f((x)) is the free energy density of the equilibri-

um homogeneous system of constant density , which is 

equal to the density (x) of the nonhomogeneous system 

at position x. The second term under the integral rep-

resents the density gradient contribution. After inte-

gration of this equation by parts we get: 
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that results in the expression for the chemical potential 
 

 
2

2

( ( ))
( ) .

f x
x

x

 
 



 
 

 
 (2.3) 

 

The first summand in the right hand side coincides 

with the electrochemical potential of a homogeneous 

medium and thus 
 

  2 2
ch( ) ( ) ( ) ,x x q x x          (2.4) 

 

ch is the chemical potential, q the particle charge,  

the electric field potential. The last summand is an 

important contribution originating from the gradient 

term in the free energy expression. 

For the system of two solid phases with plane inter-
face at position x  0 the condition of thermodynamic equi-

librium can be written as a generalized NPP equation 
 

 
4

ch ch4
( ) ( ) sgn( ) , 1,2jx q x qu j

q x

 
   


    


(2.5) 

 

with the symmetrized boundary conditions 
 

 ( ) ,     ( ) ,    (0) 0.u u          (2.6) 
 

Here ch(1) and ch(2) are the equilibrium chemical 

potentials of the left and right hand phases far from 

the interface boundary, 2u is the contact potential dif-
ference of the solids (the total potential difference),  is 

the medium dielectric constant. 

The chemical potential can be represented through 

the variation of density 
 

 ch ch( ) ( ) ( ),j j jx x       (2.7) 

 

with the thermodynamic factors 
 

 ( ) / , 1 or 2 for 0 or 0.j j j j x x          (2.8) 

 

The constitutive equation acquires the form 
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The particle density distribution follows from the 

solution of this equation 
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The charge density distribution following from this 

solution clearly indicates the occurrence of the double 

layer in the vicinity of the interface. 
 

2.2 The Particle Density Distribution at Inter-

face and Intergrain Layers 
 

The solution (2.10) can be directly applied to the 

double layer problem at the interface of an ionic elec-

trode and electrolyte. In accordance with the Poisson 

equation double integration of this solution determines 

the charge density distribution with two extremes at 
 

 2 1
1,2

2 1

ln( / )
.

k k
x

k k
 


 (2.11) 

 

For simplicity it is supposed that the physical char-
acteristics of both phases are identical (, ,  are the 

same for both phases). It should be noted that without 
the terms containing  it is not possible to reproduce 

the peculiar features of the double layer structure. 

The charge density distribution in the system con-

taining two plain blocking electrodes and thick electro-

lyte between them is shown in Fig. 2.1. The two double 

layers are clearly seen with two extremes each.  

The approach developed can be applied for the case 

of intergrain boundary layer. The model system con-

sists of three layers: two bulk phases and the inter-

grain layer between them. The latter is characterized 

by an additional electric potential originating from mi-

croscopic interparticle interactions. Then the general-

ized NPP equation can be represented as the system of 

three differential equations of the forth order for three 

different layers. If the intergrain boundary is thin 

enough the charge distribution at zero total potential 

difference is symmetric and contains the only extreme 

in the region of the intergrain boundary and two ex-

tremes in the regions of the plains separating the grain 

bulks and  intergrain boundary (Fig. 2.2). 
 

 
 

Fig. 2.1 – Charge distribution in the cell with blocking elec-

trodes 
 

 
 

Fig. 2.2 – Charge distribution in the region of thin intergrain 

boundary 
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In the case of thick intergrain boundary the central 

extreme brakes down into two extremes with a flat part 

between them for significantly wide intergrain layer. In 

the general case of nonzero intergrain and total poten-

tial difference the charge distribution is more compli-

cated. 

 

3. DISTRIBUTION OF CHARGES IN QUASI-

ONE-DIMENSIONAL MODEL OF A FUEL CELL 
 

3.1 The Model 
 

Yttria-Stabilized Zirconia (YSZ) cells are widely 

used in different electrochemical devices [5-7]. The 

simplest configuration, the quasi-one-dimensional 

model [8], that allows us to perform relatively simple 

calculations is considered below. Fig. 3.1 shows the 

simplified cell structure for the YSZ electrolyte as an 

example of this model. 
 

 
 

Fig. 3.1 – A one-dimensional lattice for the KMC model 
 

The volume of each unit cell (shown as a column di-

vided into three parts) contains one vacancy (open circle) 

when no external potential is applied. Each cell has two 

locations for the negative ions (open and gray circles) 

and one location for positive ions (black circles), and af-
ter doping there is one negative and one positive ion per 

unit cell, leaving one vacancy. The positive ions (Y) are 

considered to be fixed and the negative ions (O) can 

jump from one cell to the other, under the influence of an 

electric field or due to thermal fluctuations. The oxygen 
ions can jump to the right or left nearest neighbor unit 

cell when the latter contains one vacancy at least.  
 

