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The real interaction between matter and electromagnetic radiation is too complicated for a complete 

theoretical investigation. In this paper, we study phase transition of polariton and magnetopolariton in 

semiconductor microcavity. We have analyzed the polariton and magnetopolariton phase transition via the 

path integral approach in Dicke model. Numerical results showed that the system exhibits phase transi-

tion from normal phase to super-radiant phase. The transition is affected by the coupling term, Matsubara 

frequencies and temperature. We observed that the sudden transition is closed to absolute temperature, 

which means that these three parameters have considerable effect on the polariton formation and stability. 

Additionally, the introduction of the magnetic field in the semiconductor microcavity shows that the sys-

tem still undergoes a phase transition. It is shown that weak magnetic field does not alter the phase tran-

sition significantly, apart from a small shift of the transition point. Compared to other parameters strong 

magnetic field drastically change sign at the critical temperature. 
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1. INTRODUCTION 
 

The observation of the strong coupling of light with 

exciton in semiconductor microcavities [1] has been 

generated much speculation regarding the possibility 

for low-threshold optical devices [2-3]. Realization of 

such devices based on the bosonic character of the opti-

cal eigenmode [4] of these structures would be a revolu-

tionary step in semiconductor optics. However in 1992, 

Weisbush et al. [5] renewed the subject by showing that 

the strong coupling regime between excitons and light 

can also be reached when a quantum well is inserted in 

a plane microcavity. When the quantum well is placed 

in a high finesse microcavity, the strong coupling re-

gime between excitons and light is easily reached, giv-

ing rise to exciton-photon mixed quasi particles called 

Polaritons. Then polariton is a mixed state which has 

half-light and half-matter. Polaritons were first consid-

ered theoretically by Kirill Borisovich Tolpygo [6], and 

were initially termed light-excitons in Ukrainian and 

Russian scientific literature. Being mixed exciton-photon 

quasi particles, the Polaritons have integral spins and 

can reveal bosonic properties [7] responsible for a num-

ber of interesting effects both predicted and observed, 

namely, stimulated scattering [8], Polariton lasing [9], 

Bose-Einstein condensation [10], Super fluidity [11] etc. 

Furthermore, the introduction of a magnetic field in a 

semiconductor microcavity shows that the polariton is 

magnetized. This is called Magnetopolariton. 

Intense research was carried out in order to deter-

mine the life time of polaritons, their dispersion and the 

different processes which enable their relieving [12-13]. 

In 1998, Dang et al. measured a non-linear behavior of 

the emission in a microcavity, while preserving the 

mode of coupling even under strong excitation [14]. 

Parametric amplification and oscillation of polaritons 

were observed in 2000 [15], showing that polaritons 

behave like bosons with low density. The stake was then 

to show a phase transition of the polariton, which is the 

main objective of this work. The Dicke Hamiltonian was 

shown to exhibit a phase transition between a super-

radiant phase with macroscopic occupations in the field 

of the atoms and a normal phase without excitations at 

zero temperature. In the context of phase transitions, a 

collection of two level systems coupled linearly to one 

scalar bosonic mode undergoes a phase transition from 

a normal to a super-radiant phase at certain critical 

coupling strength. This phase transition has been inves-

tigated theoretically a long time ago by Hepp and Lieb 

[16] and also by Wang and Hioe [17]. The super-radiant 

transition at zero temperature was shown [18-20]. 

In fact, experimental progress in superconducting 

circuits allows integrating multiple artificial atoms into 

micro-cavities. To maintain sufficiently long coherence 

times, the number of two-level systems in superconduct-

ing material must be kept moderate and far below the 

number of atoms in a cold atomic cloud. Furthermore, 

environmental degrees of freedom in the form of phonon 

like photon are always present in these structures. Nev-

ertheless, one may assume that signatures of Dicke 

physics are observable, at least in certain ranges tem-

perature. Another line of research combines polariton 

and magnetic field. The effect of the coupling parame-

ter, Matsubara frequencies, temperature and magnetic 

effects parameters on the polariton have not been fully 

understood yet, despite their important role in semicon-

ductors materials. The purpose of this work is to con-

tribute towards closing this effect by deriving the energy 

of the system. Considering the ground state of the Dicke 

Hamiltonian, it is immediately obvious, that there is a 

competition between the parameter cited above respec-

tively. This competition depends on the strength of 

those parameters. 

