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Lecture 1

Physical Properties of Fluids

Matter most commonly exists as a solid, liquid, or gas; these
states are known as the three common phases of matter. Solids
have a de�nite shape and a speci�c volume, liquids have a de�nite
volume but their shape changes depending on the container in
which they are held, and gases have neither a de�nite shape nor
a speci�c volume as their molecules move to �ll the container in
which they are held. Liquids and gases are considered to be �uids
because they yield to shearing forces, whereas solids resist them.
Note that the extent to which �uids yield to shearing forces (and
hence �ow easily and quickly) depends on a quantity called the
viscosity. Liquids deform easily when stressed and do not spring
back to their original shape once the force is removed because the
atoms are free to slide about and change neighbors � that is, they
�ow (so they are a type of �uid) with the molecules held together
by their mutual attraction. Because the atoms are closely packed,
liquids, like solids, resist compression.
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1.1. Density

1.1. Density

Density is an important characteristic of substances. Density
is the mass per unit volume of a substance or object. In equation
form, density is de�ned as

ρ =
m

V
, (1.1)

where the Greek letter ρ (rho) is the symbol for density, m is the
mass, and V is the volume occupied by the substance. The SI unit
of density is kg/m3.

1.2. Pressure

You have no doubt heard the word �pressure� being used in
relation to blood (high or low blood pressure) and in relation to
the weather (high- and low-pressure weather systems). These are
only two of many examples of pressures in �uids. Pressure P is
de�ned as the force divided by the area perpendicular to the force
over which the force is applied, or

P =
F

A
, (1.2)

where F is a force applied to an area A that is perpendicular to the
force. The SI unit for pressure is the pascal, where 1Pa = 1N/m2.

In addition to the pascal, there are many other units for
pressure that are in common use. In meteorology, atmospheric
pressure is often described in units of millibar (mb), where
100 mb = 1×105 Pa. Pounds per square inch lb/in2 or psi is
still sometimes used as a measure of tire pressure, and millimeters
of mercury (mm Hg) is still often used in the measurement of
blood pressure. Pressure is de�ned for all states of matter but is
particularly important when discussing �uids.
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Lecture 1. Physical Properties of Fluids
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1.3. Pascal's Principle

Atmospheric pressure is another example of pressure due to the
weight of a �uid, in this case due to the weight of air above a given
height, the average pressure at sea level is given by the standard
atmospheric pressure Patm, measured to be 1 atmosphere (atm) =
Patm = 1.01×105 N/m2 = 101 kPa.

1.3. Pascal's Principle

Can pressure be increased in a �uid by pushing directly on
the �uid? Yes, but it is much easier if the �uid is enclosed. The
heart, for example, increases blood pressure by pushing directly
on the blood in an enclosed system (valves closed in a chamber).
If you try to push on a �uid in an open system, such as a river,
the �uid �ows away. An enclosed �uid cannot �ow away, and
so pressure is more easily increased by an applied force. What
happens to a pressure in an enclosed �uid? Since atoms in a �uid
are free to move about, they transmit the pressure to all parts
of the �uid and to the walls of the container. Remarkably, the
pressure is transmitted undiminished. This phenomenon is called
Pascal's principle, because it was �rst clearly stated by the French
philosopher and scientist Blaise Pascal (1623-1662): A change in
pressure applied to an enclosed �uid is transmitted undiminished
to all portions of the �uid and to the walls of its container. Pascal's
principle implies that the total pressure in a �uid is the sum of
the pressures from di�erent sources.

1.4. Pressure Measurement

Gauge pressure is the pressure relative to atmospheric pressure.
Gauge pressure is positive for pressures above atmospheric
pressure, and negative for pressures below it.

8



Lecture 1. Physical Properties of Fluids

The total pressure, or absolute pressure, is the sum of gauge
pressure and atmospheric pressure: Pabs = Pg + Patm, where Pabs

is absolute pressure, Pg is gauge pressure.
There is a host of devices for measuring pressure, ranging

from tire gauges to blood pressure cu�s. The undiminished
transmission of pressure through a �uid allows precise remote
sensing of pressures. Remote sensing is often more convenient
than putting a measuring device into a system, such as a person's
artery. There are many types of mechanical pressure gauges in
use today. In all mechanical pressure gauges, pressure results in a
force that is converted (or transduced) into some type of readout.

Mercury manometers are often used to measure arterial blood
pressure. An in�atable cu� is placed on the upper arm. By
squeezing the bulb, the person making the measurement exerts
pressure, which is transmitted undiminished to both the main
artery in the arm and the manometer. When this applied
pressure exceeds blood pressure, blood �ow below the cu� is cut
o�. The person making the measurement then slowly lowers the
applied pressure and listens for blood �ow to resume. Blood
pressure pulsates because of the pumping action of the heart,
reaching a maximum, called systolic pressure, and a minimum,
called diastolic pressure, with each heartbeat. Systolic pressure
is measured by noting the value of h � height of the mercury
column, when blood �ow �rst begins as cu� pressure is lowered.
Diastolic pressure is measured by noting h when blood �ows
without interruption. The typical blood pressure of a young adult
raises the mercury to a height of 120mm at systolic and 80mm at
diastolic. This is commonly quoted as 120 over 80, or 120/80. The
�rst pressure is representative of the maximum output of the heart;
the second is due to the elasticity of the arteries in maintaining the
pressure between beats. The density of the mercury �uid in the
manometer is 13.6 times greater than water, so the height of the
�uid will be 1/13.6 of that in a water manometer. This reduced

9



1.5. Archimedes' Principle

height can make measurements di�cult, so mercury manometers
are used to measure larger pressures, such as blood pressure. The
density of mercury is such that 1.0mmHg = 133 Pa.

1.5. Archimedes' Principle

According to Archimedes' Principle, the buoyant force on an
object equals the weight of the �uid it displaces. In equation form,
Archimedes' principle is

FB = wfl, (1.3)

where FB is the buoyant force and wfl = ρflgVo is the weight
of the �uid displaced by the object (ρfl � density of the �uid,
g = 9.8m/s2 � gravity, Vo � the volume of �uid displaced by the
object).

Density plays a crucial role in Archimedes' principle. The
average density of an object is what ultimately determines whether
it �oats. If its average density is less than that of the surrounding
�uid, it will �oat. This is because the �uid, having a higher
density, contains more mass and hence more weight in the same
volume. The buoyant force, which equals the weight of the �uid
displaced, is thus greater than the weight of the object. Likewise,
an object denser than the �uid will sink.

1.6. Surface Tension

Attractive forces between molecules of the same type are
called cohesive forces. Liquids, for example, can be held in open
containers because cohesive forces hold the molecules together.
Attractive forces between molecules of di�erent types are called
adhesive forces.

10



Lecture 1. Physical Properties of Fluids

Forces between atoms and molecules underlie the macroscopic
e�ect called surface tension. These attractive forces pull the mole-
cules closer together and tend to minimize the surface area. Mole-
cules on the surface are pulled inward by cohesive forces, reducing
the surface area. Molecules inside the liquid experience zero net
force, since they have neighbors on all sides.

Surface tension is proportional to the strength of the cohesive
force, which varies with the type of liquid. Surface tension σ is
de�ned to be the force F per unit length L exerted by a stretched
liquid membrane:

σ =
F

L
. (1.4)

Surface tension is the reason why liquids form bubbles and
droplets. The inward surface tension force causes bubbles to be
approximately spherical and raises the pressure of the gas trapped
inside relative to atmospheric pressure outside. It can be shown
that the gauge pressure P inside a spherical bubble is given by

P =
4σ

r
, (1.5)

where r is the radius of the bubble.

1.7. Adhesion and Capillary Action

Why is it that water beads up on a waxed car but does not on
bare paint? The answer is that the adhesive forces between water
and wax are much smaller than those between water and paint.
Competition between the forces of adhesion and cohesion are
important in the macroscopic behavior of liquids. An important
factor in studying the roles of these two forces is the angle θ
between the tangent to the liquid surface and the surface. (See
Figure 1.1) The contact angle θ is directly related to the relative

11



1.7. Adhesion and Capillary Action

Table 1.2 � Surface Tension of Some Liquids

Liquid Surface tension
σ, N/m

Water at 0◦C 0.0756
Water at 20◦C 0.0728
Water at 100◦C 0.0589
Soapy water (typical) 0.0370
Ethil alcohol 0.0223
Glycerin 0.0631
Mercury 0.465
Olive oil 0.032
Tissue �uids (typical) 0.050
Blood, whole at 37◦C 0.058
Blood plasma at 37◦C 0.073
Gold at 1070◦C 1.000
Oxygen at −193◦C 0.0157
Helium at −269◦C 0.00012

12



Lecture 1. Physical Properties of Fluids

strength of the cohesive and adhesive forces. The larger the
strength of the cohesive force relative to the adhesive force, the
larger θ is, and the more the liquid tends to form a droplet. The
smaller θ is, the smaller the relative strength, so that the adhesive
force is able to �atten the drop.

Figure 1.1 � a) Water beads on bare paint are �attened

considerably because the adhesive forces be-

tween water and paint are strong, overcoming

surface tension. b) Water forms beads on

the waxed surface because the cohesive forces

responsible for surface tension are larger than

the adhesive forces, which tend to �atten the

drop

One important phenomenon related to the relative strength of
cohesive and adhesive forces is capillary action � the tendency of
a �uid to be raised or suppressed in a narrow tube, or capillary
tube. This action causes blood to be drawn into a small-diameter
tube when the tube touches a drop.

If a capillary tube is placed vertically into a liquid, as shown
in Figure 1.2, capillary action will raise or suppress the liquid
inside the tube depending on the combination of substances. The
actual e�ect depends on the relative strength of the cohesive and
adhesive forces and, thus, the contact angle θ. If θ is less than
90◦, then the �uid will be raised; if θ is greater than 90◦, it will be

13



1.7. Adhesion and Capillary Action

suppressed. Mercury, for example, has a very large surface tension
and a large contact angle with glass. When placed in a tube, the
surface of a column of mercury curves downward, somewhat like a
drop. The curved surface of a �uid in a tube is called a meniscus.
The tendency of surface tension is always to reduce the surface
area. Surface tension thus �attens the curved liquid surface in a
capillary tube. This results in a downward force in mercury and
an upward force in water.

Figure 1.2 � a) Mercury is suppressed in a glass tube

because its contact angle is greater than 90◦.
b) Water is raised in a glass tube because

its contact angle is nearly 90◦. Here FST is

surface tension

Capillary action can move liquids horizontally over very large
distances, but the height to which it can raise or suppress a liquid
in a tube is limited by its weight. It can be shown that this height
h is given by

14



Lecture 1. Physical Properties of Fluids

h =
2σ cos(θ)

ρgr
. (1.6)

The height is directly proportional to the surface tension σ,
which is its direct cause. Furthermore, the height is inversely
proportional to tube radius � the smaller the radius r, the higher
the �uid can be raised, since a smaller tube holds less mass. The
height is also inversely proportional to �uid density ρ, since a
larger density means a greater mass in the same volume.

1.8. Pressures in the Body

Next to taking a person's temperature and weight, measuring
blood pressure is the most common of all medical examinations.
Control of high blood pressure is largely responsible for the
signi�cant decreases in heart attack and stroke fatalities achieved
in the last three decades. The pressures in various parts of
the body can be measured and often provide valuable medical
indicators. In this section, we consider a few examples together
with some of the physics that accompany them.

Blood Pressure

Common arterial blood pressure measurements typically
produce values of 120 mm Hg and 80 mm Hg, respectively, for
systolic and diastolic pressures. Both pressures have health
implications. When systolic pressure is chronically high, the risk
of stroke and heart attack is increased. If, however, it is too low,
fainting is a problem. Systolic pressure increases dramatically
during physical exercises to increase blood �ow and returns to
normal afterward. This change produces no ill e�ects and, in
fact, may be bene�cial to the tone of the circulatory system.
Diastolic pressure can be an indicator of �uid balance. When
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1.8. Pressures in the Body

Table 1.3 � Typical Pressures in Humans

Gauge
Body system pressure,

mmHg

Blood pressure in large arteries (resting)
Maximum (systolic) 100-140
Minimum (diastolic) 60-90
Blood pressure in large veins 4-15
Eye 12-24
Brain and spinal �uid (lying down) 5-12
Bladder
While �lling 0-25
When full 100-150
Chest cavity between lungs and ribs −8 to −4
Inside lungs −2 to +3
Digestive tract
Esophagus −2
Stomach 0-20
Intestines 10-20
Middle ear < 1
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Lecture 1. Physical Properties of Fluids

low, it may indicate that a person is hemorrhaging internally and
needs a transfusion. Conversely, high diastolic pressure indicates
a ballooning of the blood vessels, which may be due to the
transfusion of too much �uid into the circulatory system. High
diastolic pressure is also an indication that blood vessels are not
dilating properly to pass blood through. This can seriously strain
the heart in its attempt to pump blood. Blood leaves the heart
at about 120 mm Hg, but its pressure continues to decrease (to
almost 0) as it goes from the aorta to smaller arteries to small
veins (see Figure 1.3). The pressure di�erences in the circulation
system are caused by blood �ow through the system as well as
the position of the person. For a person standing up, the pressure
in the feet will be larger than at the heart due to the weight of
the blood (P = hρg). If we assume that the distance between the
heart and the feet of a person in an upright position is 1.4m, then
the increase in pressure in the feet relative to that in the heart
(for a static column of blood) is given by

∆P = ∆hρg = (1.4m)(1050 kg/m3)(9.80m/s2) =
= 1.4× 104 Pa = 108mmHg.

(1.7)

Standing a long time can lead to an accumulation of blood
in the legs and swelling. This is the reason why soldiers who
are required to stand still for long periods of time have been
known to faint. Elastic bandages around the calf can help prevent
this accumulation and can also help provide increased pressure to
enable the veins to send blood back up to the heart. For similar
reasons, doctors recommend tight stockings for long-haul �ights.

Blood pressure may also be measured in the major veins, the
heart chambers, arteries to the brain, and the lungs. But these
pressures are usually monitored only during surgery or for patients
in intensive care since the measurements are invasive. To obtain
these pressure measurements, quali�ed health care workers thread
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1.8. Pressures in the Body

Figure 1.3 � Schematic of the circulatory system showing

typical pressures. The two pumps in the heart

increase pressure and that pressure is reduced

as the blood �ows through the body

thin tubes, called catheters, into appropriate locations to transmit
pressures to external measuring devices. The heart consists of
two pumps: the right side forcing blood through the lungs and
the left side causing blood to �ow through the rest of the body
(Figure 1.3). Right-heart failure, for example, results in a rise
in the pressure in the vena cavae and a drop in pressure in the
arteries to the lungs. Left-heart failure results in a rise in the
blood pressure entering the left side of the heart and a drop in
aortal pressure.
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Lecture 1. Physical Properties of Fluids

Pressure in the Eye

The shape of the eye is maintained by �uid pressure, called
intraocular pressure, which is normally in the range of 12.0 to
24.0mmHg. When the circulation of �uid in the eye is blocked,
it can lead to pressure buildup, a condition called glaucoma. The
net pressure can become as great as 85.0mmHg, an abnormally
large pressure that can permanently damage the optic nerve.

Pressure Associated with the Lungs

The pressure inside the lungs increases and decreases with
each breath. The pressure drops to below atmospheric pressure
(negative gauge pressure) when you inhale, causing air to �ow
into the lungs. It increases above atmospheric pressure (positive
gauge pressure) when you exhale, forcing air out. Lung pressure is
controlled by several mechanisms. Muscle action in the diaphragm
and rib cage is necessary for inhalation; this muscle action
increases the volume of the lungs thereby reducing the pressure
within them. Surface tension in the alveoli creates a positive
pressure opposing inhalation. You can exhale without muscle
action by letting surface tension in the alveoli create its own
positive pressure. Muscle action can add to this positive pressure
to produce forced exhalation, such as when you blow up a balloon,
blow out a candle, or cough. The lungs, in fact, would collapse
due to the surface tension in the alveoli if they were not attached
to the inside of the chest wall by liquid adhesion. The gauge
pressure in the liquid attaching the lungs to the inside of the
chest wall is thus negative, ranging from −4 to −8mmHg during
exhalation and inhalation, respectively. If air is allowed to enter
the chest cavity, it breaks the attachment, and one or both lungs
may collapse. Suction is applied to the chest cavity of surgery
patients and trauma victims to reestablish negative pressure and
in�ate the lungs.
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1.8. Pressures in the Body

Spinal Column and Skull

Normally, there is a 5 to 12 mm Hg pressure in the �uid
surrounding the brain and �lling the spinal column. This
cerebrospinal �uid serves many purposes, one of which is to supply
�otation to the brain. The buoyant force supplied by the �uid
nearly equals the weight of the brain, since their densities are
nearly equal. If there is a loss of �uid, the brain rests on the
inside of the skull, causing severe headaches, constricted blood
�ow, and serious damage. Spinal �uid pressure is measured by
means of a needle inserted between vertebrae that transmits the
pressure to a suitable measuring device.

