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The present paper reports two new window functions viz. piecewise linear window function and nonlin-

ear window function for modelling of the nanostructured memristor device. The piecewise linear window 

function can be used for modelling of symmetric pinched hysteresis loop in I-V plane (for digital memory 

applications) and the nonlinear window function can be used for modelling of nonlinear pinched hysteresis 

loop in I-V plane (for analog memory applications). Flexibility in the parameter selection is the main at-

tractive feature of these window functions. 
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1. INTRODUCTION 
 

The memristor is a fourth fundamental circuit com-

ponent and it has potential application in the area of 

Resistive Random Access Memory (RRAM), biomedical 

applications, new kind of electronic circuits and many 

more [1-5]. The pinched hysteresis loop in I-V plane is 

one of the fingerprint characteristics of memristor. This 

loop is analogues with the Low Resistance State (LRS) 

and High Resistance State (HRS) of RRAM based de-

vices. The LRS and HRS loop can be symmetrical and 

asymmetrical (nonlinear) in the nature. The symmet-

rical loop can be used for digital memory application 

due to its instantaneous switching from LRS to HRS 

and vice versa. The asymmetrical loop can be used for 

analog memory application such as neuromorphic ap-

plication where switching of memristor can be consid-

ered as smooth, highly nonlinear switching from LRS to 

HRS and vice versa. Recently Dongale et al. developed 

nanostructured TiO2 thin film memristor with low 

symmetric voltage switching ( 0.68 V) [3]. Similarly 

Kundozerova, et al. developed anodic oxides based 

memristor in which I-V curve is asymmetric [6]. 

The literature survey reveals that, most of the re-

searchers applied the nonlinear window function or 

derived nonlinear dependence of the state variable for 

the simulation of nonlinear effects of memristor device 

[7-10]. The explicit relationship between memristance 

(M) and charge (q) cannot be obtained using above 

model and theories. If we would like to simulate the 

memistor with above window functions, then we re-

quire some numerical methods for solving the differen-

tial equations [11, 12]. To deal with this problem, we 

are proposing two window functions viz. Piecewise 

Linear Window Function and Nonlinear Window Func-

tion. 

The rest of the paper portrayed as follows, the first 

section deals with the introduction and outline of the 

problem statement. The second section discusses back-

ground theory of memristor device and simulation of 

memristor device using linear drift model. The third 

section briefly describes the proposed window functions 

and at the end conclusion is reported. 

 

2. BACKGROUND THEORY OF MEMRISTOR 

DEVICE 
 

The memristor is popularly known as fourth fun-

damental and passive circuit component [1]. The 

memristor device was first of all predicted by Prof. L. 

Chua in his seminal research paper [1] in 1971. After 

forty years, in 2008, HP research group reported the 

first physical prototype of memristor device [2]. The 

pinched hysteresis Current-Voltage (I-V) loop and non-

linear curve between Charge (q)-Magnetic Flux (φ) are 

the fingerprint characteristics of nanostructured 

memristor device. The current controlled and voltage 

controlled are the two types of memristor device.  

The HP memristor model considered the drift of oxy-

gen vacancies as a state variable in the Pt / TiO2 / Pt 

structure. The typical structure of HP memristor is de-

picted in the Fig. 1. 
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Fig. 1 – Structure of memristor reported by HP Lab [2] 
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The Valency Change Mechanism (VCM) is the basis 

of memristor. The existing literature reveals that the 

most of the memristor is modeled around the ideal HP 

memristor model in which drift of oxygen vacancies 

considered as a state variable, which is similar to 

Chua’s state variable ‘w’ [1, 2]. The reported HP 

memristor consists of Pt / TiO2 / Pt structure in which 

TiO2 – x oxygen rich doped conductive layer plays an 

important role to produce memristor like characteris-

tics. The ‘D’ is a thickness of active sandwich structure 

and ‘w’ is the thickness of doped region. The HP 

memristor is based on linear drift model and consid-

ered the linear ionic drift. If average drift velocity of 

oxygen vacancies μv, then memristor current and volt-

age relation can be represented using following math-

ematical equations (1) [2]: 
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Where state variable ‘w’ can be represented as, 
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Integrating equation (2) w.r. to ‘t’ we get, 
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Inserting equation (3) into (1) we get memristance 

M(q), 

If RON  ROFF, 
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The simulation of linear drift model is represented 

in the Fig. 2. The experimental results suggested that 

the drifts of vacancies are highly nonlinear near the 

boundary interfaces and it is generally known as non-

linear dopent drift [13-16]. It is due to fact that, a small 

voltage across the nanoscale memristor produces large 

electric field across the device. This large electric field 

produces nonlinear drifting of vacancies near the 

boundary interfaces [13-16]. Another problem with 

linear drift model of memristor is that the state varia-

ble ‘w’ never reaches to zero physical length which 

indicates oxygen vacancies are absent in the devices 

[17]. The boundary problem can be minimized using 

window function f(x). In general, the nonlinear dopent 

drift can be obtained by simply multiplying the state 

equation of memristor (equation 2) with the window 

function f(x) [1, 8]. 
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The function f(x) should have its highest value at 

the center of the device (x  0.5) and zero at boundaries 

of memristor device [17]. 

a

dc

b

 
 