In this work, we study the phase transition of polari-

ton and magnetopolariton lasing in semiconductor mi-

crocavities. The problem of phase transitions in polari-

tonic systems has not yet been discussed in a number of 
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papers. Such a phase transition means the sudden 

change in the properties of a quantum many-body sys-

tem as a control parameter is varied. We have used the 

Dicke model to describe the coupling term, Matsubara 

frequencies, temperature and magnetic effects on the 

polariton and magnetopolariton. 

This paper is organized as follows. In the first sec-

tion, we present the method which is the Path integral 

approach via the Dicke model. In the second section, 

this method is applied to polariton lasing in semicon-

ductor microcavities. In the third section, the same 

method is also applied to magnetopolariton lasing in 

semiconductor microcavities. The last part is the con-

clusion. Throughout the paper we use units with

1Bk   . 

 

2. PATH INTEGRAL APPROACH TO DICKE 

MODEL 
 

2.1 The Dicke Hamiltonian 
 

The Dicke model, originally developed to describe a 

large number N of two-level atoms interacting with a 

single-mode radiation field [21], has regained substan-

tial interest in the last decade [22]. The phenomenon of 

phase transition is usually studied in connection with 

the Dicke Hamiltonian which describes an array of N 

two-level atoms interacting with a photonic field.  It 

can be written as the sum of three terms, where the 

first is the atom Hamiltonian, second is the cavity 

Hamiltonian and the third is the interaction Hamilto-

nian: 
 

 ( ) 0 ( ) ( )
1 1

H= ( )
2

N N
z
j j j

j j

g
b b b b

N
      

 


     (1.1) 

 

In above equation, we defined the operators

 0.5 x y
j j j     , where the operators ,j j

x y   and j
z

satisfy the commutation relations , 2p q pqr r
j j ji     

 
 

with , , , ,p q r x y z  and there are Pauli spin matrices for 

the jth atom. Therefore, ,j j j
z   

  
 

 and

, 2z
j j j      

 
. The b  and b  are the creation and 

annihilation operators for the field that satisfy the 

usual commutation relation rules and g is the coupling 

term between the atom and the field measured in units 

of the field energy . Where 0  is the frequency of the 

mode of the field and is the energy gap between the 

energy eigenstates of the electron. 

 

2.2 Path Integral Approach  

 

This method has been broadly used in a large series of 

papers (Sami et al., 2011 [23]; Fai et al., 2010a [24], 

2010b [25]), Emanuele et al. (2011) [26]). Full details of 

the calculation of the energy of the system described in 

equation (1.1) are given in [Aparicio et al. (2007) [27], 

Aparicio et al., 2011 [28]. Then, obtaining the Hamilto-

nian we used the path integral approach to derive the 

energy of the system. The method used here is identical 

to that used by Aparicio et al. (2013) [29]. In order to 

apply the path integral approach with the functional 

method, first it is necessary to change the atomic pseu-

do-spin operators of the model by a linear combination 

of Fermi operators to define the generalized Dicke 

model. Second, the thermodynamic limit ( )N   

where N the number of two is-level atoms must be 

taken. In the following line, we consider the problem of 

defining the partition function of the Dicke model. First 

let’s define the Euclidean action S of this model which 

describes a single quantized mode of the field and the 

ensemble of N identical two-level atoms. It is given by: 
 

 

*

* *
0 0

1

( ) ( )

S= ( )
( ) ( ) ( ) ( )