Bladder Pressure

This bodily pressure is one of which we are often aware. In
fact, there is a relationship between our awareness of this pressure
and a subsequent increase in it. Bladder pressure climbs steadily
from zero to about 25 mm Hg as the bladder �lls to its normal
capacity of 500 cm3. This pressure triggers the micturition re�ex,
which stimulates the feeling of needing to urinate. Furthermore,
it also causes muscles around the bladder to contract, raising
the pressure to over 100 mm Hg, accentuating the sensation.
Coughing, straining, tensing in cold weather, wearing tight clothes,
and experiencing simple nervous tension � all this can increase
bladder pressure and trigger this re�ex. So can the weight of a
pregnant woman's fetus, especially if it is kicking vigorously or
pushing down with its head! Bladder pressure can be measured
by a catheter or by inserting a needle through the bladder wall
and transmitting the pressure to an appropriate measuring device.
One hazard of high bladder pressure (sometimes created by an
obstruction) is that such pressure can force urine back into the
kidneys, causing potentially severe damage.
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Lecture 1. Physical Properties of Fluids

Pressures in the Skeletal System

These pressures are the largest in the body, due both to the
high values of initial force and the small areas to which this
force is applied, such as in the joints. For example, when a
person lifts an object improperly, a force of 5000 N may be
created between vertebrae in the spine, and this may be applied
to an area as small as 10 cm2. The created pressure is P =
= F/A = (5000N)/(10−3 m2) = 5.0×106 N/m2 or about 50 atm!
This pressure can damage both the spinal discs (the cartilage
between vertebrae), and the bony vertebrae themselves. Even
under normal circumstances, forces between vertebrae in the spine
are large enough to create pressures of several atmospheres. Most
causes of excessive pressure in the skeletal system can be avoided
by lifting properly and avoiding extreme physical activity.

Other Pressures in the Body

There are many other interesting and medically signi�cant
pressures in the body. For example, pressure caused by various
muscle actions drives food and waste through the digestive system.
Stomach pressure behaves much like bladder pressure and is tied
to the sensation of hunger. Pressure in the relaxed esophagus is
normally negative because pressure in the chest cavity is normally
negative. Positive pressure in the stomach may thus force acid into
the esophagus, causing �heartburn�. Pressure in the middle ear can
result in signi�cant force on the eardrum if it di�ers greatly from
atmospheric pressure while scuba diving. The decrease in external
pressure is also noticeable during plane �ights (due to a decrease in
the weight of air above relative to that at the Earth's surface). The
Eustachian tubes connect the middle ear to the throat and allow
us to equalize pressure in the middle ear to avoid an imbalance
of force on the eardrum. Many pressures in the human body are
associated with the �ow of �uids.
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Lecture 2

Fluid Dynamics

We have dealt with many situations in which �uids are static.
But by their very de�nition, �uids �ow. Examples come easily �
a column of smoke rises from a camp �re, water streams from a
�re hose, blood courses through your veins. The physics of �uids
in motion � �uid dynamics.

2.1. Flow Rate

Flow rate Q is de�ned to be the volume of �uid passing by
some location through an area during a period of time, as seen in
Figure 2.1. In symbols, this can be written as

Q =
V

t
, (2.1)

where V is the volume and t is the elapsed time. The SI unit for
�ow rate ism3/s, but a number of other units for Q are in common
use. For example, the heart of a resting adult pumps blood at a
rate of 5.00 liters per minute (L/min).
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2.1. Flow Rate

Flow rate and velocity are related, but quite di�erent physical
quantities. The precise relationship between �ow rate Q and
velocity v is

Q = Av, (2.2)

where A is the cross-sectional area and v is the average velocity.
Figure 2.1 illustrates how this relationship can be obtained.

The shaded cylinder has a volume

Figure 2.1 � Flow rate is the volume of �uid per unit time

�owing past a point through the area A. Here
the shaded cylinder of �uid �ows past point

P in a uniform pipe in time t

V = Ad,

which �ows past the point P in a time t . Dividing both sides of
this relationship by t gives

V

t
=

Ad

t
.

We note that Q = V/t and the average speed is v = d/t . Thus
the equation becomes Q = Av.

Figure 2.2 shows an incompressible �uid �owing along a pipe
of decreasing radius. Because the �uid is incompressible, the same
amount of �uid must �ow past any point in the tube in a given
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Lecture 2. Fluid Dynamics

time to ensure continuity of �ow. In this case, because the cross-
sectional area of the pipe decreases, the velocity must necessarily
increase. This logic can be extended to say that the �ow rate must
be the same at all points along the pipe. In particular, for points
1 and 2,

Figure 2.2 � An incompressible �uid �owing along a pipe

of decreasing radius

{
Q1 = Q2

A1v1 = A2v2
(2.3)

This is called the equation of continuity and is valid for any
incompressible �uid. Since liquids are essentially incompressible,
the equation of continuity is valid for all liquids. However, gases
are compressible, and so the equation must be applied with caution
to gases if they are subjected to compression or expansion.

In many situations, including the cardiovascular system,
branching of the �ow occurs. The blood is pumped from the heart
into arteries that subdivide into smaller arteries (arterioles) which
branch into very �ne vessels called capillaries. In this situation,
continuity of �ow is maintained, but it is the sum of the �ow
rates in each of the branches in any portion along the tube that
is maintained. The equation of continuity in a more general form
becomes

n1A1v1 = n2A2v2, (2.4)
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2.2. Bernoulli's Equation

where n1 and n2 are the number of branches in each of the sections
along the tube.

2.2. Bernoulli's Equation

When a �uid �ows into a narrower channel, its speed increases.
That means its kinetic energy also increases. Where does that
change in kinetic energy come from? The increased kinetic energy
comes from the net work done on the �uid to push it into the
channel and the work done on the �uid by the gravitational force
if the �uid changes its vertical position. Recall the work-energy
theorem,

Wnet =
mv2

2
− mv20

2
. (2.5)

There is a pressure di�erence when the channel narrows. This
pressure di�erence results in a net force on the �uid: recall that
pressure times area equals force. The net work done increases
the �uid's kinetic energy. As a result, the pressure will drop in
a rapidly-moving �uid, whether or not the �uid is con�ned to a
tube.

The relationship between pressure and velocity in �uids is
described quantitatively by Bernoulli's equation, named after
its discoverer, the Swiss scientist Daniel Bernoulli (1700�1782).
Bernoulli's equation states that for an incompressible, frictionless
�uid, the following sum is constant:

P +
ρv2

2
+ ρgh = constant, (2.6)

where P is the absolute pressure, ρ is the �uid density, v is the
velocity of the �uid, h is the height above some reference point,
and g is the acceleration due to gravity. If we follow a small volume
of �uid along its path, various quantities in the sum may change,
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Lecture 2. Fluid Dynamics

but the total remains constant. Let the subscripts 1 and 2 refer to
any two points along the path that the portion of the �uid follows;
Bernoulli's equation becomes

P1 +
ρv21
2

+ ρgh1 = P2 +
ρv22
2

+ ρgh2. (2.7)

Bernoulli's equation is a form of the conservation of energy
principle. Note that the second and third terms are the kinetic
and potential energy with m replaced by ρ.

The general form of Bernoulli's equation has three terms in it,
and it is broadly applicable. To understand it better, we will look
at a number of speci�c situations that simplify and illustrate its
use and meaning.

Bernoulli's Equation for Static Fluids

Let us �rst consider the very simple situation where the �uid
is static � that is, v1 = v2 = 0. Bernoulli's equation in that case is

P1 + ρgh1 = P2 + ρgh2. (2.8)

We can further simplify the equation by taking h2 = 0 (we can
always choose some height to be zero, just as we often have done
for other situations involving the gravitational force, and take all
other heights to be relative to this). In that case, we get

P2 = P1 + ρgh1. (2.9)

This equation tells us that, in static �uids, pressure increases
with depth.
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2.3. Laminar Flow and Viscosity

Bernoulli's Principle

Another important situation is one in which the �uid moves
but its depth is constant - that is, h1 = h2. Under that condition,
Bernoulli's equation becomes

P1 +
ρv21
2

= P2 +
ρv22
2

. (2.10)

Situations in which �uid �ows at a constant depth are so
important that this equation is often called Bernoulli's principle.
It is Bernoulli's equation for �uids at constant depth. Bernoulli's
principle � pressure drops as speed increases in a moving �uid. For
example, if v2 is greater than v1 in the equation, then P2 must be
less than P1 for the equality to hold.

2.3. Laminar Flow and Viscosity

In the previous sections we have considered ideal �uids with
little or no viscosity. In this section, we will investigate what
factors, including viscosity, a�ect the rate of �uid �ow.

The precise de�nition of viscosity is based on laminar, or
nonturbulent, �ow. First, we de�ne viscosity, then, we need to
de�ne laminar �ow and turbulent �ow. Figure 2.3 shows both
types of �ow. Laminar �ow is characterized by the smooth �ow of
the �uid in layers that do not mix. Turbulent �ow, or turbulence, is
characterized by eddies and swirls that mix layers of �uid together.

Figure 2.4 shows how viscosity is measured for a �uid. Two
parallel plates have the speci�c �uid between them. The bottom
plate is held �xed, while the top plate is moved to the right,
dragging �uid with it. The layer (or lamina) of �uid in contact
with either plate does not move relative to the plate, and so the
top layer moves at v while the bottom layer remains at rest. Each
successive layer from the top down exerts a force on the one below
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Lecture 2. Fluid Dynamics

Figure 2.3 � a) Laminar �ow occurs in layers without

mixing. b) Turbulent �ow mixes the �uid

Figure 2.4 � The graphic shows laminar �ow of �uid

between two plates of area A. The bottom

plate is �xed. When the top plate is pushed

to the right, it drags the �uid along with it

it, trying to drag it along, producing a continuous variation in
speed from v to 0 as shown. Care is taken to insure that the
�ow is laminar, that is, the layers do not mix. The motion in
Figure 2.4 is like a continuous shearing motion. Fluids have zero
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2.4. Poiseuille's Law

shear strength, but the rate at which they are sheared is related
to the same geometrical factors A and L as is shear deformation
for solids.

A force F is required to keep the top plate in Figure 2.4 moving
at a constant velocity v, and experiments have shown that this
force depends on four factors. First, F is directly proportional
to v (until the speed is so high that turbulence occurs � then
a much larger force is needed, and it has a more complicated
dependence on v). Second, F is proportional to the area A of
the plate. This relationship seems reasonable since A is directly
proportional to the amount of �uid being moved. Third, F is
inversely proportional to the distance between the plates L. This
relationship is also reasonable; L is like a lever arm, and the greater
the lever arm, the less the force is needed. Fourth, F is directly
proportional to the coe�cient of viscosity, η. The greater the
viscosity, the greater the force required. These dependencies are
combined into the equation

F = η
vA

L
, (2.11)

which gives us a working de�nition of �uid viscosity η.
The SI unit of viscosity is (N/m2)s or Pa · s. Table 2.1 lists

the coe�cients of viscosity for various �uids.

2.4. Poiseuille's Law

In fact, there is a very simple relationship between horizontal
�ow and pressure. Flow rate Q is in the direction from high to low
pressure. The greater the pressure di�erential between two points,
the greater the �ow rate. This relationship can be stated as

Q =
P2 − P1

R
, (2.12)

30



Lecture 2. Fluid Dynamics

Table 2.1 � Coe�cients of Viscosity of Various Fluids

Fluid Temperature, ◦C Viscosity
η, mPa · s

Gases
Air 0 0.0171

20 0.0181
Ammonia 20 0.00974
Carbon dioxide 20 0.0147
Helium 20 0.0196
Hydrogen 07 0.0090
Mercury 20 0.0450
Oxygen 20 0.0203
Steam 100 0.0130

Liquids
Water 20 1.002

37 0.6947
100 0.282

Whole blood 20 3.015
37 2.084

Blood plasma 20 1.810
37 1.257

Ethyl alcohol 20 1.20
Methanol 20 0.584
Oil (olive) 20 138
Glycerin 20 1500
Honey 20 2000-10000
Milk 20 3.0
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2.4. Poiseuille's Law

where P1 and P2 are the pressures at two points, such as
at either end of a tube, and R is the resistance to �ow. The
resistance R includes everything, except pressure, that a�ects �ow
rate. For example, R is greater for a long tube than for a short
one. The greater the viscosity of a �uid, the greater the value of R.
Turbulence greatly increases R, whereas increasing the diameter
of a tube decreases R. If viscosity is zero, the �uid is frictionless
and the resistance to �ow is also zero. Comparing frictionless �ow
in a tube to viscous �ow, as in Figure 2.5, we see that for a viscous
�uid, speed is the greatest at midstream because of drag at the
boundaries.

Figure 2.5 � a) If �uid �ow in a tube has negligible

resistance, the speed is the same all across the

tube. b) When a viscous �uid �ows through a

tube, its speed at the walls is zero, increasing

steadily to its maximum at the center of the

tube
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Lecture 2. Fluid Dynamics

The resistance R to laminar �ow of an incompressible �uid
having viscosity η through a horizontal tube of uniform radius r
and length l, such as the one in Figure 2.6, is given by

R =
8ηl

πr4
. (2.13)

This equation is called Poiseuille's law for resistance after the
French scientist J. L. Poiseuille (1799�1869), who derived it in an
attempt to understand the �ow of blood, an often turbulent �uid.

Figure 2.6 � Poiseuille's law applies to laminar �ow of an

incompressible �uid of viscosity η through a

tube of length l and radius r

The taken together, (2.12) and (2.13) give the following
expression for �ow rate:

Q =
(P2 − P1)πr

4

8ηl
. (2.14)

This equation describes laminar �ow through a tube. It is
sometimes called Poiseuille's law for laminar �ow, or simply
Poiseuille's law.

2.5. Reynolds number

An indicator called the Reynolds number Re can reveal whether
the �ow is laminar or turbulent. For the �ow in a tube of uniform
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2.5. Reynolds number

diameter, the Reynolds number is de�ned as

Re =
ρvd

η
, (2.15)

where ρ is the �uid density, v its speed, η its viscosity, and d �
the tube diameter. The Reynolds number is a unitless quantity.
Experiments have revealed that Re is related to the onset of
turbulence. For Re below about 2000, the �ow is laminar. For
Re above about 3000, the �ow is turbulent. For values of Re

between about 2000 and 3000, the �ow is unstable � that is, it
can be laminar, but small obstructions and surface roughness can
make it turbulent, and it may oscillate randomly between being
laminar and turbulent. The blood �ow through most of the body
is a quiet, laminar �ow. The exception is in the aorta, where the
speed of the blood �ow rises above a critical value of 35m/s and
becomes turbulent.

An occlusion, or narrowing, is likely to cause turbulence
because of the irregularity of the blockage, as well as the
complexity of blood as a �uid. Turbulence in the circulatory
system is noisy and can sometimes be detected with a stethoscope,
such as when measuring diastolic pressure in the upper arm's
partially collapsed brachial artery. These turbulent sounds, at the
onset of blood �ow when the cu� pressure becomes su�ciently
small, are called Korotko� sounds. Aneurysms, or ballooning
of arteries, create signi�cant turbulence and can sometimes be
detected with a stethoscope. Heart murmurs, consistent with their
name, are sounds produced by turbulent �ow around damaged and
insu�ciently closed heart valves. Ultrasound can also be used to
detect turbulence as a medical indicator in a process analogous to
Doppler-shift radar used to detect storms.
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Lecture 2. Fluid Dynamics

2.6. Motion of an Object in a Viscous

Fluid

A moving object in a viscous �uid is equivalent to a stationary
object in a �owing �uid stream. The �ow of the stationary
�uid around a moving object may be laminar, turbulent, or a
combination of the two. Laminar �ow occurs mostly when the
objects in the �uid are small, such as raindrops, pollen, and blood
cells in plasma. One of the consequences of viscosity is a resistance
force called viscous drag FD that is exerted on a moving object.
This force typically depends on the object's speed. Experiments
have shown that for laminar �ow (Re < 1) the viscous drag is
proportional to speed. For laminar �ow around a sphere, FD is
proportional to �uid viscosity η, the object's characteristic size L
(radius r for sphere), and its speed v. All of which makes sense
� the more viscous the �uid and the larger the object, the more
drag we expect. For the special case of a small sphere of radius r
moving slowly in a �uid of viscosity η, the drag force FD is given
by Stoke's law

FS = 6πrηv. (2.16)

An interesting consequence of the increase in FD with speed is
that an object falling through a �uid will not continue to accelerate
inde�nitely (as it would if we neglect air resistance, for example).
Instead, viscous drag increases, slowing acceleration until a critical
speed called the terminal speed, is reached, and the acceleration of
the object becomes zero. Once this happens, the object continues
to fall at constant speed (the terminal speed). This is the case for
particles of sand falling in the ocean, cells falling in a centrifuge,
and sky divers falling through the air. Figure 2.7 shows some of
the factors that a�ect terminal speed. There is a viscous drag on
the object that depends on the viscosity of the �uid and the size of
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2.6. Motion of an Object in a Viscous Fluid

the object. But there is also a buoyant force that depends on the
density of the object relative to the �uid. Terminal speed will be
the greatest for low viscosity �uids and objects with high densities
and small sizes.