3.2 KMC Simulation Procedure 
 

In KMC simulation the rate of particle jumps due to 

thermally activated processes is modeled via an Arrhe-

nius type expression for the jump frequency 
 

  0 exp a BP P k T   (3.1) 

 

where Р0 is a pre-exponential factor, T the temperature 

and kB the Boltzmann constant. The activation energy 

εa consist of activation energy of bulk diffusion εBD and 

the electrical contribution εF. 
 

 a BD F    , (3.2) 
 

To account for the nonuniform distribution of activa-

tion energy, with which can be modeled, for example, the 

influence of nonhomogeneities or defects in the system or 

the grain boundaries in the electrolyte, the value of in-
terstitial energy barrier can be represented as  

 

 0BD    , (3.3) 
 

where ε0 is the average value of the barrier, δε is its 

variation, which obeys some special requirements. Be-

low it is considered as a random variable with a uni-

form distribution in some energy range 
 

 0 r2 ( 0.5)BD x     , (3.4) 
 

where xr is uniformly distributed pseudo-random num-

ber in the interval from 0 to 1. 
The electrical contribution to the activation energy 

is defined by the expression [8] 
 

 0 ion cell( )F a q U E E    , (3.5) 
 

where q is the charge of moving ion, а0 the lattice spac-

ing, U the external electric field, Eion the contribution 

to the total electric field from the fixed and mobile ions 
within the electrolyte. The term Ecell is the electric field 

imposed on the charge being moved by the ionic charg-

es on the same sheet that are not being moved. 

The ionic electric field at site j is computed in the 

approximation that the total charge of all the equiva-
lent cells belonging to a sheet perpendicular to the fuel 

cell axes is uniformly distributed over the sheet area. 

Then the electric field can be computed by summing 

over all the possible charge sheets. A net positive 

charge on sheet k has a positive contribution to the 
ionic field if k  j, and a negative contribution if k  j. 

The ions associated with sheet j do not contribute to 

the electric field of that sheet. Therefore: 
 

 
1

1 1

1
( ) ( ) ( )

2

j N

ion
k k j

E j Q k Q k




  

 
  

 
  , (3.6) 

 

where ε is permittivity, Q(k) is charge of kth sheet. The 

work required to move an ion on sheet j which must ac-

count for the charges on that sheet other than the charge 

being moved. This contribution is determined by calcu-

lating the electric field, Ecell sheet, due to these charges 
 

  
1

( ) ( )
2

cellE j Q j q


   , (3.7) 

 

where plus / minus correspond a charge moves to sheet 

j  1, respectively. 

For modeling the movement of oxygen ions in the lat-

tice we used the next physical parameters. External 
electric field is assumed to be U  106V/m. The lattice 

spacing is a0  0.737 nm in accordance with [8]. Then the 

interaction constant for doubly charged ions of oxygen is 
2e2/ε0εa  0,784  10 – 19 J, where e is the electron charge, 

ε0 the electric constant. The permittivity of the medium 
ε  100 adopted taking into account the partial screening 

by the electron subsystem of the solid electrolyte. 

Simulations were performed for the lattice contain-

ing 210 sheets. The simulation procedure consists of 
1.01  106 MC steps. The first 104 steps designed for the 

transition of the system to an equilibrium state and 

were not taken into account in the averaging of the sim-

ulation results. The lattice barriers were rearranged 

after every 100 steps in accordance with Eq. (3.4). 

 

3.3 Simulation Results 
 

The consideration of a "closed" system, in which 

ions cannot move across the borders (at blocking elec-
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trodes), gives possibility to study the distribution of the 

charges in the electrolyte in an external field at equi-

librium. At high temperatures (Fig. 3.2). the average 

values of the sheet charges in the bulk of the system 

are close to zero, while double electric layers appear 

near the electrodes. The total charges in these layers 

and their widths are almost independent of temperature. 
 

 
 

Fig. 3.2 – Average charge of the sheets (in units of the elec-

tron charge) versus number of the sheet at high temperature 

(T  800 K) 
 

The electric conductivity can be simulated at peri-

odic boundary conditions. At applied external potential 

the number of particles moving through the system 

during a unit time is recorded. In Fig. 3.3 the depend-

ence of the electric conductivity on the inverse temper-

ature is shown for different values of the activation 

barrier fluctuations.  
 

 
 

Fig. 3.3 – Logarithm of the total charge passing through the 

electrolyte versus inverse temperature in the case of ordered 

lattice (curve 1, squares), δε  0.5 (2, triangles) and δε  1.0  

(3, circles). The symbols represent the KMC simulation data, 

the solid lines are the results of the linear approximation. 
 

The values of the normalization constant P0 were 

determined in a series of test numerical experiments to 

optimize the simulation time and accuracy [8]. Finally 

all the data were reduced to common units which cor-

respond to ordered lattice. The relation between the 

logarithm of the conductivity and the inverse tempera-

ture is practically linear that confirms the Arrhenius 

behavior for the conductivity at fluctuating activation 

barriers. The slopes of these lines determine the average 

activation energy of the model at different values of the 

parameter δε. This dependence is approximately linear 

(Fig. 3.4) and can be represented by the expression 
 

 0 0/ 2.752 0.673 /a     , (3.8) 
 

 
 

Fig. 3.4 – The average activation energy versus the scale coef-

ficient of the uniform distribution 

 

4. CONCLUSION 
 

The gradient terms in the chemical potential ex-

pression result in modification of Nernst–Planck–

Poisson equations and the possibility to reproduce the 

important features of the electric double layer struc-

ture. In the case of contact of two different ionic solids 

the double layer structure appears due to the contact 

potential difference of the solids. In the case of two 

bulk phases and the intergrain layer between them the 

density distribution is symmetric. The kinetic Monte 

Carlo simulation reveals the structure of the double 

layer and the electric conductivity of the electrolyte 

cell. The approach suggested can be used for a wide class 

of problems concerning electric field and particle density 

distributions in nonhomogeneous solid state ionics. 
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