N F

i i i i
i

b b

d d H
 

 

 

  
       



  
 

     
 

 


(1.2) 

 

Where i , i
 , i  and i

  satisfy the anti-

commutator relations i j j i ij       and 

i j j i ij       . FH  is the Hamiltonian of the fermi-

ons Dicke model, this is given by  
 

 

 

* * *
0

1

* * *

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( )

N

F i i i i
i

N

i i i i
i

H b b

g
b b

N

           

         






   





 (1.3) 

 

Let’s define the formal quotient of two functional in-

tegrals i.e. the partition function of generalized Dicke 

model and the partition function of the free Dicke mod-

el. Therefore, we are interested in calculating the fol-

lowing quantity: 
 

 
0

0

S

S

d eZ

Z d e





  
  




 (1.4) 

 

Where S is the Euclidean action of the Dicke mode 

given by Eq.1.2, S0 is the free Euclidean action for the 

free single bosonic mode and the free atoms i.e. the 

expression of complete action S taking 0g  and d    

is the functional measure. To calculate that quotient, 

we will use the free action for the single mode bosonic 

field ( )BOS b  given by 

 

  *
0

0

( ) ( ) ( ).OS b d b b


       (1.5) 

 

By substituting this equation into the Euclidean ac-

tion of the Dicke mode and making few developments, 

we obtained 
 

  *
0

10

 S= ( ) , ( )
N

i i
i

S d M b b


    



   (1.6) 

 

Where 

  * *( ) ( ) ( )i i i       , 
( )

( )
( )

i
i

i

 
 

 

 
  
 

  

 

and the matrix 
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  

1
2

1
2

*

*

( )
2

,

( )
2

N gb

M b b

N gb













 
   

 
 

   
 

  

 

Let us find the functional integral form of the parti-

tion function of the Dicke model Z. 

We know that Z= Sd e   . Substituting the action S 

given by Eq. (1.6) and use the determinant properties we 

obtain: 

 Z    0
*( ) det

N
sd b M b be    (1.7) 

 

this case, ( )d b    is the functional measure only for the 

bosonic field. In order to calculate the partition func-

tion of the Dicke model, let us use the determinant 

properties, the development limit in Taylor series for 2 

variables in order 2, the functional derivative and its 

properties, Fourier representation for bosonic field, 

making certain transformations and using the fact that  
 

    *( )d b db db


         

 

we obtain: 
 

  

    
 

     

*
0 0

2

,

22 2
1

22

0 0

N b b ii
Z

S S RS R
e





  






 

 .(1.8) 

 

We shall calculate the function  S   and  R   fol-

lowing the procedure of Aparicio et al. (2007) [30] as follow 
 

  
 

 

2 2 2

2 2
tanh

22
R

 





 

 

   
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   
 (1.9) 
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
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 
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 

   
   

   

(1.10) 

 

From (Aparicio et al. (2007) we deduced  H  : 

 

  
     2

2 2
0

S S R
H

  


 

 



 (1.11) 

 

By substituting the expression of the function  S   

and  R   in the last expression we get

 
 

   

   

2 2 2 2 2
0

2 2 2 2
0

4 2
2

2 2 2 2 2
0

2
1 tanh

2

tanh
2

g g
H

g

  


  



  

 

 



 

     
   

    

  
  
    

(1.12) 

Where the parameter   takes the value 2 n  , 

with n being all the integers and   is the inverse of 

temperature. These values correspond to the Matsub-

ara frequencies for bosonic fields, and 

22 2
04g b    , where is a critical value of the 

bosonic fields. 