Figure 2.7 � There are three forces acting on an object

falling through a viscous �uid: its weight W ,

the viscous drag FD, and the buoyant force

FB

Knowledge of terminal speed is useful for estimating
sedimentation rates of small particles. We know from watching
mud settle out of dirty water that sedimentation is usually a slow
process. Centrifuges are used to speed sedimentation by creating
accelerated frames in which gravitational acceleration is replaced
by centripetal acceleration, which can be much greater, increasing
the terminal speed. From the free body diagram (see Figure 2.7),
it is clear to see that FD = W −FB. The buoyancy force is simply
the weight of displaced �uid. As you may recall from earlier works
in science and math, the volume of a sphere (Vsph) is written as,

Vshp =
4

3
πr3.
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Combining this volume with the mass density of the �uid, ρfl, we
can now write the buoyancy force as the product,

FB =
4

3
ρflgπr

3,

where g is the gravitational acceleration and r is the radius of the
sphere. The drag force FD is given by Stoke's law (2.16).

We can also write the weight of sphere in terms of its density
ρsph:

W = msphg = ρsphVsphg =
4

3
ρsphgπr

3.

Combining all of the previous relationships that describe the
forces acting on the sphere in a �uid, we can write the following
expression

6πrηv =
4

3
ρsphgπr

3 − 4

3
ρflgπr

3.

Rearranging and regrouping the terms from the above equation,
we arrive at the following relationship for the terminal speed of a
slowly moving sphere in a viscous �uid

v =
2r2(ρsph − ρfl)g

9η
. (2.17)

By measuring the terminal speed of a slowly moving sphere in
a viscous �uid, one can �nd the viscosity of that �uid (at that
temperature).
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Lecture 3

Mechanical Properties of

Solids

3.1. Elasticity: Stress and Strain

Deformation is a change in shape due to the application
of a force. Even very small forces are known to cause
some deformation. For small deformations, two important
characteristics are observed. First, the object returns to its
original shape when the force is removed � that is, the deformation
is elastic for small deformations. Second, the size of the
deformation is proportional to the force � that is, for small
deformations, Hooke's law is obeyed. In equation form, Hooke's
law is given by

F = k∆L, (3.1)

where ∆L is the amount of deformation (the change in length,
for example) produced by the force F , and k is a proportionality
constant that depends on the shape and composition of the object
and the direction of the force. Rearranging this to
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3.1. Elasticity: Stress and Strain

∆L =
F

k
(3.2)

makes it clear that the deformation is proportional to the applied
force.

Figure 3.1 shows the Hooke's law relationship between the
extension ∆L of a spring or of a human bone. For metals or
springs, the straight line region in which Hooke's law pertains is
much larger. Bones are brittle and the elastic region is small, and
the abrupt fracture occurs. Eventually a large enough stress to
the material will cause it to break or fracture.

Figure 3.1 � A graph of deformation ∆L versus applied

force F

The straight segment (see Figure 3.1) is the linear region where
Hooke's law is obeyed. The slope of the straight region is 1/k.
For larger forces, the graph is curved but the deformation is still
elastic: ∆L will return to zero if the force is removed. Still greater
forces permanently deform the object until it �nally fractures.
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3.2. Tension and Compression. Elastic

Modulus

A change in length ∆L is produced when a force is applied to a
wire or rod parallel to its length L, either stretching it (a tension)
or compressing it (see Figure 3.2).

Figure 3.2 � a) Tension. The rod is stretched a length ∆L
when a force is applied parallel to its length.

b) Compression

Experiments have shown that the change in length∆L depends
on only a few variables. As already noted, ∆L is proportional to
the force F and depends on the substance from which the object
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is made. Additionally, the change in length is proportional to the
original length L and inversely proportional to the cross-sectional
area A of the wire or rod.

We can combine all these factors into one equation for ∆L:

∆L =
1

E

F

A
L, (3.3)

where E is a factor, called the elastic modulus or Young's modulus
that depends on the substance. Table 3.1 lists values of E for
several materials � those with a large E are said to have a large
tensile strength because they deform less for a given tension or
compression.

Bones, on the whole, do not fracture due to tension or
compression. Rather they generally fracture due to sideways
impact or bending, resulting in the bone shearing or snapping.
The behavior of bones under tension and compression is important
because it determines the load the bones can carry. Bones
are classi�ed as weight-bearing structures such as columns in
buildings and trees. Weight-bearing structures have special
features; columns in building have steel-reinforcing rods while
trees and bones are �brous. The bones in di�erent parts of the
body serve di�erent structural functions and are prone to di�erent
stresses. Thus the bone in the top of the femur is arranged in thin
sheets separated by marrow while in other places the bones can
be cylindrical and �lled with marrow or just solid. Overweight
people have a tendency toward bone damage due to sustained
compressions in bone joints and tendons.

Another biological example of Hooke's law occurs in tendons.
Functionally, the tendon (the tissue connecting muscle to bone)
must stretch easily at �rst when a force is applied, but o�er a
much greater restoring force for a greater strain. Some tendons
have a high collagen content so there is relatively little strain, or
length change; others, like support tendons (as in the leg) can
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Table 3.1 � Elastic Moduli

Young's Shear Bulk
Material modulus E, modulus S, modulus B,

109 N/m2 109 N/m2 109 N/m2

Aluminum 70 25 75
Bone (tension) 16 80 8
Bone
(compression) 9
Brass 90 35 75
Glass 70 20 30
Hair (human) 10
Hardwood 15 10
Iron 100 40 90
Steel 210 80 130
Lead 16 5 50
Nylon 5
Silk 6
Spider thread 3
Tendon 1
Acetone 0.7
Ethanol 0.9
Glycerin 4.5
Mercury 25
Water 2.2
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change length up to 10%. Note that this stress-strain curve is
nonlinear, since the slope of the line changes in di�erent regions.
In the �rst part of the stretch called the toe region, the �bers
in the tendon begin to align in the direction of the stress-this is
called uncrimping. In the linear region, the �brils will be stretched,
and in the failure region, individual �bers begin to break. A
simple model of this relationship can be illustrated by springs
in parallel: di�erent springs are activated at di�erent lengths of
stretch. Ligaments (tissue connecting bone to bone) behave in a
similar way.

Unlike bones and tendons, which need to be strong as well as
elastic, the arteries and lungs need to be very stretchable. The
elastic properties of the arteries are essential for blood �ow. The
pressure in the arteries increases and arterial walls stretch when
the blood is pumped out of the heart. When the aortic valve
shuts, the pressure in the arteries drops and the arterial walls
relax to maintain the blood �ow. When you feel your pulse, you
are feeling exactly this � the elastic behavior of the arteries as the
blood gushes through with each pump of the heart. If the arteries
were rigid, you would not feel a pulse.

The heart is also an organ with special elastic properties.
The lungs expand with muscular e�ort when we breathe in but
relax freely and elastically when we breathe out. Our skins are
particularly elastic, especially for the young. The elasticity of all
organs reduces with age.

3.3. Stress and Strain

The equation for change in length is traditionally rearranged
and written in the following form:

F

A
= E

∆L

L
. (3.4)
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The ratio of force to area

σ =
F

A
(3.5)

is de�ned as stress (measured in N/m2), and the ratio of the
change in length to length

ϵ =
∆L

L
(3.6)

is de�ned as strain (a unitless quantity).
In other words,

σ = Eϵ. (3.7)

3.4. Sideways Stress � Shear Stress

Figure 3.3 illustrates what is meant by a sideways stress or
a shearing force. Here the deformation is called ∆x and it is
perpendicular to L, rather than parallel as with tension and
compression. Shear deformation behaves similarly to tension and
compression and can be described with similar equations. The
expression for shear deformation is

∆x =
1

S

F

A
L, (3.8)

where S is the shear modulus (see Table 3.1) and F is the force
applied perpendicular to L and parallel to the cross-sectional area
A.

In other words,
τ = Sϕ, (3.9)

where τ = F/A shear stress (measured in N/m2), and the ratio of
shear deformation to length
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ϕ =
∆X

L
(3.10)

is de�ned as shear strain (a unitless quantity).

Figure 3.3 � Shearing forces are applied perpendicular to

the length L and parallel to the area A,
producing a deformation ∆x

Examination of the shear moduli in Table 3.1 reveals some
telling patterns. For example, shear moduli are less than Young's
moduli for most materials. Bone is a remarkable exception. Its
shear modulus is not only greater than its Young's modulus, but
it is as large as that of steel. This is one reason that bones can
be long and relatively thin. Bones can support loads comparable
to that of concrete and steel. Most bone fractures are not caused
by compression but by excessive twisting and bending. The spinal
column (consisting of 26 vertebral segments separated by discs)
provides the main support for the head and upper part of the
body. The spinal column has normal curvature for stability, but
this curvature can be increased, leading to increased shearing
forces on the lower vertebrae. Discs are better at withstanding
compressional forces than shear forces. Because the spine is
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not vertical, the weight of the upper body exerts some of both.
Pregnant women and people that are overweight (with large
abdomens) need to move their shoulders back to maintain balance,
thereby increasing the curvature in their spine and so increasing
the shear component of the stress. An increased angle due to more
curvature increases the shear forces along the plane. These higher
shear forces increase the risk of back injury through ruptured
discs. The lumbosacral disc (the wedge shaped disc below the
last vertebrae) is particularly at risk because of its location.

3.5. Volume's Changes. Bulk Modulus

An object will be compressed in all directions if inward forces
are applied evenly on all its surfaces as in Figure 3.4. It is relatively
easy to compress gases and extremely di�cult to compress liquids
and solids. For example, air in a wine bottle is compressed when
it is corked. But if you try corking a brim-full bottle, you cannot
compress the wine � some must be removed if the cork is to be
inserted. The reason for these di�erent compressibilities is that
atoms and molecules are separated by large empty spaces in gases
but packed close together in liquids and solids. To compress a gas,
you must force its atoms and molecules to drive closer together.
To compress liquids and solids, you must actually compress their
atoms and molecules, and very strong electromagnetic forces in
them oppose this compression.

We can describe the compression or volume deformation of
an object with an equation. First, we note that a force �applied
evenly� is de�ned to have the same stress or ratio of force to
area F/A on all surfaces. The deformation produced is a change
in volume ∆V , which is found to behave very similarly to the
shear, tension, and compression previously discussed. (This is not
surprising since a compression of the entire object is equivalent to
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Figure 3.4 � An inward force on all surfaces compresses

this cube. Its change in volume is pro-

portional to the force per unit area and

its original volume, and is related to the

compressibility of the substance

compressing each of its three dimensions.) The relationship of the
change in volume to other physical quantities is given by

∆V =
1

B

F

A
V, (3.11)

where B is the bulk modulus (see Table 3.1), V is the original
volume, and F/A is the force per unit area applied uniformly
inward on all surfaces. Note that no bulk moduli are given for
gases.
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3.6. Viscoelasticity

Mechanical Properties of the Tissues

The soft biological tissues (skin, tendon, ligament) play an
important role in the mechanical integrity of the body. Indeed,
these tissues have the following functions: to protect the body
for the skin, to transfer loads between bones for the ligaments, or
between muscles and bones for the tendons. The soft biological
tissues are mainly made of collagen and elastin proteins, which
bring special mechanical properties. The tissues can be stretched
15% without damage. They also have an important viscous
component in their behaviours.

A primary group of tissue which binds, supports and protects
our human body and structures such as organs is soft connective
tissue. In contrary to other tissues, it is a wide-ranging biological
material in which the cells are separated by extracellular material.
Connective tissues may be distinguished from hard (mineralized)
tissues, such as bones, for their high �exibility and their soft
mechanical properties.

Examples for soft tissues are tendons, ligaments, blood vessels,
skins or articular cartilages among many others. Tendons are
muscle-to-bone linkages to stabilize the bony skeleton (or to
produce motion), while ligaments are bone-to-bone linkages to
restrict relative motion. Blood vessels are prominent organs
composed of soft tissues which have to distend in response to
pulse waves. The skin is the largest single organ (16% of the
human adult weight). It supports internal organs and protects
our body. Articular cartilages form the surface of body joints
(which is a layer of connective tissue with a thickness of 1-5 mm)
and distribute loads across joints and minimize contact stresses
and friction.
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Soft connective tissues of our body are complex �ber-reinforced
composite structures. Their mechanical behavior is strongly
in�uenced by the concentration and structural arrangement of
constituents such as collagen and elastin, the hydrated matrix of
proteoglycans, and the topographical site and respective function
in the organism.

Collagen: Collagen is a protein which is a major constituent
of the extracellular matrix of connective tissue. It is the main
load carrying element in a wide variety of soft tissues and is very
important to human physiology (for example, the collagen content
of (human) achilles tendon is about 20 times that of elastin).

Collagen is a macromolecule with length of about 280 nm.
Collagen molecules are linked to each other by covalent bonds
building collagen �brils. Depending on the primary function
and the requirement of strength of the tissue the diameter of
collagen �brils varies (the order of magnitude is 1.5 nm). In
the structure of tendons and ligaments, for example, collagen
appears as parallel oriented �bers, while many other tissues have
an intricate disordered network of collagen �bers embedded in a
gelatinous matrix of proteoglycans.

Elastin: Elastin, like collagen, is a protein which is a major
constituent of the extracellular matrix of connective tissue. It is
present as thin strands in soft tissues such as skin, lung, ligamenta
�ava of the spine and ligamentum nuchae (the elastin content of
the latter is about 5 times that of collagen).

The long �exible elastin molecules build up a three-dimensional
(rubber-like) network, which may be stretched to about 2.5 of
the initial length of the unloaded con�guration. In contrast
to collagen �bers, this network does not exhibit a pronounced
hierarchical organization. As for collagen, 33% of the total
amino acids of elastin consists of glycine. However, the proline
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and hydroxyproline contents are much lower than in collagen
molecules.

Viscoelastic Models

Soft tissues and cells exhibit several anelastic properties:
hysteresis during loading and unloading; stress relaxation at
constant strain; creep at constant stress; strain-rate dependence.
In general, stress in soft tissues depends on strain and the history
of strain. These properties can be modeled by the theory of
viscoelasticity.

Hysteresis: When a body is subjected to cyclic loading, load-
displacement (or stress-strain) behavior for increasing loads is
di�erent than behavior for decreasing loads. The area between
the curves represents energy loss (dissipation).

Stress relaxation: When a body is deformed (or strained) and
that deformation (or strain) is held constant, stresses in the body
reduce with time. The stress relaxation test, easily conducted
on displacement-controlled machines, consists of monitoring the
time-dependent stress resulting from a steady strain.

Creep: When a body is loaded (or stressed) and the stress is
held constant, the body continues to deform (or strain) with time.
The creep test consists of measuring the time dependent strain
ϵ(t) resulting from the application of a steady uniaxial stress σ.

For viscoelastic materials, the relationship between stress and
strain can be expressed as

σ = σ(ϵ, ϵ̇).

We used short-hand notation of time derivative called the
�over-dot�(ẋ = dx

dt
).
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Figure 3.5 � a) Hysteresis, b) Stress relaxation, c) Creep

Behavior exhibited by a material (or tissue) that has both
viscous and elastic elements in its response to a deformation (or
strain) or load (or stress) represented by a linear spring (see Figure
3.6) with Young's modulus E theoretically produces a deformation
proportional to load σ = Eϵ; a dashpot with coe�cient of viscosity
η produces a velocity proportional to load σ = ηϵ̇ (Newtonian �uid
constitutive law).

Simple Linear Viscoelastic Models

The viscoelastic models are all composed of combinations of
linear springs and dashpots.
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Figure 3.6 � a) Elastic element (spring), b) Viscous

element (dashpot)

Figure 3.7 � a) Maxwell model, b) Kelvin-Voigt model

Maxwell Model: It is represented by a purely viscous damper
and a purely elastic spring connected in series.

The model can be represented by the following di�erential
equation:

ϵ̇ =
σ

η
+

σ̇

E
. (3.12)

Maxwell model predicts a stress that decays exponentially
with time to zero with permanent deformation. Model doesn't
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Table 3.2 � Maxwell and Kelvin-Voigt model compar-

ison

Maxwell Kelvin-Voigt
model model
Creep functions (σ = σ0 = const)

ϵ(t) =
σ0

η
t ϵ(t) =

σ0

E

(
1− e−

E
η
t
)

Relaxation functions (ϵ = ϵ0 = const)

σ(t) = σ
−E

η
t

0 σ(t) = Eϵ0

accurately predict creep (constant stress). It predicts that strain
will increase linearly with time. Actually, strain rate decreases
with time.

Kelvin-Voigt Model Represented by a Newtonian damper and
Hookean elastic spring in parallel.

The model can be expressed as a linear �rst order di�erential
equation

σ = Eϵ+ ηϵ̇. (3.13)

The model represents a solid undergoing reversible, viscoelastic
strain; a solid that is very sti� but will creep (e.g., crystals, glass,
apparent behavior of cartilage). At constant stress (creep), it
predicts strain to tend to σ/E as time continues to in�nity. The
model is not accurate for relaxation in a material (tissue).
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Lecture 4

Mechanical Oscillations and

Waves

4.1. Simple Harmonic Motion

Oscillatory motion is everywhere in nature. Any object which
has both inertia and a restoring force will oscillate around an
equilibrium position if displaced from that equilibrium. The time
T to complete one oscillation remains constant and is called the
period. Its units are usually seconds, but may be any convenient
unit of time. Frequency f is de�ned to be the number of events
per unit time. For periodic motion, frequency is the number of
oscillations per unit time. The relationship between frequency
and period is

f =
1

T
. (4.1)

The SI unit for frequency is the cycle per second, which is
de�ned to be a hertz (Hz): 1Hz = s−1. A cycle is one complete
oscillation.