Fig. 2 – Simulation results of linear drift model of nanostructured memristor device (a) plot of flux vs charge. (b) plot of current vs 

voltage. (c) plot of relationship between current and voltage vs width (state variable). (d) plot of log (current (I)) vs log (voltage (V)) 
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3. PROPOSED WINDOW FUNCTIONS 
 

3.1 Piecewise Linear Window Function 
 

The proposed window function is piecewise continu-

ously differentiable at three regions viz. LHS bounds, 

middle region and RHS bounds and shows the nonline-

ar behaviour at lower values of control parameter ‘p’ 

and linear behaviour at higher values of control pa-

rameter ‘p’. The equation (6) represents the generalized 

piecewise linear window function such as, 
 

 
0

px

mX
  for 0  x  X0 

f(x)   
p

m
   for X0  x  Y0    (6) 
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Where, 0  X0  Y0  1 and (p and m ∈ R+). Consider 

a suitable case when LHS bounds lies between 

0  x  1/3 and RHS bounds lies between 2/3 ≤ x  1 and 

constant for middle region such that, 
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f(x)  
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p
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Where, x(t)  w/D is the normalized form of the 

state variable, and the control parameter ‘p’ is a posi-

tive integer and m  20. Fig. 3 represents the proposed 

piecewise linear window function for various values of 

control parameter ‘p’. 
 

p

 
 

Fig. 3 – Plot of piecewise linear window function for modelling 

of nonlinearities of memristor device for various values of 

control parameter ‘p’ 
 

The Fig. 3 clearly indicates that, as the value of con-

trol parameter ‘p’ increases from 1 to 20, LHS and RHS 

bounds of window function shows the quasi nonlinear 

behaviour of dopent kinetics at the boundaries and 

middle region represents the linear behaviour of 

memristor’s dopent kinetics. This indicates proposed 

model accurately considered the linearity of dopent 

drift at the middle region of the device and quasi non-

linear behaviour at the boundaries. The proposed win-

dow function has more flexibility than other nonlinear 

window functions. The proposed window function simu-

lates the nonlinearity at the boundaries only for the 

lower value of control parameter ‘p’. This drawback is 

rectified by using nonlinear window function. One such 

approach is depicts in the next section. One can adjust 

the values of X0, Y0, m and control parameter ‘p’ for 

modelling of the memristor based digital memories. 

 

3.2 Nonlinear Window Function 
 

The proposed piecewise linear window function 

simulate the quasi nonlinear behaviour of dopent kinet-

ics at the boundaries and linear behaviour in the mid-

dle region. A good window function must possess full 

nonlinear behaviour at the boundaries and linear be-

haviour in the middle region. It is found that the 

piecewise linear window function shows the nonlinear 

behaviour only at lower value of control parameter ‘p’. 

This problem can be minimized by adopting the smooth 

nonlinear window function. The proposed nonlinear 

window function is similar to piecewise linear window 

function except, it has nonlinear characteristics at the 

boundaries. The equation (8) represents the proposed 

nonlinear window function such that, 
 

 

1

px     for 0  x  X0 

f(x)  

1

0
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1
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Where, 0 ˂ X0 ˂ Y0 ˂ 1, Y0  (1 – X0) and (p ∈ R+). 

Consider a suitable case when LHS bounds lies be-

tween 0 ≤ x ≤ 1/5 and RHS bounds lies between 

4/5 ≤ x ≤ 1 and constant for middle region such that, 
 

   

1

px   for 0 ≤ x ≤ 1/5 

f(x)    

1

5 p   for 1/5 ≤ x ≤ 4/5    (9) 

   
1
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Where, x(t)  w/D is the normalized form of the 

state variable and the control parameter ‘p’ is a positive 

integer and m  20. The nonlinear dopent drift can be 

obtained by simply multiplying the state equation of 

memristor with the window function f(x). The Fig. 4 

represents the proposed nonlinear window function for 

various values of control parameter ‘p’. 

Fig. 4 suggested that, as the value of control param-

eter ‘p’ increases from 1 to 20, the LHS and RHS 

bounds of window function show the nonlinear behav-

iour of dopent kinetics at the boundaries, and middle 

region represents the linear region of memristor’s 

dopent kinetics. Moreover, it accurately fitted the non-

linearity for the higher values of control parameter ‘p’.  
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Fig. 4 – Plot of nonlinear window function for modelling of 

nonlinearities of memristor device for various values of control 

parameter ‘p’ 
 

This indicates that the model accurately considered 

the linearity of dopent drift at the middle region of the 

device and nonlinear behaviour at the boundaries. The 

proposed window function has more flexibility than 

other nonlinear window functions and proposed piece-

wise linear window function. The proposed nonlinear 

window function can be used for modelling of the 

memristor based analog memories. 

 

4. CONCLUSION 
 

The present paper discuses two new window func-

tions for modelling of memristor based analog and digi-

tal memories. The piecewise linear window function 

accurately models the linearity of dopent drift at the 

middle region of the device and quasi nonlinear behav-

iour at the boundaries. The nonlinear window function 

models the linearity of dopent drift at the middle region 

of the device and nonlinear behaviour at the bounda-

ries. The main feature of these models is the flexibility 

of its operation and one can adjust the parameters of 

window function for modelling of memristor based 

memory devices. 
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