 

3. POLARITON LASING IN SEMICONDUCTOR 

MICROCAVITIES 
 

3.1 Polariton Energy 
 

Polaritons are half-light, half-matter quasi particles 

resulting from the strong coupling of the photon mode 

of a microcavity with an exciton resonance of the em-

bedded semiconductor structure [31]. We consider a 

system consisting of N identical exciton interacting 

with the photons in the cavity. The Hamiltonian of a 

bosonic system, coupled with the reservoir of exciton, in 

thermal equilibrium at temperature 1    can be writ-

ten in the following form: 
 

 ph ex ex phH H H H     (2.1) 

 

In the above relation, the first term describes a photo-

nic Hamiltonian: 
 

 0phH a a   (2.2) 

 

The second term represents an excitonic Hamiltonian: 
 

 ( )
12

N
z

ex i
i

H 



   (2.3) 

 

and the third term describes a Hamiltonian of exciton-

photon interaction which is written as: 
 

  ( ) ( )
1

N

ex ph j j
j

g
H a a

N
   




   (2.4) 

 

In these equations, a and a  are the photon crea-

tion and annihilation operators for the cavity mode 

frequency 0 , i
  and i

 are the pseudo-spin for the ith 

exciton defined as i x yi      and i x yi      with 

,x y   being the Pauli matrices. g denotes the coupling 

strength between the exciton and the photon. Then, the 

generalized Dicke model is defined by: 
 

  ( ) 0 ( ) ( )
1 12

N N
z
j j j

j j

g
H a a a a

N
      

 


      (2.5) 

 

The collective exciton couples to a photon, single 

electromagnetic mode of frequency 0 in the cavity 

described by bosonic operators a , a  with effective 

coupling strength g N . The latter one is conveniently 

introduced when the density of atoms per unit volume 

is fixed since then the bare coupling one between any 

single atom and the atomic mode is effectively reduced 

with a growing number of atoms. g  represents the 

coupling term between the photon and the exciton and 

  a single spin excitation. 

Now we apply the result obtained in section one and 

derive the energy of polariton. Considering Eq. (1.24), 

the energy of polariton is written as 
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 



 

     
   

    

  
 

    

 (2.6) 

 

Where the coefficients are defined as follow 

22 2
04g a     and 0a represents the Bose field 

constant. This excitation-energy spectrum of the polari-

ton yields insight into the origin of the phase transition 

due to the competition between photon modes of a mi-

crocavity with an exciton. 

 

3.2 Numerical Results 
 

3.2.1 Temperature Effect on Polariton Energy 
 

Numerical results of the energy are presented in 

this section. The objective is to analyze how energy 

behaves with coupling parameter and temperature. 
 

 
 

Fig. 1 – Polariton Energy versus Temperature 
 

Figure 1 presents the evolution of Polariton energy 

as a function of temperature. The value of the Matsub-

ara frequency is defined by 2 nT  but here we have 

taken the Matsubara frequency as 8 T . We choose

1.6g  . It is seen that the transition appears, thus we 

observe that the system undergoes a phase transition 

from the normal phase (i.e. cT T ) to the super-radiant 

phase (i.e. CT T ). We can also see that the energy of 

the polariton in the normal phase is greater than that 

in the super-radiant phase. The polariton energy de-

creases with temperature after the critical point  CT  

around the absolute temperature, since the super-

radiant phase is a phase which has a stable state. In 

this state, the polariton state can be detected. This 

state is very important, the polariton is more localized. 

We can also observe that in the super-radiant phase 

the polariton energy vanishes, it means that this quasi-

particle is more stable in this phase than a single elec-

tron. Now one question is addressed, what will be the 

effect of Matsubara frequencies on the transitions? 