The oscillations of a system in which the net force can be
described by Hooke's law are of special importance, because they
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are very common. They are also the simplest oscillatory systems.
Simple Harmonic Motion (SHM) is the name given to oscillatory
motion for a system where the net force can be described by
Hooke's law, and such system is called a simple harmonic oscillator

(SHO). If the net force can be described by Hooke's law and there
is no damping (by friction or other non-conservative forces), then
a simple harmonic oscillator will oscillate with equal displacement
on either side of the equilibrium position, as shown for an object
on a spring in Figure 4.1. The deformation of the spring creates a
force in the opposite direction, known as a restoring force.

Figure 4.1 � An object attached to a spring sliding on a

frictionless surface is an uncomplicated simple

harmonic oscillator.

According to Hooke's law, the force required to stretch or
compress the spring is proportional to the amount the spring
stretches or compresses: F = −kx. The force constant k is
related to the rigidity (or sti�ness) of a system � the larger the
force constant, the greater the restoring force, and the sti�er the
system. The units of k are newtons per meter (N/m).

If a mass m is attached to the end of the spring, displaced from
equilibrium and released, the only unbalanced force acting on the
mass is that exerted by the spring. Newton's second law can then
be expressed as

ma = −kx.
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This can be expressed in di�erential form:

m
d2x

dt2
= −kx.

The solution to this second order di�erential equation is either
a sine or a cosine function with time as the variable. In general,
the solution can be written as a sine or cosine function with an
arbitrary phase (the angle ϕ0 ) in the argument.

x(t) = A cos(ω0t+ ϕ0), (4.2)

where ω0 =
√
k/m is the angular frequency of SHM. The angular

frequency relates to the frequency of the oscillation by ω0 = 2πf .
Notice that the role of the phase ϕ is to identify where the object
is with respect to the equilibrium position at time t = 0.

The maximum displacement from equilibrium is called the
amplitude A. The units for amplitude and displacement are
the same but depend on the type of oscillation. For the object
on the spring, the units of amplitude and displacement are
meters; whereas for sound oscillations, they have units of pressure
(and other types of oscillations have yet other units). Because
amplitude is the maximum displacement, it is related to the energy
in the oscillation.

If the displacement is described by (4.2), then the velocity and
acceleration, respectively, will be given by

v(t) = −ω0A sin(ω0t+ ϕ0) and a(t) = −ω2
0A cos(ω0t+ ϕ0),

(4.3)
where ω0A = vmax is the amplitude of velocity, ω

2
0A = amax is the

amplitude of acceleration.
Figure 4.2 shows the simple harmonic motion of an object on

a spring and presents graphs of x(t), v(t), and a(t) versus time.
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Figure 4.2 � Graphs of x(t), v(t), and a(t) versus t for the
motion of an object on a spring

4.2. Energy of a SHO

The energy associated with a harmonic oscillator is just the
sum of the kinetic and potential energies. For a mass on a spring,
that is just

Etotal = EK + EP .

For the mass-spring system, the kinetic energy is given by

EK =
1

2
mv2 =

1

2
ω2
0A

2 sin2(ω0t+ ϕ0).

The elastic potential energy stored in any deformed system
that obeys Hooke's law and has a displacement x from equilibrium
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and a force constant k is given by

EP =
1

2
kx2 =

1

2
kA2 cos2(ω0t+ ϕ0).

Substituting k = mω2
0 reduces the above to

EP =
1

2
mω2

0A
2 cos2(ω0t+ ϕ0).

The total energy of the simple harmonic oscillator is

Etotal =
1

2
mω2

0A
2
(
sin2(ω0t+ ϕ0) + cos2(ω0t+ ϕ0)

)
,

and the trig identity sin2(α) + cos2(α) = 1 gives

Etotal =
1

2
mω2

0A
2, (4.4)

showing that the energy of the simple harmonic oscillator (as
typi�ed by a mass on a spring) is constant and is equal to the
potential energy of the spring when it is maximally extended (at
which time the mass is motionless).

4.3. Damped Harmonic Motion

Consider a mass-spring system which has some damping
mechanism which depends on the speed of the oscillator: for
example, a system which moves in a viscous �uid would provide
such a mechanism.

The resistive force depends on the speed of the motion and can
be expressed as

FR = −rv,

and it is in addition to the restoring force of the spring. So
Newton's second law for such an oscillator can be written:

m
d2x

dt2
= −kx− rv.
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Solving for the di�erential equation yields

x(t) = A(t) cos(ωt+ ϕ0), (4.5)

where A(t) = A0e
−βt is the amplitude of oscillation, β = r/(2m)

is damping coe�cient, and ω is angular frequency of damped
oscillation which is given by

ω =
√
ω2
0 − β2. (4.6)

The primary e�ect of the damping force on the motion of the
oscillator � assuming the damping is not so great as to prevent
it from oscillating at all (a situation called "over-damping") � is
to cause the amplitude of the oscillation to diminish in time (see
Figure 4.3). The time dependence of the amplitude is given by
the decreasing exponential function.

Figure 4.3 � Graph of displacement versus time for a

harmonic oscillator with a small amount of

damping
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4.4. Forced Oscillations and Resonance

In this section, we shall brie�y explore applying a periodic
driving force acting on a simple harmonic oscillator. The driving
force puts energy into the system at a certain frequency, not
necessarily the same as the natural frequency of the system.
The natural frequency is the frequency at which a system would
oscillate if there were no driving or damping force. The
phenomenon of driving a system with a frequency equal to its
natural frequency is called resonance. The resonant angular
frequency is determined by formula

ωres =
√
ω2
0 − 2β2. (4.7)

A system being driven at its natural frequency is said to
resonate. As the driving frequency gets progressively higher than
the resonant or natural frequency, the amplitude of the oscillations
becomes smaller, until the oscillations nearly disappear as shown
in Figure 4.4.

These features of driven harmonic oscillators may be applied to
a huge variety of systems. When you tune a radio, for example, you
are adjusting its resonant frequency so that it only oscillates to the
desired station's broadcast (driving) frequency. The more selective
the radio is in discriminating between stations, the smaller its
damping. Magnetic resonance imaging (MRI) is a widely used
medical diagnostic tool in which atomic nuclei (mostly hydrogen
nuclei) are made to resonate by incoming radio waves (on the
order of 100 MHz). A child on a swing is driven by a parent at
the natural frequency of the swing to achieve maximum amplitude.

In our body, the chest cavity is a clear example of a system at
resonance. The diaphragm and chest wall drive the oscillations of
the chest cavity which result in the lungs in�ating and de�ating.
The system is critically damped and the muscular diaphragm
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Figure 4.4 � Amplitude of a harmonic oscillator as a

function of the frequency of the driving force

oscillates at the resonant value for the system, making it highly
e�cient.

4.5. Waves

A wave is a disturbance that propagates or moves from the
place it was created. We de�ne wave velocity v to be the speed
at which the disturbance moves. Wave velocity is sometimes also
called the propagation velocity or propagation speed, because the
disturbance propagates from one location to another.

A wave also has a length associated with it, called its
wavelength λ, the distance between adjacent identical parts of a
wave. (λ is the distance parallel to the direction of propagation.)
The speed of propagation v is the distance the wave travels in a
given time, which is one wavelength in the time of one period. In
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equation form, that is,

v =
λ

T
= λf. (4.8)

This fundamental relationship holds for all types of waves. For
water waves, v is the speed of a surface wave; for sound, v is the
speed of sound; and for visible light, v is the speed of light, for
example.

Transverse and Longitudinal Waves

A simple wave consists of a periodic disturbance that
propagates from one place to another. The wave in Figure
4.5 propagates in the horizontal direction while the surface is
disturbed in the vertical direction. Such a wave is called a
transverse wave or shear wave; in such a wave, the disturbance
is perpendicular to the direction of propagation. In contrast,
in a longitudinal wave or compressional wave, the disturbance
is parallel to the direction of propagation. Figure 4.5 shows an
example of a longitudinal wave. The size of the disturbance is
its amplitude A and is completely independent of the speed of
propagation v.

Waves may be transverse, longitudinal, or a combination of
the two. (Water waves are actually a combination of transverse
and longitudinal waves. The waves on the strings of musical
instruments are transverse � so are electromagnetic waves, such
as visible light. Sound waves in air and water are longitudinal
waves. Their disturbances are periodic variations in pressure that
are transmitted in �uids.

Fluids do not have appreciable shear strength, and thus the
sound waves in them must be longitudinal or compressional.
Sound waves in solids can be both longitudinal and transverse.
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Figure 4.5 � Example of a transverse and longitudinal

waves.

Moving Waves

There is no obvious connection between the motion of a wave
and the motion of particles in the medium through which the wave
travels. General equation of traveling wave in a medium is given
by

y(x, t) = A cos(ωt− kx+ ϕ0), (4.9)

where y is a particle of a medium displacement � a distance
that the medium particle is moved from its equilibrium position
at any time t, A is the amplitude of wave � maximum particle
displacement from its equilibrium position, ω is angular frequency
of oscillation, k = ω/v is the wave number, x is the stationary
coordinate and ϕ0 is an arbitrary angle (called a phase constant).
Note that the equation (4.9) is written for the wave which is
traveling in positive x-direction.

The Standing Wave in a String

When a transverse wave is generated in a taut string of
length l, two travelling waves are formed; these should have
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the same amplitudes, only they travel in opposite directions.
The displacements of overlapping waves simply add (or subtract)
together, and so the wave in the string has the form

ys(x, t) = A cos(ωt− kx) + A cos(ωt− kx) = 2A cos(ωt) sin(kx).
(4.10)

This last equation does not describe traveling waves, it
describes waves that are �xed on the x axis by sin(kx) while their
transverse (sideways) displacement changes with time according
to 2A cos(ωt).

The �xed parts of the string must correspond with a �xed zero
in our functions; these zero points are called nodes. The word
antinode is used to denote the location of maximum amplitude in
standing waves.

We can see (Figure 4.6) that the distances between nodes,
say ∆x, are found from k∆x = π, 2π, 3π or more generally nπ,
where n is a positive integer. This relation gives us the standing
wavelengths in the string as

2π

λ
l = nπ,

so that

λn =
2l

n
.

We have a discrete number of choices for the wavelength of a
transverse wave in a string of length l, each particular value of n
de�nes a mode. For a fundamental mode or �rst harmonic n = 1.
For the second harmonic mode n = 2, for the third harmonic mode
n = 3, etc. As the speed of a wave v in a string depends on the
tension in the string, we can also calculate the frequency of the
modes (or harmonics):

fn =
v

2l
n. (4.11)
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Figure 4.6 � The standing wave in the string

Superposition and Interference

When two or more waves arrive at the same point, they
superimpose themselves on one another. More speci�cally, the
disturbances of waves are superimposed when they come together:
the phenomenon is called superposition. Each disturbance
corresponds to a force, and forces add. If the disturbances are
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along the same line, then the resulting wave is a simple addition of
the disturbances of the individual waves � that is, their amplitudes
add.

Figure 4.7 shows two identical waves that arrive at the same
point exactly in phase. The crests of the two waves are precisely
aligned, as are the troughs. This superposition produces pure
constructive interference. Because the disturbances add, pure
constructive interference produces a wave that has twice the
amplitude of the individual waves, but has the same wavelength.

Figure 4.7 � Pure constructive interference of two identical

waves produces one with twice the amplitude,

but the same wavelength

Figure 4.8 shows two identical waves that arrive exactly out
of phase � that is, precisely aligned crest to trough � producing
pure destructive interference. Because the disturbances are in the
opposite direction for this superposition, the resulting amplitude
is zero for pure destructive interference � the waves completely
cancel each other out.

The superposition of most waves produces a combination of
constructive and destructive interference and can vary from place
to place and time to time.
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Figure 4.8 � Pure destructive interference of two identical

waves produces zero amplitude, or complete

cancellation

Beats

Striking two adjacent keys on a piano produces a warbling
combination usually considered to be unpleasant. The
superposition of two waves of similar but not identical frequencies
is the culprit. Another example is often noticeable in jet aircraft,
particularly the two-engine variety, while taxiing. The combined
sound of the engines goes up and down in loudness. This varying
loudness happens because the sound waves have similar but not
identical frequencies. The discordant warbling of the piano and
the �uctuating loudness of the jet engine noise are both due to
alternately constructive and destructive interference as the two
waves go in and out of phase. Figure 4.9 illustrates this graphically.

The wave resulting from the superposition of two similar-
frequency waves has a frequency that is the average of the two.
This wave �uctuates in amplitude, or beats, with a frequency
called the beat frequency. Adding two waves that have di�erent
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Figure 4.9 � Beats are produced by the superposition of

two waves of slightly di�erent frequencies but

identical amplitudes. The waves alternate

in time between constructive interference and

destructive interference, giving the resulting

wave a time-varying amplitude.

frequencies but identical amplitudes produces a resultant

y = y1 + y2 = A cos(2πf1t) + A cos(2πf2t).

Using a trigonometric identity, it can be shown that

y = 2A cos(πfBt) cos(2πfavet),

where
fB = |f1 − f2| (4.12)

is the beat frequency, and fave is the average of f1 and f2. These
results mean that the resultant wave has twice the amplitude and
the average frequency of the two superimposed waves, but it also
�uctuates in overall amplitude at the beat frequency fB. The �rst
cosine term in the expression e�ectively causes the amplitude to go
up and down. The second cosine term is the wave with frequency
fave. This result is valid for all types of waves. However, if it is a
sound wave, providing the two frequencies are similar, then what
we hear is an average frequency that gets louder and softer (or
warbles) at the beat frequency.

69



4.5. Waves

Energy in Waves: Intensity

All waves carry energy. The amount of energy in a wave is
related to its amplitude. A wave's energy is directly proportional
to its amplitude squared. The energy e�ects of a wave depend
on time as well as amplitude. For example, the longer deep-heat
ultrasound is applied, the more energy it transfers. Waves can
also be concentrated or spread out. Sunlight, for example, can
be focused to burn wood. In both cases, changing the area the
wave covers has important e�ects. All these pertinent factors are
included in the de�nition of intensity I as the power per unit area:

I =
P

A
, (4.13)

where P is the power carried by the wave through area A. The
de�nition of intensity is valid for any energy in transit, including
that carried by waves. The SI unit for intensity is watts per square
meter (W/m2). For example, infrared and visible energy from the
Sun impinges upon the Earth with the intensity of 1300 W/m2

just above the atmosphere.
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Sound. Physics of Hearing

If a tree falls in the forest and no one is there to hear it,
does it make a sound? The answer to this old philosophical
question depends on how you de�ne sound. If sound only exists
when someone is around to perceive it, then there was no sound.
However, if we de�ne sound in terms of physics; that is, a
disturbance of the atoms in matter transmitted from its origin
outward (in other words, a wave), then there was a sound, even if
nobody was around to hear it.

Such a wave is the physical phenomenon we call sound. Its
perception is hearing. Both the physical phenomenon and its
perception are interesting and will be considered in this lecture.
We shall explore both sound and hearing; they are related, but
are not the same thing. We will also explore the many practical
uses of sound waves, such as in medical imaging.

5.1. Sound

Sound can be used as a familiar illustration of waves. Because
hearing is one of our most important senses, it is interesting to see
how the physical properties of sound correspond to our perceptions
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of it. Hearing is the perception of sound, just as vision is the
perception of visible light. But sound has important applications
beyond hearing. Ultrasound, for example, is not heard but can be
employed to form medical images and is also used in treatment.

The physical phenomenon of sound is de�ned to be a
disturbance of matter that is transmitted from its source outward.
Sound is a wave. On the atomic scale, it is a disturbance of atoms
that is far more ordered than their thermal motions. In many
instances, sound is a periodic wave, and the atoms undergo simple
harmonic motion.

Sound waves in air and most �uids are longitudinal, because
�uids have almost no shear strength. In solids, sound waves can
be both transverse and longitudinal.

The amplitude of a sound wave decreases with distance from
its source, because the energy of the wave is spread over a larger
and larger area. But it is also absorbed by objects, such as the
eardrum, and converted to thermal energy by the viscosity of air.
Wavelength, frequency, amplitude, and speed of propagation are
important for sound, as they are for all waves.

5.2. Speed of Sound

Sound, like all waves, travels at a certain speed and has the
properties of frequency and wavelength. You can observe direct
evidence of the speed of sound while watching a �reworks display.
The �ash of an explosion is seen well before its sound is heard,
implying both that sound travels at a �nite speed and that it is
much slower than light. You can also directly sense the frequency
of a sound. Perception of frequency is called pitch. The wavelength
of sound is not directly sensed, but indirect evidence is found in
the correlation of the size of musical instruments with their pitch.
Small instruments, such as a piccolo, typically make high-pitch
sounds, while large instruments, such as a tuba, typically make
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low-pitch sounds. High pitch means small wavelength, and the size
of a musical instrument is directly related to the wavelengths of
sound it produces. So a small instrument creates short-wavelength
sounds. Similar arguments hold that a large instrument creates
long-wavelength sounds. The relationship of the speed of sound,
its frequency, and wavelength is the same as for all waves:

v = λf, (5.1)

where v is the speed of sound, f is its frequency, and λ is its
wavelength. The wavelength of a sound is the distance between
adjacent identical parts of a wave.

The speed of sound depends on the characteristics of the
medium that sound travels through: elasticity, density and
temperature.