 

 

3.2.2 The effect of Matsubara frequencies 
 

 
 

Fig. 2 – Polariton Energy versus temperature for different 

values of Matsubara frequencies 
 

Figure 2 shows the numerical result of the energy of 

the polariton as a function of temperature for different 

values of Matsubara frequencies for weak coupling

 1g  . The values of the other parameters remain the 

same. We chose the coupling term 0.35g  ; n charac-

terizes the different values of Matsubara frequency, 

since these frequencies are defined as 2 nT . Like 

previously, we observe that the system also undergoes 

a phase transition from the normal phase (i.e. CT T ) 

to the super-radiant phase (i.e. CT T ). Here, we make 

the same observations as previously. We may also ob-

serve that the transition point  CT  is closed to the 

absolute temperature. The more the matsubara fre-

quency increases the more the critical shift toward the 

absolute temperature (for n  5, 4, 3 the critical points 

are 
5 4 3C C CT T T  ). We may observed that for 

3C
T T  

the energy decreases with matsubara frequency, but  
 

 
 

Fig. 3 – Energy of polariton versus temperature for different 

values of Matsubara frequency 
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increases for 
5C

T T . This behavior is different be-

tween 
5C

T  and 
3C

T . For n  5 polariton energy passes 

through the critical point 
4C

T , for n  4 it passes 

through 
3C

T . 

Figure 3 presents the evolution of the polariton en-

ergy versus temperature for different values of 

Matsubara frequency in the case of strong coupling

 1g  . We keep the same values for other parameters. 

We choose the coupling term 1.6g  . In order to study 

the critical behavior of the polariton, we display the 

energy versus temperature. Note that the minimum 

position approaches the critical point, providing a con-

vincing method to locate the critical point. This behav-

ior strongly implies the sudden transition from the 

broken symmetry phase to the symmetry phase. We see 

that the energy of the polariton oscillates, thus there is 

a phase transition from the normal phase (i.e. CT T ) 

to the super-radiant phase (i.e. CT T ). This figure 

also presents some critical values of temperature CT . 

We observe that the value of the critical temperature 

decreases with the Matsubara frequencies and the 

energy of the polariton increases with the increase of 

Matsubara frequencies. Contrary for the case of  weak 

coupling we have a common point of the polariton ener-

gy for the three selected Matsubara frequencies values. 

Near this point the sign of the polariton energy changes 

with the Matsubara frequencies. 

From the above, we observed that the Matsubara 

frequencies bring close the transition point from the 

absolute temperature. The critical temperature is more 

quickly reached with the increase of the Matsubara 

frequencies. Then, we are going to test if the breaking 

of symmetry still remains if there is a magnetic effect 

on the phase transition. 

 

4. MAGNETOPOLARITON LASING IN SEMI-

CONDUCTOR MICROCAVITIES 
 

4.1 Magnetopolariton Energy 
 

The introduction of a magnetic field in the semicon-

ductor microcavity means that the polariton is magnet-

ized. This is called a Magnetopolariton. Therefore, we 

can define a Magnetopolariton as a quasi-particle result-

ing from the strong coupling of the photon mode of a 

microcavity with an exciton resonance of the embedded 

semiconductor structure in the presence of a magnetic 

field. When a microcavity has a magnetic field, the sys-

tem is composed of a quasi-particle (polariton) and the 

magnetic field. This field is characterized by the Zeeman 

energy. We can write the Hamiltonian of system as: 
 

 Mag zee ph ex ex phH H H H H      (3.1) 

 

Here the first term describes the Zeeman energy 

which is defined as ( )
1

N
z

Zee B i
i

H  


  where 
1

2
B BB   

in this last relation,   is the gyromagnetic factor; B  

is the Bohr magneton and B  is the magnetic field. 

The second, third and fourth terms are defined in 

the previous part. Therefore, the Hamiltonian takes the 

following form: 

 

                                                                                     (3.2) 

where 'B    with 'B BB  . 

Now we apply the result obtained in section one and 

derive the energy of Magnetopolariton. Then, the ener-

gy of Magnetopolariton is written as: 
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(3.3) 

 

Where the coefficients are defined as 
 

22 2
04g a    . 

 

4.2 Numerical Results 
 

4.2.1 Magnetopolariton energy in a weak cou-

pling term 
 

Figure 4 exhibits the evolution of the energy of the 

magnetopolariton as function of temperature for differ-

ent values of the magnetic field (weak magnetic field). 
 