The speed of sound in a medium is determined by a
combination of the medium's rigidity (or compressibility in gases)
and its density. The more rigid (or less compressible) the medium,
the faster the speed of sound. The greater the density of a medium,
the slower the speed of sound. The speed of sound in air is
low, because air is compressible. Because liquids and solids are
relatively rigid and very di�cult to compress, the speed of sound
in such media is generally greater than in gases. The speed of
sound in a medium is determined by formula:

v =

√
B

ρ
, (5.2)

where B is bulk modulus of a medium that basically tells you how
hard it is to compress it, ρ is density of the medium.

The bulk modulus for air is tiny compared to that of water,
since air is easily compressed and water nearly incompressible. So,
even though water is much denser than air, water is so much harder
to compress that sound travels over 4 times faster in water. Steel
is almost 8 times denser than water, but it's over 70 times harder
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to compress. Consequently, sound waves propagate through steel
about 3 times faster than in water. Table 5.1 makes it apparent
that the speed of sound varies greatly in di�erent media.

Table 5.1 � Speed of Sound in Various Media

Medium v, m/s
Gases at 0◦C

Air 331
Carbon dioxide 259
Oxygen 316
Helium 965
Hydrogen 1290

Liquids at 20◦C
Ethanol 1160
Mercury 1450
Water 1480
Sea water 1540
Human tissue 1540
Solids (longitudinal)

Vulcanized rubber 54
Polyethylene 920
Marble 3810
Glass, Pyrex 5640
Lead 1960
Aluminum 5120
Steel 5960

The speed of sound is a�ected by temperature in a given
medium. For air at sea level, the speed of sound is given by

v = (331m/s)

√
T

273K
, (5.3)
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where the temperature (denoted as T ) is in units of kelvin.
The bulk modulus for air is tiny compared to that of water,

since air is easily compressed and water nearly incompressible. So,
even though water is much denser than air, water is so much harder
to compress that sound travels over 4 times faster in water. Steel
is almost 8 times denser than water, but it's over 70 times harder
to compress. Consequently, sound waves propagate through steel
about 3 times faster than in water.

The speed of sound can change when sound travels from one
medium to another. However, the frequency usually remains the
same because it is like a driven oscillation and has the frequency
of the original source. If v changes and f remains the same, then
the wavelength λ must change. That is, because v = fλ , the
higher the speed of a sound, the greater its wavelength for a given
frequency.

5.3. Sound Intensity and Sound Level

The relevant physical quantity is sound intensity, a concept
that is valid for all sounds whether or not they are in the audible
range. Intensity is de�ned to be the power per unit area carried
by a wave. Power is the rate at which energy is transferred by the
wave. In equation form, intensity I is

I =
P

A
, (5.4)

where P is the power through an area A. The SI unit for I is
W/m2. The intensity of a sound wave is related to its amplitude
squared by the following relationship:

I =
∆p2

2ρv
. (5.5)
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Here ∆p is the pressure variation or pressure amplitude (half
the di�erence between the maximum and minimum pressure in
the sound wave) in units of pascals Pa or N/m2. (We are using a
lower case p for pressure to distinguish it from power, denoted by
P above.)

Sound intensity levels are quoted in decibels (dB) much more
often than sound intensities in watts per meter squared. Decibels
are the unit of choice in the scienti�c literature as well as in the
popular media. The reasons for this choice of units are related to
how we perceive sounds. How our ears perceive sound can be more
accurately described by the logarithm of the intensity rather than
directly to the intensity. The sound intensity level β in decibels
of a sound having an intensity I in watts per meter squared is
de�ned to be

β(dB) = 10 log
(
I

I0

)
, (5.6)

where I0 = 10−12 W/m2 is a reference intensity. In particular,
I0 is the lowest or threshold intensity of sound a person with
normal hearing can perceive at a frequency of 1000 Hz. Sound
intensity level is not the same as intensity. The decibel level of a
sound having the threshold intensity of 10−12 W/m2 is β = 0 dB,
because log1 01 = 0 . That is, the threshold of hearing is 0 decibels.
Table 5.2 gives levels in decibels and intensities in watts per meter
squared for some familiar sounds.

One of the more striking things about the intensities in Table
5.2 is that the intensity in watts per meter squared is quite small
for most sounds. The ear is sensitive to as little as a trillionth of
a watt per meter squared. This is even more impressive when you
realize that the area of the eardrum is only about 1 cm2 , so that
only 10−16W falls on it at the threshold of hearing! Air molecules
in a sound wave of this intensity vibrate over a distance of less
than one molecular diameter, and the gauge pressures involved
are less than 10−9 atm.
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Table 5.2 � Sound Intensity Levels and Intensities

Sound intensity Intensity Example/e�ect
level β,dB I,W/m2

0 1×10−12 Threshold of hearing
10 1×10−11 Rustle of leaves
20 1×10−10 Whisper at 1m distance
30 1×10−9 Quiet home
40 1×10−8 Average home
50 1×10−7 Average o�ce, soft music
60 1×10−6 Normal conversation
70 1×10−5 Noisy o�ce, busy tra�c
80 1×10−4 Loud radio, classroom lecture
90 1×10−3 Inside a heavy truck
100 1×10−2 Noisy factory
120 1 Threshold of pain
140 1×102 Jet airplane, severe pain
160 1×104 Bursting of eardrums

Sound intensity levels in decibels �t your experience better
than intensities in watts per meter squared. The decibel scale is
also easier to relate to because most people are more accustomed
to dealing with numbers such as 0.53, or 120 than numbers such
as 1.00×10−11.

5.4. Hearing

The human ear has a tremendous range and sensitivity. It can
give us a wealth of simple information � such as pitch, loudness,
and direction.
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Hearing is the perception of sound. (Perception is commonly
de�ned to be awareness through the senses, a typically circular
de�nition of higher level processes in living organisms.) Normal
human hearing encompasses frequencies from 20 to 20, 000 Hz,
an impressive range. Sounds below 20 Hz are called infrasound,
whereas those above 20, 000 Hz are ultrasound. Neither is
perceived by the ear, although infrasound can sometimes be felt as
vibrations. When we do hear low-frequency vibrations, such as the
sounds of a diving board, we hear the individual vibrations only
because there are higher-frequency sounds in each. Other animals
have hearing ranges di�erent from that of humans. Dogs can
hear sounds as high as 30, 000Hz, whereas bats and dolphins can
hear up to 100, 000 Hz sounds. You may have noticed that dogs
respond to the sound of a dog whistle which produces sound out
of the range of human hearing. Elephants are known to respond
to frequencies below 20Hz.

The perception of frequency is called pitch. Most of us have
excellent relative pitch, which means that we can tell whether
one sound has a di�erent frequency from another. Typically, we
can discriminate between two sounds if their frequencies di�er by
0.3% or more. For example, 500.0 and 501.5 Hz are noticeably
di�erent. Pitch perception is directly related to frequency and is
not greatly a�ected by other physical quantities such as intensity.
Musical notes are particular sounds that can be produced by
most instruments and in Western music have particular names.
Combinations of notes constitute music. Some people can identify
musical notes, such as A-sharp, C, or E-�at, just by listening to
them. This uncommon ability is called perfect pitch.

The perception of intensity is called loudness. At a given
frequency, it is possible to discern di�erences of about 1 dB, and
a change of 3 dB is easily noticed. But loudness is not related
to intensity alone. Frequency has a major e�ect on how loud a
sound seems. The ear has its maximum sensitivity to frequencies
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in the range of 2000 to 5000Hz, so that sounds in this range are
perceived as being louder than, say, those at 500 or 10, 000 Hz,
even when they all have the same intensity. Sounds near the high-
and low-frequency extremes of the hearing range seem even less
loud, because the ear is even less sensitive at those frequencies.

Table 5.3 gives the dependence of certain human hearing
perceptions on physical quantities.

Table 5.3 � Sound Perceptions

Perception Physical quantity

Pitch Frequency
Loudness Intensity and Frequency
Timbre Number and relative intensity

of multiple frequencies.
Subtle craftsmanship leads to
non-linear e�ects and more details

Note Basic unit of music with speci�c
names, combined to generate tunes

Tone Number and relative intensity
of multiple frequencies

We call our perception of these combinations of frequencies
and intensities tone quality, or more commonly the timbre of the
sound. It is more di�cult to correlate timbre perception to physical
quantities than it is for loudness or pitch perception. Timbre is
more subjective. Terms such as dull, brilliant, warm, cold, pure,
and rich are employed to describe the timbre of a sound. So
the consideration of timbre takes us into the realm of perceptual
psychology, where higher-level processes in the brain are dominant.
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This is true for other perceptions of sound, such as music and noise.
We will concentrate on the question of loudness perception.

A unit called a phon is used to express loudness numerically.
Phons di�er from decibels because the phon is a unit of loudness
perception, whereas the decibel is a unit of physical intensity.
Figure 5.1 shows the relationship of loudness to intensity (or
intensity level) and frequency for persons with normal hearing.

Figure 5.1 � The relationship of loudness in phons to

intensity level (in decibels) and intensity (in

watts per meter squared) for persons with

normal hearing. The curved lines are equal-

loudness curves � all sounds on a given curve

are perceived as equally loud. Phons and

decibels are de�ned to be the same at 1000Hz
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The curved lines are equal-loudness curves. Each curve is
labeled with its loudness in phons. Any sound along a given
curve will be perceived as equally loud by the average person.
The curves were determined by having large numbers of people
compare the loudness of sounds at di�erent frequencies and sound
intensity levels. At a frequency of 1000Hz, phons are taken to be
numerically equal to decibels.

Further examination of the graph in Figure 5.1 reveals some
interesting facts about human hearing. First, sounds below the
0-phon curve are not perceived by most people. So, for example,
a 60Hz sound at 40 dB is inaudible. The 0-phon curve represents
the threshold of normal hearing. We can hear some sounds at
intensity levels below 0 dB. For example, a 3 dB, 5000Hz sound
is audible, because it lies above the 0-phon curve. The loudness
curves all have dips in them between about 2000 and 5000 Hz.
These dips mean the ear is most sensitive to frequencies in that
range.

The Hearing Mechanism

The hearing mechanism involves some interesting physics. The
sound wave that impinges upon our ear is a pressure wave. The
ear is a transducer that converts sound waves into electrical
nerve impulses in a manner much more sophisticated than, but
analogous to, a microphone. Figure 5.2 shows the gross anatomy
of the ear with its division into three parts: the outer ear or ear
canal; the middle ear, which runs from the eardrum to the cochlea;
and the inner ear, which is the cochlea itself. The body part
normally referred to as the ear is technically called the pinna.

The outer ear, or ear canal, carries sound to the recessed
protected eardrum. The air column in the ear canal resonates
and is partially responsible for the sensitivity of the ear to sounds
in the 2000 to 5000Hz range. The middle ear converts sound into
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Figure 5.2 � The gross anatomy of the human ear

mechanical vibrations and applies these vibrations to the cochlea.
The lever system of the middle ear takes the force exerted on the
eardrum by sound pressure variations, ampli�es it and transmits
it to the inner ear via the oval window, creating pressure waves in
the cochlea approximately 40 times greater than those impinging
on the eardrum. (See Figure 5.3) Two muscles in the middle ear
(not shown) protect the inner ear from very intense sounds. They
react to intense sound in a few milliseconds and reduce the force
transmitted to the cochlea. This protective reaction can also be
triggered by your own voice, so that humming while shooting a
gun, for example, can reduce noise damage.

Figure 5.4 shows the middle and inner ear in greater detail.
Pressure waves moving through the cochlea cause the tectorial
membrane to vibrate, rubbing cilia (called hair cells), which
stimulate nerves that send electrical signals to the brain. The
membrane resonates at di�erent positions for di�erent frequencies,
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Figure 5.3 � This schematic shows the middle ear's system

for converting sound pressure into force,

increasing that force through a lever system,

and applying the increased force to a small

area of the cochlea

with high frequencies stimulating nerves at the near end and
low frequencies at the far end. The complete operation of the
cochlea is still not understood, but several mechanisms for sending
information to the brain are known to be involved. For sounds
below about 1000Hz, the nerves send signals at the same frequency
as the sound. For frequencies greater than about 1000 Hz, the
nerves signal frequency by position. There is a structure to the
cilia, and there are connections between nerve cells that perform
signal processing before information is sent to the brain. Intensity
information is partly indicated by the number of nerve signals
and by volleys of signals. The brain processes the cochlear nerve
signals to provide additional information such as source direction
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(based on time and intensity comparisons of sounds from both
ears). Higher-level processing produces many nuances, such as
music appreciation.

Figure 5.4 � The inner ear, or cochlea, is a coiled tube

about 3 mm in diameter and 3 cm in length

if uncoiled. When the oval window is forced

inward, as shown, a pressure wave travels

through the perilymph in the direction of the

arrows, stimulating nerves at the base of cilia

in the organ of Corti.

5.5. Doppler E�ect

TheDoppler e�ect is an alteration in the observed frequency
of a sound due to motion of either the source or the observer.
Although less familiar, this e�ect is easily noticed for a stationary
source and moving observer. For example, if you ride a train past
a stationary warning bell, you will hear the bell's frequency shift
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from high to low as you pass by. The actual change in frequency
due to relative motion of source and observer is called a Doppler

shift. The Doppler e�ect and Doppler shift are named for the
Austrian physicist and mathematician Christian Johann Doppler
(1803�1853), who did experiments with both moving sources and
moving observers. The observer moving toward the source receives
them at a higher frequency, and the person moving away from the
source receives them at a lower frequency. A higher frequency is
received by the observer moving toward the source, and a lower
frequency is received by an observer moving away from the source.
In general, then, relative motion of source and observer toward one
another increases the received frequency. Relative motion apart
decreases frequency. The greater the relative speed is, the greater
the e�ect. For a stationary observer and a moving source, the
frequency fobs received by the observer can be shown to be

fobs = fs

(
v

v ± vs

)
, (5.7)

where fs is the frequency of the source, vs is the speed of the source
along a line joining the source and observer, and v is the speed
of sound. The minus sign is used for motion toward the observer
and the plus sign for motion away from the observer, producing
the appropriate shifts up and down in frequency. Note that the
greater the speed of the source, the greater the e�ect. Similarly, for
a stationary source and moving observer, the frequency received
by the observer fobs is given by

fobs = fs

(
v ± vobs

v

)
, (5.8)

where vobs is the speed of the observer along a line joining the
source and observer. Here the plus sign is for motion toward the
source, and the minus is for motion away from the source.

The Doppler e�ect occurs not only for sound but for any wave
when there is relative motion between the observer and the source.
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There are Doppler shifts in the frequency of sound, light, and
water waves, for example. Doppler shifts can be used to determine
velocity, such as when ultrasound is re�ected from blood in a
medical diagnostic. The recession of galaxies is determined by
the shift in the frequencies of light received from them and has
implied much about the origins of the universe. Modern physics
has been profoundly a�ected by observations of Doppler shifts.

5.6. Ultrasound

Any sound with a frequency above 20, 000 Hz (or 20 kHz)
� that is, above the highest audible frequency � is de�ned to
be ultrasound. In practice, it is possible to create ultrasound
frequencies up to more than a gigahertz. (Higher frequencies are
di�cult to create; furthermore, they propagate poorly because
they are very strongly absorbed.) Ultrasound has a tremendous
number of applications, which range from burglar alarms to use
in cleaning delicate objects to the guidance systems of bats. We
begin our discussion of ultrasound with some of its applications
in medicine, in which it is used extensively both for diagnosis and
for therapy.

The characteristics of ultrasound, such as frequency and
intensity, are wave properties common to all types of waves.
Ultrasound, also, has a wavelength that limits the �neness of a
detail it can detect. This characteristic is true of all waves. We
can never observe details signi�cantly smaller than the wavelength
of our probe; for example, we will never see individual atoms with
visible light, because the atoms are so small compared with the
wavelength of light.
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Ultrasound in Medical Therapy

Ultrasound, like any wave, carries energy that can be absorbed
by the medium carrying it, producing e�ects that vary with
intensity. When focused to intensities of 103 to 105 W/m2,
ultrasound can be used to shatter gallstones or pulverize cancerous
tissue in surgical procedures. Great intensities can damage
individual cells, variously causing their protoplasm to stream
inside them, altering their permeability, or rupturing their walls
through cavitation. Cavitation is the creation of vapor cavities
in a �uid. The longitudinal vibrations in ultrasound alternatively
compress and expand the medium, and at su�cient amplitudes the
expansion separates molecules. Most cavitation damage is done
when the cavities collapse, producing even greater shock pressures.

Most of the energy carried by high-intensity ultrasound in
tissue is converted to thermal energy. In fact, intensities of 103

to 104 W/m2 are commonly used for deep-heat treatments called
ultrasound diathermy. Frequencies of 0.8 to 1 MHz are typical.
In both athletics and physical therapy, ultrasound diathermy is
most often applied to injured or overworked muscles to relieve pain
and improve �exibility. Skill is needed by the therapist to avoid
�bone burns� and other tissue damage caused by overheating and
cavitation, sometimes made worse by re�ection and focusing of
the ultrasound by joint and bone tissue.

In some instances, you may encounter a di�erent decibel scale,
called the sound pressure level, when ultrasound travels in water
or in human and other biological tissues. We shall not use the
scale here, but it is notable that numbers for sound pressure levels
range 60 to 70 dB higher than you would quote for β, the sound
intensity level used in this text. Should you encounter a sound
pressure level of 220 decibels, then, it is not an astronomically
high intensity, but equivalent to about 155 dB � high enough to
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destroy tissue, but not as unreasonably high as it might seem at
�rst.

Ultrasound in Medical Diagnostics

When used for imaging, ultrasonic waves are emitted from
a transducer, a crystal exhibiting the piezoelectric e�ect (the
expansion and contraction of a substance when a voltage is applied
across it, causing a vibration of the crystal). These high-frequency
vibrations are transmitted into any tissue in contact with the
transducer. Similarly, if a pressure is applied to the crystal
(in the form of a wave re�ected o� tissue layers), a voltage is
produced which can be recorded. The crystal therefore acts as
both a transmitter and a receiver of sound. Ultrasound is also
partially absorbed by tissue on its path, both on its journey away
from the transducer and on its return journey. From the time
between when the original signal is sent and when the re�ections
from various boundaries between media are received, as well as
a measure of the intensity loss of the signal, the nature and
position of each boundary between tissues and organs may be
deduced. Re�ections at boundaries between two di�erent media
occur because of di�erences in a characteristic known as the
acoustic impedance Z of each substance. Impedance is de�ned
as

Z = ρv, (5.9)

where ρ is the density of the medium (in kg/m3) and v is the
speed of sound through the medium (in m/s). The units for Z are
therefore kg/(m2 · s).

Table 5.4 shows the density and speed of sound through various
media (including various soft tissues) and the associated acoustic
impedances. Note that the acoustic impedances for soft tissue do
not vary much but there is a big di�erence between the acoustic
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impedance of soft tissue and air and also between soft tissue and
bone.

At the boundary between media of di�erent acoustic
impedances, some of the wave energy is re�ected and some is
transmitted. The greater the di�erence in acoustic impedance
between the two media, the greater the re�ection and the smaller
the transmission.

Table 5.4 � The Ultrasound Properties of Various

Media, Including Soft Tissue Found in the

Body

Density Speed of Acoustic
Medium ρ, kg/m3 Ultrasound Impedance

v, m/s Z, ×106 kg
m2·s

Air 1.3 330 429×10−6

Water 1000 1500 1.5
Blood 1060 1570 1.66
Fat 925 1450 1.34
Muscle (average) 1075 1590 1.70
Bone (varies) 1400-1900 4080 5.7-7.8
Barium titanate 5600 5500 30.8
(transducer material)

The intensity re�ection coe�cient α is de�ned as the
ratio of the intensity of the re�ected wave relative to the
incident (transmitted) wave. This statement can be written
mathematically as

α =
(Z2 − Z1)

2

(Z2 + Z1)2
, (5.10)
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where Z1 and Z2 are the acoustic impedances of the two
media making up the boundary. A re�ection coe�cient of zero
(corresponding to total transmission and no re�ection) occurs
when the acoustic impedances of the two media are the same. An
impedance "match" (no re�ection) provides an e�cient coupling
of sound energy from one medium to another. The image formed
in an ultrasound is made by tracking re�ections and mapping the
intensity of the re�ected sound waves in a two-dimensional plane.

The applications of ultrasound in medical diagnostics have
produced untold bene�ts with no known risks. Diagnostic
intensities are too low (about 10−2 W/m2) to cause thermal
damage. More signi�cantly, ultrasound has been in use for several
decades and detailed follow-up studies do not show evidence of ill
e�ects, quite unlike the case for X-rays.

The most common ultrasound applications produce an image
like that shown in Figure 5.5. An ultrasound probe is held against
the skin, with some coupling gel inbetween to help the ultrasound
get into the body e�ciently. A beam of ultrasound pulses, or
µs tone bursts at MHz frequencies, are sent into the tissue.
The wavelength of the sound in the tissue is typically 0.1-1mm.
The ultrasound waves propagate through the tissue and partially
re�ect, or scatter, from acoustic heterogeneities (di�erences in
acoustic impedance), e.g., between di�erent tissue types, fat,
muscles, cysts, blood vessels, tumours, air pockets, etc. The
re�ected waves propagate back to the surface of the tissue. The
re�ected waves are detected at the surface, usually by the same
transducer that sent them in, and recorded. The time of arrival
of a pulse back at the detector indicates the depth from which the
re�ection came. Using this information, the recorded waves are
processed to form an image. A computer constructs an image that
reveals the shape and density of internal structures. At this stage,
the image may also be processed to bring out certain features or
to correct for the e�ect of acoustic absorption, for example. In
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clinical ultrasound imaging the images are captured in real-time
and so single-frame snapshots give a poor impression of the amount
of information in the images. The correct interpretation of US
images depends on the skill and experience of the provider � who
is, therefore, often a specially trained sonographer, radiographer
or radiologist.

Figure 5.5 � Ultrasound image.

Doppler Ultrasound Instrumentation

Ultrasound is also in wide use to image the chambers of the
heart and the �ow of blood within the beating heart, using the
Doppler e�ect (echocardiology). Moving targets (such as blood
cells or a heart valve) with a velocity v0 produce a Doppler
shifted backscattered signal. The velocity is determined from the
standard Doppler formula

v0 =
∆f

2f cos(θ)
v, (5.11)
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where ∆f is the frequency shift, f is the frequency of the
transmitted wave (f ≫ ∆f), v is the sound velocity in the
medium, and cos(θ) is the angle between the wave axis and the
velocity vector.
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Kinetic Theory and the Gas

Laws

6.1. Temperature

The concept of temperature has evolved from the common
concepts of hot and cold. Human perception of what feels hot
or cold is a relative one. For example, if you place one hand in
hot water and the other in cold water, and then place both hands
in tepid water, the tepid water will feel cool to the hand that was
in hot water, and warm to the one that was in cold water. The
scienti�c de�nition of temperature is less ambiguous than your
senses of hot and cold. Temperature is operationally de�ned to be
what we measure with a thermometer. (Many physical quantities
are de�ned solely in terms of how they are measured. We shall see
later how temperature is related to the kinetic energies of atoms
and molecules, a more physical explanation.)

The Celsius scale (which replaced the slightly di�erent
centigrade scale) has the freezing point of water at 0◦C and the
boiling point at 100◦C. Its unit is the degree Celsius (◦C).
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The Kelvin scale is the temperature scale that is commonly
used in science. It is an absolute temperature scale de�ned to
have 0 K at the lowest possible temperature, called absolute zero.
The o�cial temperature unit on this scale is the kelvin, which is
abbreviated K, and is not accompanied by a degree sign. The
freezing and boiling points of water are 273.15 K and 373.15 K,
respectively. Thus, the magnitude of temperature di�erences is
the same in units of kelvins and degrees Celsius. Unlike other
temperature scales, the Kelvin scale is an absolute scale. It is
used extensively in scienti�c work because a number of physical
quantities, such as the volume of an ideal gas, are directly related
to absolute temperature. The kelvin is the SI unit used in scienti�c
work.

Temperatures on these scales can be converted using the
equations in Table 6.1.

Table 6.1 � Temperature Conversions

To convert from Use this equation
Celsius to Kelvin T (K) = T (◦C) + 273.15
Kelvin to Celsius T (◦C) = T (K)− 273.15

6.2. Thermal Equilibrium

Thermometers actually take their own temperature, not the
temperature of the object they are measuring. This raises the
question of how we can be certain that a thermometer measures
the temperature of the object with which it is in contact. It is
based on the fact that any two systems placed in thermal contact
(meaning heat transfer can occur between them) will reach the
same temperature. That is, heat will �ow from the hotter object to
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the cooler one until they have exactly the same temperature. The
objects are then in thermal equilibrium, and no further changes
will occur.

Furthermore, experimentation has shown that if two systems,
A and B, are in thermal equilibrium with each other, and B is
in thermal equilibrium with a third system C, then A is also in
thermal equilibrium with C. This conclusion may seem obvious,
because all three have the same temperature, but it is basic to
thermodynamics. It is called the zeroth law of thermodynamics.

6.3. Thermal Expansion of Solids and

Liquids

An increase in temperature implies an increase in the kinetic
energy of the individual atoms. In a solid, unlike in a gas, the
atoms or molecules are closely packed together, but their kinetic
energy (in the form of small, rapid vibrations) pushes neighboring
atoms or molecules apart from each other. This neighbor-to-
neighbor pushing results in a slightly greater distance, on average,
between neighbors, and adds up to a larger size for the whole
body. For most substances under ordinary conditions, there is no
preferred direction, and an increase in temperature will increase
the solid's size by a certain fraction in each dimension.

Linear Thermal Expansion

The change in length ∆L is proportional to length L. The
dependence of thermal expansion on temperature, substance, and
length is summarized in the equation

∆L = αL∆T, (6.1)

95



6.3. Thermal Expansion of Solids and Liquids

where ∆L is the change in length L, ∆T is the change in
temperature, and α is the coe�cient of linear expansion, which
varies slightly with temperature.

Table 6.2 lists representative values of the coe�cient of linear
expansion, which may have units of 1/◦C or 1/K. Because the
size of a kelvin and a degree Celsius are the same, both α and
∆Tnn can be expressed in units of kelvins or degrees Celsius.

Thermal Expansion in Three Dimensions

The change in volume ∆V is very nearly ∆V = 3αV∆T . This
equation is usually written as

∆V = βV∆T, (6.2)

where β is the coe�cient of volume expansion and β ≈ 3α.

Thermal Stress

Thermal stress is created by thermal expansion or contraction.
Thermal stress can be destructive, such as when expanding
gasoline ruptures a tank. It can also be useful, for example, when
two parts are joined together by heating one in manufacturing,
then slipping it over the other and allowing the combination to
cool. Thermal stress can explain many phenomena, such as the
weathering of rocks and pavement by the expansion of ice when it
freezes.

Metal is regularly used in the human body for hip and
knee implants. Most implants need to be replaced over time
because, among other things, metal does not bond with bone.
Researchers are trying to �nd better metal coatings that would
allow metal-to-bone bonding. One challenge is to �nd a coating
that has an expansion coe�cient similar to that of metal. If
the expansion coe�cients are too di�erent, the thermal stresses
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Table 6.2 � Thermal Expansion Coe�cients at 20◦C

Coe�cient of Coe�cient of
Material linear expansion volume expansion

α, (×10−6 1/◦C) β, (×10−6 1/◦C)
Solids

Aluminum 25 75
Brass 19 56
Copper 17 51
Gold 14 42
Iron 12 35
Invar 0.9 2.7
Lead 29 87
Silver 18 54
Glass 9 27
Quartz 0.4 1

Liquids
Ether 1650
Ethyl alcohol 1100
Petrol 950
Glycerin 500
Mercury 180
Water 210

Gases
Most other gases at
atmospheric pressure 3400

during the manufacturing process lead to cracks at the coating-
metal interface. Another example of thermal stress is found in the
mouth. Dental �llings can expand di�erently from tooth enamel.
It can give pain when eating ice cream or having a hot drink.
Cracks might occur in the �lling. Metal �llings (gold, silver, etc.)
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are being replaced by composite �llings (porcelain), which have
smaller coe�cients of expansion, and are closer to those of teeth.

6.4. The Ideal Gas Law

In this section, we continue to explore the thermal behavior
of gases. Because atoms and molecules in gases have large
separations, forces between them can be ignored, except when they
collide with each other during collisions. The motion of atoms and
molecules (at temperatures well above the boiling temperature) is
fast, such that the gas occupies all of the accessible volume and
the expansion of gases is rapid. In contrast, in liquids and solids,
atoms and molecules are closer together and are quite sensitive to
the forces between them.

At room temperatures, collisions between atoms and molecules
can be ignored. In this case, the gas is called an ideal gas, and
the relationship between the pressure, volume, and temperature is
given by the equation of state called the ideal gas law.

The ideal gas law states that

PV = NkT, (6.3)

where P is the absolute pressure of a gas, V is the volume it
occupies, N is the number of atoms and molecules in the gas,
and T is its absolute temperature. The constant k is called
the Boltzmann constant in honor of Austrian physicist Ludwig
Boltzmann (1844-1906) and has the value

k = 1.38× 10−23 J/K.

Moles and Avogadro's Number

A mole (abbreviated mol) is de�ned to be the amount of a
substance that contains as many atoms or molecules as there are
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atoms in exactly 12 grams (0.012 kg) of carbon-12. The actual
number of atoms or molecules in one mole is called Avogadro's

number (NA), in recognition of Italian scientist Amedeo Avogadro
(1776-1856). That is, the number is independent of the type of gas.
This hypothesis has been con�rmed, and the value of Avogadro's
number is

NA = 6.02× 1023 mol−1.

A mole of any substance has a mass in grams equal to itsmolecular

mass, which can be calculated from the atomic masses given in the
periodic table of elements.

A very common expression of the ideal gas law uses the number
of moles, n, rather than the number of atoms and molecules, N .
Lets multiply and divide the equation (6.3) by Avogadro's number
NA. This gives

PV =
N

NA

NAkT.

Note that n = N/NA is the number of moles. We de�ne the
universal gas constant R = NAk, and obtain the ideal gas law in
terms of moles.

The ideal gas law (in terms of moles) is

PV = nRT. (6.4)

The numerical value of R in SI units is R = 8.31 J/(mol ·K).

6.5. Kinetic Theory

We have developed macroscopic de�nitions of pressure and
temperature. Pressure is the force divided by the area on which the
force is exerted, and temperature is measured with a thermometer.
We gain a better understanding of pressure and temperature
from the kinetic theory of gases, which assumes that atoms and
molecules are in continuous random motion.
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Consider an elastic collision of a gas molecule with the wall of
a container, so that it exerts a force on the wall (by Newton's third
law). Because a huge number of molecules will collide with the wall
in a short time, we observe an average force per unit area. These
collisions are the source of pressure in a gas. As the number of
molecules increases, the number of collisions and thus the pressure
increase too. Similarly, the gas pressure is higher if the average
velocity of molecules is higher. The following relationship is found:

PV =
1

3
Nmv2, (6.5)

where P is the pressure (average force per unit area), V is the
volume of gas in the container, N is the number of molecules in
the container, m is the mass of a molecule, and v2 is the average
molecular speed squared. Equating the right-hand side of equation
(6.3) with the right-hand side of equation (6.3) gives

1

3
Nmv2 = NkT. (6.6)

We can get the average kinetic energy of a molecule, 1
2
mv2,

from the left-hand side of the equation (6.6) by canceling N and
multiplying by 3/2. This calculation produces the result that the
average kinetic energy of a molecule is directly related to absolute
temperature.

EK =
1

2
mv2 =

3

2
kT. (6.7)

The average translational kinetic energy of a molecule, EK ,
is called thermal energy. The equation 6.7 is a molecular
interpretation of temperature, and it has been found to be valid for
gases and reasonably accurate in liquids and solids. It is another
de�nition of temperature based on an expression of the molecular
energy. It is sometimes useful to rearrange 6.7 and solve for the
average speed of molecules in a gas in terms of temperature,
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vrms =
√
v2 =

√
3kT

m
, (6.8)

where vrms stands for root-mean-square (rms) speed.

Distribution of Molecular Speeds

The motion of molecules in a gas is random in magnitude and
direction for individual molecules, but a gas of many molecules has
a predictable distribution of molecular speeds. This distribution
is called the Maxwell-Boltzmann distribution, after its originators,
who calculated it based on kinetic theory, and has since been
con�rmed experimentally (see Figure 6.1). The distribution has
a long tail, because a few molecules may go several times the
rms speed. The most probable speed vp is less than the rms
speed vrms. The distribution of thermal speeds depends strongly
on temperature. As temperature increases, the speeds are shifted
to higher values and the distribution is broadened.

Phase Changes

Up to now, we have considered the behavior of ideal gases.
Real gases are like ideal gases at high temperatures. At lower
temperatures, however, the interactions between the molecules
and their volumes cannot be ignored. The molecules are very
close (condensation occurs), and there is a dramatic decrease in
volume. The substance changes from a gas to a liquid. When a
liquid is cooled to even lower temperatures, it becomes a solid.
The volume never reaches zero because of the �nite volume of the
molecules.
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Figure 6.1 � The Maxwell-Boltzmann distribution of

molecular speeds in an ideal gas

6.6. Heat Transfer

Energy can exist in many forms and heat is one of the most
intriguing. Heat is often hidden, as it only exists when in transit,
and is transferred by a number of distinctly di�erent methods.
Heat transfer touches every aspect of our lives and helps us
understand how the universe functions. It explains the chill we
feel on a clear breezy night, or why Earth's core has yet to cool.

Heat

Work is de�ned as force times distance and learned that work
done on an object changes its kinetic energy. We also saw that
temperature is proportional to the (average) kinetic energy of
atoms and molecules. We say that a thermal system has a certain
internal energy: its internal energy is higher if the temperature
is higher. If two objects at di�erent temperatures are brought in
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contact with each other, energy is transferred from the hotter to
the colder object until equilibrium is reached and the bodies reach
thermal equilibrium (i.e., they are at the same temperature). No
work is done by either object, because no force acts through a
distance. The transfer of energy is caused by the temperature
di�erence and ceases once the temperatures are equal. These
observations lead to the following de�nition of heat: Heat is the

spontaneous transfer of energy due to a temperature di�erence.
Heat is often confused with temperature. For example, we

may say the heat was unbearable, when we actually mean that
the temperature was high. Heat is a form of energy, whereas
temperature is not. The misconception arises because we are
sensitive to the �ow of heat, rather than the temperature.