Fig. 4 – Energy of magnetopolariton versus temperature for 

different values of  weak magnetic field 

 

The parameters of this energy remain the same. 

The value of the weak coupling term is 0.35g  . It is 

seen that there is a transition point. We Observe  a 

common point of the polariton energy for the three 

selected Matsubara frequencies values. Near this point 

the sign of the magnetopolariton energy changes with 

the Matsubara frequencies. A weak magnetic field have 

a weak impact on the Magnetopolariton. 

 

4.2.1 Magnetopolariton Energy in a Weak Cou-

pling Term 
 

We observe that the system undergoes a phase tran-

sition. We may also see that the critical temperature 

appears at the same point for different values of the 
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weak magnetic field. We also observe that the energy of 

the magnetopolariton slightly decreases with the mag-

netic field. We also observe that in the super-radiant 

phase, the energy of magnetopolariton vanishes. It 

means that this quasi-particle is more stable in this 

phase than a single electron. Then, compared to the 

Matsubara frequencies in the case of weak coupling, the 

transition points do not change. 

 

4.2.2 Magnetopolariton energy in a strong cou-

pling 
 

Figure 5 exhibits the evolution of the energy of the 

magneto polariton versus temperature for different 

values of the magnetic field for strong coupling. The 

value of coupling term is 1.6g  . It is seen that the 

energy of the Magneto polariton oscillates, and thus, 

there is a transition point. 
 

 
 

Fig. 5 – Energy of Magnetopolariton versus temperature for 

different values of  strong magnetic field 
 

We observe that the system also undergoes a phase 

transition. We may also see that the critical tempera-

ture appears at different points for different values of 

the magnetic field, but these critical temperatures are 

greater than the previous ones. We also observe that the 

energy of the magnetopolariton decreases with the mag-

netic field and the transition point moves away with the 

magnetic field contrary to the effect of Matsubara fre-

quencies. For low temperatures, the behavior is parabol-

ic, but it is linear after T  0.7. Magnetopolariton have 

strong impact of strong magnetic field. 

 

5. CONCLUSION 
 

In this work, we have analyzed the polariton and 

magnetopolariton phase transitions via the path inte-

gral approach in the full Dicke model. We derived the 

polariton and magnetopolariton energies. Numerical 

results demonstrated that an observation of the phase 

transition from the normal phase (i.e. CT T ) to the 

super-radiant phase (i.e. CT T ) is indeed feasible for 

some parameters. It is seen that the critical tempera-

ture appears. We know that, the critical temperature is 

the stability and equilibrium point-driven phase transi-

tion. We have also observed that, when the coupling 

term is zero, nothing happens to our system, meaning 

that the exciton and photon interaction strongly affects 

the equilibrium states of the polariton. In other words, 

the Matsubara frequencies bring close the transition 

point from the temperature absolute. The critical tem-

perature is more quickly reached with the increase of 

the Matsubara frequencies. The transition is thus af-

fected by the coupling term, Matsubara frequencies and 

temperature. One of the important results is that the 

sudden transition is close to zero, which means that 

these three parameters have a strong effect on the 

polariton formation and stability. 

However, when we applied a magnetic field in the 

semiconductor microcavity, there was still a phase 

transition. In a weak magnetic field, the transition 

point appears at the same point, while in a strong 

magnetic field, that critical temperature appears at 

different points of transition but the energy of the 

Magnetopolariton decreases with the magnetic field. 

Thus, the magnetic field does not affect the transition 

phase but makes a slight shift the critical temperature. 

It is obvious that the weak magnetic field does not have 

strong effect on the changing of the polariton phase 

even if its effect on the polariton amplitude is im-

portant whereas the Matsubara frequencies bring close 

the transition point from the temperature absolute. 

Strong magnetic field drastically decreases the polari-

ton energy after the critical. 
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