Owing to the fact that heat is a form of energy, it has the
SI unit of joule (J). The calorie (cal) is a common unit of
energy, de�ned as the energy needed to change the temperature
of 1.00 g of water by 1.00◦C � speci�cally, between 14.5◦C and
15.5◦C, since there is a slight temperature dependence. Perhaps
the most common unit of heat is the kilocalorie (kcal), which
is the energy needed to change the temperature of 1.00 kg of
water by 1.00◦C. Since mass is most often speci�ed in kilograms,
kilocalorie is commonly used. Food calories (given the notation
Cal, and sometimes called �big calorie�) are actually kilocalories
(1 kilocalorie = 1000 calories), a fact not easily determined from
package labeling.

Mechanical Equivalent of Heat

It is also possible to change the temperature of a substance by
doing work. Work can transfer energy into or out of a system. This
realization helped establish the fact that heat is a form of energy.
James Prescott Joule (1818-1889) performed many experiments to
establish the mechanical equivalent of heat � the work needed to
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produce the same e�ects as heat transfer. In terms of the units used
for these two terms, the best modern value for this equivalence is

1.000 kcal = 4186 J.

Temperature Change and Heat Capacity

One of the major e�ects of heat transfer is temperature change:
heating increases the temperature while cooling decreases it. We
assume that there is no phase change and that no work is done
on or by the system. Experiments show that the transferred heat
depends on three factors: the change in temperature, the mass of
the system, and the substance, and phase of the substance.

The quantitative relationship between heat transfer and
temperature change contains all three factors:

Q = mc∆T, (6.9)

where Q is the symbol for heat transfer, m is the mass of the
substance, and ∆T is the change in temperature. The symbol c
stands for speci�c heat and depends on the material and phase.
The speci�c heat is the amount of heat necessary to change the
temperature of 1.00 kg of mass by 1.00◦C. The speci�c heat c is a
property of the substance; its SI unit is J/(kg ·K) or J/(kg ·◦ C).
Recall that the temperature change (∆T ) is the same in units
of kelvin and degrees Celsius. If heat transfer is measured in
kilocalories, then the unit of speci�c heat is kcal/(kg ·◦ C).

Values of speci�c heat must generally be looked up in tables,
because there is no simple way to calculate them. In general,
the speci�c heat also depends on the temperature. Table 6.3
lists representative values of speci�c heat for various substances.
Except for gases, the temperature and volume dependence of the
speci�c heat of most substances is weak.
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Table 6.3 � Speci�c Heats of Various Substances

Substances Speci�c heat, c
J/(kg ·◦ C) kcal/(kg ·◦ C)

Solids
Aluminum 900 0.215
Copper 387 0.0924
Iron 452 0.108
Silver 235 0.0562
Glass 840 0.20
Human body (average) 3500 0.83
Ice (average) 2090 0.50
Wood 1700 0.4

Liquids
Ethanol 2450 0.586
Glycerin 2410 0.576
Mercury 139 0.0333
Water (15.0◦C) 4186 1.000

Gases1

Air (dry) 721 (1015) 0.172 (0.242)
Ammonia 1670 (2190) 0.399 (0.523)
Carbon dioxide 638 (833) 0.152 (0.199)
Nitrogen 739 (1040) 0.177 (0.248)
Oxygen 651 (913) 0.156 (0.218)
Steam (100◦C) 1520 (2020) 0.363 (0.482)

1cv at constant volume and at 20.0◦C, except as noted, and at 1.00 atm
average pressure. Values in parentheses are cp at a constant pressure of

1.00 atm.
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Phase Change and Latent Heat

The energy involved in a phase change depends on two major
factors: the number and strength of bonds or force pairs. The
number of bonds is proportional to the number of molecules and
thus to the mass of the sample. The strength of forces depends on
the type of molecules. The heat Q required to change the phase
of a sample of mass m is given by

Q = mLf (melting/freezing), (6.10)

Q = mLv (vaporization/condensation), (6.11)

where the latent heat of fusion, Lf , and latent heat of vaporization,
Lv, are material constants that are determined experimentally. See
(Table 6.4).

Latent heat is measured in units of J/kg. Both Lf and
Lv depend on the substance, particularly on the strength of its
molecular forces as noted earlier. Lf and Lv are collectively called
latent heat coe�cients. They are latent, or hidden, because in
phase changes, energy enters or leaves a system without causing
a temperature change in the system; so, in e�ect, the energy is
hidden. Table 6.4 lists representative values of Lf and Lv, together
with melting and boiling points.
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6.6. Heat Transfer

We examine the e�ects of phase change more precisely by
considering adding heat into a sample of ice at −20◦C (Figure
6.2).

Figure 6.2 � A graph of temperature versus energy added.

The system is constructed so that no vapor

evaporates while ice warms to become liquid

water, and so that, when vaporization occurs,

the vapor remains in the system. The long

stretches of constant temperature values at

0◦C and 100◦C re�ect the large latent heat

of melting and vaporization, respectively

The temperature of the ice rises linearly, absorbing heat at a
constant rate of 0.50 cal/g ·◦C until it reaches 0◦C. Once at this
temperature the ice begins to melt until all the ice has melted,
absorbing 79.8 cal/g of heat, the temperature remains constant
at 0◦C during this phase change. Once all the ice has melted,
the temperature of the liquid water rises, absorbing heat at a new
constant rate of 1.00cal/g ·◦ C. At 100◦C , the water begins to
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boil and the temperature again remains constant while the water
absorbs 539 cal/g of heat during this phase change. When all
the liquid has become steam vapor, the temperature rises again,
absorbing heat at a rate of 0.482 cal/g ·◦ C .

Water can evaporate at temperatures below the boiling point.
More energy is required than at the boiling point, because the
kinetic energy of water molecules at temperatures below 100◦C
is less than that at 100◦C, hence less energy is available from
random thermal motions. Take, for example, the fact that, at
body temperature, perspiration from the skin requires a heat input
of 2428 kJ/kg, which is about 10 percent higher than the latent
heat of vaporization at 100◦C. This heat comes from the skin and
thus provides an e�ective cooling mechanism in hot weather. High
humidity inhibits evaporation so that body temperature might
rise, leaving unevaporated sweat on your brow.

6.7. Heat Transfer Methods

Equally as interesting as the e�ects of heat transfer on a system
are the methods by which this occurs. Whenever there is a
temperature di�erence, heat transfer occurs. Heat transfer may
occur rapidly, such as through a cooking pan, or slowly, such as
through the walls of a picnic ice chest. We can control rates of
heat transfer by choosing materials (such as thick wool clothing for
the winter), controlling air movement (such as the use of weather
stripping around doors), or by choice of color (such as a white
roof to re�ect summer sunlight). So many processes involve heat
transfer, so that it is hard to imagine a situation where no heat
transfer occurs. Yet every process involving heat transfer takes
place by only three methods:

1. Conduction is heat transfer through stationary matter by
physical contact. (The matter is stationary on a macroscopic
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scale � we know there is thermal motion of the atoms and
molecules at any temperature above absolute zero.) Heat
transferred between the electric burner of a stove and the
bottom of a pan is transferred by conduction.

2. Convection is the heat transfer by the macroscopic
movement of a �uid. This type of transfer takes place in
a forced-air furnace and in weather systems, for example.

3. Heat transfer by radiation occurs when microwaves, infrared
radiation, visible light, or another form of electromagnetic
radiation is emitted or absorbed. An obvious example is the
warming of the Earth by the Sun. A less obvious example is
thermal radiation from the human body.

Conduction

Lastly, the heat transfer rate depends on the material
properties described by the coe�cient of thermal conductivity.
The rate of conductive heat transfer through a slab of material
is given by

Q

t
=

kA(T2 − T1)

d
, (6.12)

where Q/t is the rate of heat transfer in watts or kilocalories per
second, k is the thermal conductivity of the material, A and d are
its surface area and thickness, and (T2 − T1) is the temperature
di�erence across the slab. Table 6.5 gives representative values of
thermal conductivity.

A combination of material and thickness is often manipulated
to develop good insulators � the smaller the conductivity k and
the larger the thickness d, the better. The ratio of d/k will thus
be large for a good insulator. The ratio d/k is called the R factor.
The rate of conductive heat transfer is inversely proportional to
R. The larger the value of R, the better the insulation.
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Table 6.5 � Thermal Conductivities of Common Sub-

stances

Substance Thermal conductivity
k, J/(s ·m ·◦ C)

Silver 420
Copper 390
Gold 318
Aluminum 220
Steel 80
Ice 2.2
Glass (average) 0.84
Water 0.6
Fatty tissue 0.2
(without blood)
Asbestos 0.16
Plasterboard 0.16
Wood 0.08-0.16
Snow (dry) 0.10
Cork 0.042
Glass wool 0.042
Wool 0.04
Down feathers 0.025
Air 0.023
Styrofoam 0.010
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Convection

Convection is driven by large-scale �ow of matter. In the case
of Earth, the atmospheric circulation is caused by the �ow of hot
air from the tropics to the poles, and the �ow of cold air from
the poles toward the tropics. The circulatory system is used in
the body: when the body overheats, the blood vessels in the skin
expand (dilate), which increases the blood �ow to the skin where
it can be cooled by sweating. These vessels become smaller when
it is cold outside and larger when it is hot (so more �uid �ows,
more energy is transferred).

The body also loses a signi�cant fraction of its heat through
the breathing process.

While convection is usually more complicated than conduction,
we can describe convection and do some straightforward, realistic
calculations of its e�ects. Natural convection is driven by buoyant
forces: hot air rises because density decreases as temperature
increases.

Some interesting phenomena happen when convection is
accompanied by a phase change. It allows us to cool o� by
sweating, even if the temperature of the surrounding air exceeds
body temperature. Heat from the skin is required for sweat to
evaporate from the skin, but without air �ow, the air becomes
saturated and evaporation stops. Air �ow caused by convection
replaces the saturated air by dry air and evaporation continues.

Another important example of the combination of phase
change and convection occurs when water evaporates from the
oceans. Heat is removed from the ocean when water evaporates.
If the water vapor condenses in liquid droplets as clouds form, heat
is released in the atmosphere. Thus, there is an overall transfer of
heat from the ocean to the atmosphere.
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Radiation

Heat is transferred by radiation. That is, the hot body emits
electromagnetic waves that are absorbed by our skin: no medium is
required for electromagnetic waves to propagate. Di�erent names
are used for electromagnetic waves of di�erent wavelengths: radio
waves, microwaves, infrared radiation, visible light, ultraviolet
radiation, X-rays, and gamma rays.

The energy of electromagnetic radiation depends on the
wavelength (color) and varies over a wide range: a smaller
wavelength (or higher frequency) corresponds to a higher energy.
Because more heat is radiated at higher temperatures, a
temperature change is accompanied by a color change. The
radiated energy depends on its intensity, which is represented in
the Figure 6.3 by the height of the distribution.

Figure 6.3 � A graph of the spectra of electromagnetic

waves emitted from an ideal radiator at three

di�erent temperatures

All objects absorb and emit electromagnetic radiation. The
rate of heat transfer by radiation is largely determined by the color
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of the object. Black is the most e�ective, and white is the least
e�ective. An ideal radiator is the same color as an ideal absorber

and captures all the radiation that falls on it. In contrast, white
is a poor absorber and is also a poor radiator. A white object
re�ects all radiation, like a mirror.

The rate of heat transfer by emitted radiation is determined
by the Stefan-Boltzmann law of radiation:

Q

t
= σαAT 4, (6.13)

where σ = 5.67 × 10−8 J/(s ·m2 ·K4) is the Stefan-Boltzmann
constant, A is the surface area of the object, and T is its absolute
temperature in kelvin. The symbol α stands for the emissivity of
the object, which is a measure of how well it radiates. An ideal
jet-black (or black body) radiator has α = 1, whereas a perfect
re�ector has α = 0. Real objects fall between these two values.
Take, for example, tungsten light bulb �laments which have an e
of about 0.5, and carbon black (a material used in printer toner),
which has the (greatest known) emissivity of about 0.99.

Skin is a remarkably good absorber and emitter of infrared
radiation, having an emissivity of 0.97 in the infrared spectrum.
Thus, we are all nearly (jet) black in the infrared, in spite of the
obvious variations in skin color. This high infrared emissivity is
why we can so easily feel radiation on our skin. It is also the
basis for the use of night scopes used by law enforcement and
the military to detect human beings. Even small temperature
variations can be detected because of the T 4 dependence. Images,
called thermographs, can be used medically to detect regions of
abnormally high temperature in the body, perhaps indicative of
disease.

All objects emit and absorb radiation. The net rate of heat
transfer by radiation (absorption minus emission) is related to
both the temperature of the object and the temperature of its
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surroundings. Assuming that an object with a temperature T1 is
surrounded by an environment with uniform temperature T2 , the
net rate of heat transfer by radiation is

Qnet

t
= σαA

(
T 4
2 − T 4

1

)
, (6.14)

where α is the emissivity of the object alone. In other words,
it does not matter whether the surroundings are white, gray, or
black; the balance of radiation into and out of the object depends
on how well it emits and absorbs radiation. When T2 > T1 , the
quantity Qnet/t is positive � that is, the net heat transfer is from
hot to cold.

Problem-Solving Strategies for the Methods of Heat
Transfer

1. Examine the situation to determine what type of heat
transfer is involved.

2. Identify the type(s) of heat transfer � conduction,
convection, or radiation.

3. Identify exactly what needs to be determined in the problem
(identify the unknowns). A written list is very useful.

4. Make a list of what is given or can be inferred from the
problem as stated (identify the knowns).

5. Solve the appropriate equation for the quantity to be
determined (the unknown).

6. For conduction, equation Q
t

= kA(T2−T1)
d

is appropriate.
Table 6.5 lists thermal conductivities. For convection,
determine the amount of matter moved and use equation
Q = mc∆T to calculate the heat transfer involved in
the temperature change of the �uid. If a phase change
accompanies convection, equation Q = mLf or Q = mLv

is appropriate to �nd the heat transfer involved in the phase
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change. Table 6.4 lists information relevant to the phase
change. For radiation, equation Qnet

t
= σαA (T 4

2 − T 4
1 ) gives

the net heat transfer rate.

7. Insert the knowns along with their units into the appropriate
equation and obtain numerical solutions complete with units.

8. Check the answer to see if it is reasonable. Does it make
sense?
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Thermodynamics

7.1. The First Law of Thermodynamics

If we are interested in how heat transfer is converted into doing
work, then the conservation of energy principle is important. The
�rst law of thermodynamics applies the conservation of energy
principle to systems where heat transfer and doing work are the
methods of transferring energy into and out of the system. The
�rst law of thermodynamics states that the change in internal
energy of a system equals the net heat transfer into the system
minus the net work done by the system. In equation form, the
�rst law of thermodynamics is

∆U = Q−W. (7.1)

Here ∆U is the change in internal energy U of the system. Q
is the net heat transferred into the system � that is, Q is the sum
of all heat transfer into and out of the system. W is the net work
done by the system � that is, W is the sum of all work done on
or by the system. We use the following sign conventions: if Q is
positive, then there is a net heat transfer into the system; if W is
positive, then there is net work done by the system. So positive Q
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adds energy to the system and positive W takes energy from the
system. Thus ∆U = Q−W . Note, also, that if more heat transfer
into the system occurs than work done, the di�erence is stored as
internal energy. Heat engines are a good example of this � heat
transfer into them takes place so that they can do work.

Internal Energy U

We can think about the internal energy of a system in two
di�erent but consistent ways. The �rst is the atomic and
molecular view, which examines the system on the atomic and
molecular scale. The internal energy U of a system is the sum
of the kinetic and potential energies of its atoms and molecules.
Recall that kinetic plus potential energy is called mechanical
energy. Thus internal energy is the sum of atomic and molecular
mechanical energy. Because it is impossible to keep track of all
individual atoms and molecules, we must deal with averages and
distributions. A second way to view the internal energy of a
system is in terms of its macroscopic characteristics, which are very
similar to atomic and molecular average values. Macroscopically,
we de�ne the change in internal energy ∆U to be that given by
the �rst law of thermodynamics (7.1). Many detailed experiments
have veri�ed that ∆U is the change in total kinetic and potential
energy of all atoms and molecules in a system. It has also been
determined experimentally that the internal energy U of a system
depends only on the state of the system and not how it reached
that state. More speci�cally, U is found to be a function of a
few macroscopic quantities (pressure, volume, and temperature,
for example), independent of past history such as whether, there
has been heat transfer or work done. This independence means
that if we know the state of a system, we can calculate changes in
its internal energy U from a few macroscopic variables.
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To get a better idea of how to think about the internal energy
of a system, let us examine a system going from state 1 to state 2.
The system has internal energy U1 in state 1, and it has internal
energy U2 in state 2, no matter how it got to either state. So the
change in internal energy ∆U = U2 − U1 is independent of what
caused the change. In other words, ∆U is independent of path. By
path, we mean the method of getting from the starting point to
the ending point.

For the special case of a monatomic ideal gas, we note that the
average kinetic energy of an atom in such a gas is given by

1

2
mv2 =

3

2
kT.

The kinetic energy of the atoms in a monatomic ideal gas is its
only form of internal energy, and so its total internal energy U is

U = N
1

2
mv2 =

3

2
NkT =

3

2
nRT, (monatomic ideal gas),

(7.2)
where N is the number of atoms in the gas, n is the number of
moles.

This relationship means that the internal energy of an ideal
monatomic gas is constant during an isothermal process � that is,
∆U = 0. If the internal energy does not change, then the net heat
transfer into the gas must equal the net work done by the gas.
That is, because ∆U = Q−W = 0 here, Q = W .

An adiabatic process is de�ned to be one in which there is no
heat transfer � that is, Q = 0. Processes that are nearly adiabatic
can be achieved either by using very e�ective insulation or by
performing the process so fast that there is little time for heat
transfer. In fact, because Q = 0, ∆U = −W for an adiabatic
process.
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Heat Q and Work W

Heat transfer Q and doing work W are the two everyday
means of bringing energy into or taking energy out of a system.
The processes are quite di�erent. Heat transfer, a less organized
process, is driven by temperature di�erences. Work, a quite
organized process, involves a macroscopic force exerted through
a distance. Nevertheless, heat and work can produce identical
results. For example, both can cause a temperature increase. Heat
transfer into a system, such as when the Sun warms the air in a
bicycle tire, can increase its temperature, and so can work done on
the system, as when the bicyclist pumps air into the tire. Once the
temperature increase has occurred, it is impossible to tell whether
it was caused by heat transfer or by doing work. This uncertainty
is an important point. Heat transfer and work are both energy
in transit � either is stored as such in a system. However, both
can change the internal energy U of a system. Internal energy is
a form of energy completely di�erent from either heat or work.

Work Done on or by a Gas

A process by which a gas does work on a piston at constant
pressure is called an isobaric process (see Figure 7.1). Since the
pressure is constant, the force exerted is constant and the work
done is given as

W = Fd,

where F is force acting on the piston, d is its displacement.
From de�nition of pressure follows that F = PA, and so

W = PAd.

Because the volume of a cylinder is its cross-sectional area A
times its length, we see that Ad = ∆V , the change in volume;
thus,
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W = P∆V (isobaric process). (7.3)

Note that if ∆V is positive, thenW is positive, meaning that work
is done by the gas on the outside world.

Figure 7.1 � An isobaric expansion of a gas requires heat

transfer to keep the pressure constant

Processes when volume is constant are called isochoric

processes. Since volume is constant, ∆V = 0, and no work is
done in an isochoric process.

In general case, work done on or by gas is determined by
formula:

W =
∫ V2

V1

PdV. (7.4)

Figure 7.2 shows a graph of pressure versus volume � that is,
a PV diagram for an isobaric process. You can see in the �gure
that the work done is the area under the graph. This property of
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PV diagrams is very useful and broadly applicable: the work done
on or by a system in going from one state to another equals the

area under the curve on a PV diagram.

Figure 7.2 � A graph of pressure versus volume for a

constant-pressure, or isobaric, process. The

area under the curve equals the work done by

the gas, since W = P∆V .

Thus, the total work done is the total area under the curve. If
the path is reversed, then work is done on the system. The area
under the curve in that case is negative, because ∆V is negative.
PV diagrams clearly illustrate that the work done depends on the

path taken and not just the endpoints. If the system follows the
cyclical path, as in Figure 7.3, then the total work done is the area
inside the loop.

Reversible Processes

A reversible process is one in which both the system and
its environment can return to exactly the states they were in
by following the reverse path. Real macroscopic processes are
never exactly reversible. Reversibility requires the direction of
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Figure 7.3 � The area inside any closed loop is the work

done in the cyclical process. If the loop

is traversed in a clockwise direction, W is

positive � it is work done on the outside

environment. If the loop is traveled in a

counter-clockwise direction, W is negative �

it is work that is done to the system

heat transfer to reverse for the reverse path. Since dissipative
mechanisms cannot be completely eliminated, real processes
cannot be reversible.

Human Metabolism and the First Law of

Thermodynamics

Human metabolism is the conversion of food into heat transfer,
work, and stored fat. Metabolism is an interesting example of the
�rst law of thermodynamics in action. We now take another look
at these topics via the �rst law of thermodynamics. Considering
the body as the system of interest, we can use the �rst law to
examine heat transfer, doing work, and internal energy in activities
ranging from sleep to heavy exercise. What are some of the major
characteristics of heat transfer, doing work, and energy in the
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body? First, body temperature is normally kept constant by
heat transfer to the surroundings. This means that Q is negative.
Another fact is that the body, usually, does work on the outside
world. This means that W is positive. In such situations, then,
the body loses internal energy, since ∆U = Q − W < 0 or is
negative.

Now consider the e�ects of eating. Eating increases the internal
energy of the body by adding chemical potential energy (this is an
unromantic view of a good steak). The body metabolizes all the
food we consume. Basically, metabolism is an oxidation process
in which the chemical potential energy of food is released. This
implies that food input is in the form of work. Food energy is
reported in a special unit, known as the Calorie. This energy is
measured by burning food in a calorimeter, which is how the units
are determined.

In chemistry and biochemistry, one calorie (spelled with a
lowercase c) is de�ned as the energy (or heat transfer) required
to raise the temperature of one gram of pure water by one degree
Celsius. Nutritionists and weight-watchers tend to use the dietary
calorie, which is frequently called a Calorie (spelled with a capital
C). One food Calorie is the energy needed to raise the temperature
of one kilogram of water by one degree Celsius. This means that
one dietary Calorie is equal to one kilocalorie for the chemist, and
one must be careful to avoid confusion between the two.

Again, consider the internal energy the body has lost. There
are three places this internal energy can go � to heat transfer, to
doing work, and to stored fat (a tiny fraction also goes to cell
repair and growth). Heat transfer and doing work take internal
energy out of the body, and food puts it back. If you eat just the
right amount of food, then your average internal energy remains
constant. Whatever you lose to heat transfer and doing work is
replaced by food, so that, in the long run, ∆U = 0. If you overeat
repeatedly, then ∆U is always positive, and your body stores this
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extra internal energy as fat. The reverse is true if you eat too
little. If ∆U is negative for a few days, then the body metabolizes
its own fat to maintain body temperature and do work that takes
energy from the body. This process is how dieting produces weight
loss.

The body provides us with an excellent indication that many
thermodynamic processes are irreversible. An irreversible process

can go in one direction but not the reverse, under a given set of
conditions. For example, although body fat can be converted to
do work and produce heat transfer, work done on the body and
heat transfer into it cannot be converted to body fat.

7.2. The Second Law of Thermodynam-

ics

The fact that certain processes never occur suggests that there
is a law forbidding them to occur. The �rst law of thermodynamics
would allow them to occur � none of those processes violate
conservation of energy. The law that forbids these processes is
called the second law of thermodynamics. We shall see that the
second law can be stated in many ways that may seem di�erent,
but which in fact are equivalent. Like all natural laws, the second
law of thermodynamics gives insights into nature, and its several
statements imply that it is broadly applicable, fundamentally
a�ecting many apparently disparate processes.

The Second Law of Thermodynamics (�rst expression)
Heat transfer occurs spontaneously from higher- to lower-

temperature bodies but never spontaneously in the reverse

direction. Another way of stating this: It is impossible for any
process to have as its sole result heat transfer from a cooler to a
hotter object.
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Heat Engine

One of the most important things we can do with heat transfer
is to use it to do work for us. Such a device is called a heat engine,
and one is shown schematically in Figure 7.4. Gasoline and diesel
engines, jet engines, and steam turbines are all heat engines that
do work by using part of the heat transfer from some source. Heat
transfer from the hot object (or hot reservoir) is denoted as Qh ,
while heat transfer into the cold object (or cold reservoir) is Qc,
and the work done by the engine is W . The temperatures of the
hot and cold reservoirs are Th and Tc, respectively.

Figure 7.4 � A heat engine, represented here by a circle,

uses part of the heat transfer to do work

Because the hot reservoir is heated externally, which is energy
intensive, it is important that the work is done as e�ciently as
possible. In fact, we would like W to equal Qh, and for there to
be no heat transfer to the environment (Qc = 0). Unfortunately,
this is impossible.
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The Second Law of Thermodynamics (second expression)
It is impossible in any system for heat transfer from a reservoir

to completely convert to work in a cyclical process in which the

system returns to its initial state.

In the conversion of energy to work, we are always faced
with the problem of getting less out than we put in. We de�ne
conversion e�ciency Eff to be the ratio of useful work output to
the energy input (or, in other words, the ratio of what we get to
what we spend). In that spirit, we de�ne the e�ciency of a heat
engine to be its net work output W divided by heat transfer to
the engine Qh � that is,

Eff =
W

Qh

.

Since W = Qh −Qc in a cyclical process, we can also express this
as

Eff =
Qh −Qc

Qh

= 1− Qc

Qh

. (cyclical process) (7.5)

Carnot's Perfect Heat Engine

French engineer, Sadi Carnot (1796-1832), in his study of the
then-emerging heat engine technology crucial to the Industrial
Revolution. He devised a theoretical cycle, now called the Carnot
cycle, which is the most e�cient cyclical process possible. The
second law of thermodynamics can be restated in terms of the
Carnot cycle, and so what Carnot actually discovered was this
fundamental law. Any heat engine employing the Carnot cycle is
called a Carnot engine.

The Second Law of Thermodynamics (third expression)
A Carnot engine operating between two given temperatures has the

greatest possible e�ciency of any heat engine operating between
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these two temperatures. Furthermore, all engines employing only

reversible processes have this same maximum e�ciency when

operating between the same given temperatures.

Figure 7.5 � PV diagram for a Carnot cycle, employing

only reversible isothermal and adiabatic

processes

Figure 7.5 shows the PV diagram for a Carnot cycle. The
cycle comprises two isothermal and two adiabatic processes. Recall
that both isothermal and adiabatic processes are, in principle,
reversible.

Carnot also determined the e�ciency of a perfect heat engine
� that is, a Carnot engine. It is always true that the e�ciency of
a cyclical heat engine is given by (7.5).

What Carnot found was that for a perfect heat engine, the
ratio Qc/Qh equals the ratio of the absolute temperatures of the
heat reservoirs. That is, Qc/Qh = Tc/Th for a Carnot engine, so
that the maximum or Carnot e�ciency EffC is given by

EffC = 1− Tc

Th

, (7.6)
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where Th and Tc are in kelvins (or any other absolute temperature
scale). No real heat engine can do as well as the Carnot e�ciency
� an actual e�ciency of about 0.7 of this maximum is usually the
best that can be accomplished.

7.3. Entropy

Recall that the simple de�nition of energy is the ability to do
work. Entropy is a measure of how much energy is not available
to do work. Although all forms of energy are interconvertible,
and all can be used to do work, it is not always possible, even in
principle, to convert the entire available energy into work. That
is, unavailable energy is of interest in thermodynamics, because
the �eld of thermodynamics arose from e�orts to convert heat to
work.

We noted that for a Carnot cycle, and hence for any reversible
processes, Qc/Qh = Tc/Th. Rearranging terms yields

Qc

Tc

=
Qh

Th

for any reversible process. Qc and Qh are absolute values of the
heat transfer at temperatures Tc and Th, respectively. This ratio
of Q/T is de�ned to be the change in entropy ∆S for a reversible
process,

∆S =
(
Q

T

)
rev

, (7.7)

where Q is the heat transfer which is positive for heat transfer
into and negative for heat transfer out of, and T is the absolute
temperature at which the reversible process takes place. The
SI unit for entropy is joules per kelvin (J/K). If temperature
changes during the process, then it is usually a good approximation
(for small changes in temperature) to take T to be the average
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temperature, avoiding the need to use integral calculus to �nd
∆S:

∆S =
∫ 2

1

dQ

T
. (7.8)

The de�nition of ∆S is strictly valid only for reversible
processes, such as used in a Carnot engine. However, we can �nd
∆S precisely even for real, irreversible processes. The reason is
that the entropy S of a system, like internal energy U , depends
only on the state of the system and not how it reached that
condition. Entropy is a property of state. Thus the change in
entropy ∆S of a system between state 1 and state 2 is the same
no matter how the change occurs. The total change in entropy for
a system in any reversible process is zero. There is an increase in
entropy for any system undergoing an irreversible process.

The Second Law of Thermodynamics (fourth expression)
The total entropy of a system either increases or remains constant

in any process; it never decreases.

For example, heat transfer cannot occur spontaneously from
cold to hot, because entropy would decrease. Entropy is very
di�erent from energy. Entropy is not conserved but increases in
all real processes. Reversible processes (such as in Carnot engines)
are the processes in which the most heat transfer to work takes
place and are also the ones that keep entropy constant.

When entropy increases, a certain amount of energy becomes
permanently unavailable to do work. The energy is not lost, but
its character is changed, so that some of it can never be converted
to doing work � that is, to an organized force acting through a
distance.
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Order to Disorder

Entropy is related not only to the unavailability of energy
to do work, it is also a measure of disorder. This notion was
initially postulated by Ludwig Boltzmann in the 1800s. For
example, melting a block of ice means taking a highly structured
and orderly system of water molecules and converting it into a
disorderly liquid in which molecules have no �xed positions. In
another easily imagined example, suppose we mix equal masses
of water originally at two di�erent temperatures, say 20.0◦C and
40.0◦C. The result is water at an intermediate temperature of
30.0◦C. Three outcomes have resulted: entropy has increased,
some energy has become unavailable to do work, and the system
has become less orderly. Let us think about each of these results.
First, entropy has increased for the same reason that it did in
the example above. Mixing the two bodies of water has the same
e�ect as heat transfer from the hot one and the same heat transfer
into the cold one. The mixing decreases the entropy of the hot
water but increases the entropy of the cold water by a greater
amount, producing an overall increase in entropy. Second, once
the two masses of water are mixed, there is only one temperature
� you cannot run a heat engine with them. The energy that
could have been used to run a heat engine is now unavailable
to do work. Third, the mixture is less orderly, or to use another
term, less structured. Rather than having two masses at di�erent
temperatures and with di�erent distributions of molecular speeds,
we now have a single mass with a uniform temperature. These
three results � entropy, unavailability of energy, and disorder � are
not only related but are in fact essentially equivalent.

Statistical Interpretation of Entropy

A macrostate is an overall property of a system. It does
not specify the details of the system. A microstate � a detailed
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description of every element of a system. Because counting
microstates and macrostates involves statistics, this is called
statistical analysis. The macrostates of a gas correspond to
its macroscopic properties, such as volume, temperature, and
pressure; and its microstates correspond to the detailed description
of the positions and velocities of its atoms. Even a small amount
of gas has a huge number of atoms: 1.0 cm3 of an ideal gas at
1.0 atm and 0◦C has 2.7 × 1019 atoms. So each macrostate has
an immense number of microstates. In plain language, this means
that there are an immense number of ways in which the atoms
in a gas can be arranged, while still having the same pressure,
temperature, and so on.

The most likely conditions (or macrostates) for a gas are those
we see all the time � a random distribution of atoms in space with a
Maxwell-Boltzmann distribution of speeds in random directions,
as predicted by kinetic theory. This is the most disorderly and
least structured condition we can imagine. In contrast, one type
of very orderly and structured macrostate has all of the atoms in
one corner of a container with identical velocities. There are very
few ways to accomplish this (very few microstates corresponding
to it), and so it is exceedingly unlikely ever to occur. (See Figure
7.6) Indeed, it is so unlikely that we have a law saying that it is
impossible, which has never been observed to be violated � the
second law of thermodynamics.

The disordered condition is one of high entropy, and the
ordered one has low entropy. With a transfer of energy from
another system, we could force all of the atoms into one corner
and have a local decrease in entropy, but at the cost of an
overall increase in entropy of the universe. If the atoms start out
in one corner, they will quickly disperse and become uniformly
distributed and will never return to the orderly original state
(Figure 7.6(b)). Entropy will increase. With such a large sample
of atoms, it is possible, but unimaginably unlikely, for entropy
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Figure 7.6 � a) The ordinary state of gas in a container

is a disorderly, random distribution of atoms

or molecules with a Maxwell-Boltzmann

distribution of speeds. It is so unlikely that

these atoms or molecules would ever end up

in one corner of the container that it might as

well be impossible. b) With energy transfer,

the gas can be forced into one corner and its

entropy greatly reduced. But left alone, it will

spontaneously increase its entropy and return

to the normal conditions, because they are

immensely more likely

to decrease. Disorder is vastly more likely than order. The
arguments that disorder and high entropy are the most probable
states are quite convincing. The great Austrian physicist Ludwig
Boltzmann (1844-1906), who, along with Maxwell, made so many
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contributions to kinetic theory, proved that the entropy of a system
in a given state (a macrostate) can be written as

S = k lnΩ, (7.9)

where k is Boltzmann's constant, and lnΩ is the natural logarithm
of the number of microstates Ω corresponding to the given
macrostate. Ω is proportional to the probability that the
macrostate will occur. Thus entropy is directly related to the
probability of a state. The more likely the state, the greater its
entropy. Boltzmann proved that this expression for S is equivalent
to the de�nition ∆S = Q/T , which we have used extensively.

Thus the second law of thermodynamics is explained on a
very basic level: entropy either remains the same or increases
in every process. This phenomenon is due to the extraordinarily
small probability of a decrease, based on the extraordinarily larger
number of microstates in systems with greater entropy. Entropy
can decrease, but for any macroscopic system, this outcome is so
unlikely that it will never be observed.
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