
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 8 No 2, 02013(5pp) (2016) Том 8 № 2, 02013(5cc) (2016) 

 

 

2077-6772/2016/8(2)02013(5) 02013-1  2016 Sumy State University 

Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation 

on Lithium Niobate 
 

C. Soumali*, D. Benatia† 

 

Laboratoire d’Electronique Avancée (L.E.A), Department of Electronics, University of Batna, Algeria 

 
(Received 04 February 2016; revised manuscript received 13 June 2016; published online 21 June 2016) 

 
Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric 

substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is 

analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of mo-

tion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separa-

tion between the different modes of propagation is proposed regarding the attenuation coefficients and not 

to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3); 

transformations between modes of propagation, under uniform stress, have been found. These results leads 

to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable 

acoustic devices. 
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1. INTRODUCTION 
 

Lithium niobate (LiNbO3) has attracted much inter-

est as a piezoelectric substrate for fabrication of acous-

to-electronic devices such as delay lines, filters, tem-

perature sensors and pressure sensors[1], etc. Recent 

development showed that the application of static bias-

ing fields electric or mechanical was used to control the 

performances of the acousto-electronic devices[2-3]. 

The presence of biasing fields makes the piezoelec-

tric apparently behave like a different substrate, and 

renders the linear theory of piezoelectricity invalid; the 

theory for infinitesimal incremental fields on finite 

biasing fields is used, which is a consequence of the 

nonlinear theory of electro-elasticity [4]. The nonlinear 

constitutive equations are linearized  involving decom-

position of the stress and the other field quantities into 

two parts, static biasing one, and the dynamic connect-

ed to the acoustic wave[5]. 

In this paper, the wave equation is obtained by us-

ing the linearized constitutive equations and incorpo-

rating the stress in the equation of motion and taking 

account of the published set linear and nonlinear mate-

riel constants. A new method is proposed to select and 

separate between the different modes of propagation of 

acoustic waves, by regarding only to the attenuations 

coefficients. Numerical simulations and results for 

Lithium Niobate are presented. 

 

2. ANALYSIS OF ACOUSTIC WAVE PROPAGA-

TION ON PIEZOELECTRIC SUBSTARTE UN-

DER ACTION OF UNOFORM STRESS 
 

2.1 Notations and Assumptions  
 

The coordinate system is shown in Fig. 1, the sub-

strate occupies the half space X3  0, the direction of 

propagation is along the axis X1, the term representing 

the temporal variation is omitted and considering the 

anisotropy of the substrate used the notation of the 

tensors is used. The appearance of any index after a 

comma indicates that one must take the derivative of 

the quantity compared to the variable corresponding to 

the index. The derivative compared to time is indicated 

by a point on the variable to derive.  
 

 
 

Fig. 1 – Piezoelectric structure of generation and detection of 

acoustic waves 
 

The electric field is given by the gradient of an elec-

trostatic potential and the magnetic field is neglected. 

The propagation velocity of electromagnetic waves is 

extremely high compared to that of elastic waves (105), 

which justify the quasi static approximation. Other 

assumptions concerning the geometry of the device are 

necessary, the substrate is supposed semi-infinite, the 

electrodes are supposed perfect conductors and of null 

mass. It is convenient to suppose that there is not 

transverse variation i.e. according the direction X2; the 

effect of diffraction is also neglected.  

Also we suppose that the displacement related to the 

small wave generated by the digital transducer is sepa-

rated from the displacement related to the biasing stress.  

 

2.2 Analysis 
 

Let us consider a small acoustic wave generated by an 

interdigital transducer (IDT) on a piezoelectric substrate, 
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propagating along X1 and decaying in X3 direction. Under 

application of uniform stress on the substrate: 

The equation of motion can be written as following [6]: 
 

 , ,ij i ik j ki jT u u    (1) 

 

: crystal density; 

Tij: stress tensor; 
ui: elastic displacement; 

ik: initial stress present in the medium. 

The constitutive equations for small acoustic wave 

superposed on biasing field are [5]: 
 

 

* *

* *

ij ijkl kl kji k

i ikl kl ik k

T C S e E

D e S E

 

 
 (2) 

 

Where the new effective elastic, piezoelectric , die-

lectric constants are linear function of stress  are de-

fined as follows [7]: 
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: Stress tensor applied to the substrate 

Cabklqr: Third-order nonlinear elastic tensor 

enabkl: Third-order nonlinear piezoelectric tensor 

Hnmab: Electrostrictive tensor 

Cabkl: Second-order elastic tensor 

enab: Second-order piezoelectric tensor 

εnm: Second-order dielectric tensor 

sklmn: Second-order compliance tensor 

 

2.3 Wave Equation 
 

Referring to the assumptions already token in pre-

vious section, Maxwell equations reduces to: 
 

 
,

,

i i

i i

D q

E 



 
 (4) 

Where: 

iD : Electric flux density 

iE : Electric field 

i : Electrostatic potential 

q : Free charge density 

We suppose that the elastic displacement iu related 

to the small acoustic wave is separated from the dis-

placement caused by the biasing so we can write:  
 

 , ,

1
( )
2

kl k l l kS u u   (5) 

 

ijS : Strain tensor 

The substitution of equations (1), (4) and (5) in 

equation (2) , for an area without charge density gives 

the wave equation for the substrate : 
 

 

* *
, , ,

* *
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ik j ki ijkl k li kij ki j

ikl k li ik ki

u C u u

e u

   

 
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 
 (6) 

These equations are valid in the substrate (X3  0), 

for the second half space (X3  0) all acoustic fields are 

null, so the wave equation reduces to Laplace equation: 
 

 , 0ii   (7) 

 

2.4 Resolution of Wave Equation 
 

The acoustic displacements  and the electric po-

tential   of the acoustic wave must decay into the 

substrate and vanish at infinity, so the solutions of 

equations (6) should have the next form: 
 

 
3 1( ) ( )
x x

j t
v v

i iu A e e
  

  (8) 

 

 
3 1( ) ( )
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j t

v vA e e
 


 

  (9) 

 

iA : Amplitude of the wave 

: surface wave velocity 

: decay coefficient in the substrate 

The substitution of equations (8) and (9) into equa-

tion (6) leads to next linear homogeneous equations for 

the variable. 
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Where : 
 

 * 2 * *
11 55 33 15 13 11 11( ) ( )2 ( )C C j C             

 

 * 2 * * *
12 21 46 14 56 16( )C C C j C          

 

 * 2 * * *
13 31 35 13 55 15( )C C C j C          

 

 * * * *
14 41 35 15 31 11( )e e e j e          

 

 * 2 * *
22 33 44 13 46 66 11( ) ( )2 ( )C C j C             

 

 * 2 * * *
23 32 34 36 45 56( )C C C j C          

 

 * 2 * * *
24 42 34 14 36 16( )e e e j e          

 

 * 2 * *
33 33 33 13 35 55 11( ) ( )2 ( )C C j C             

 

 * 2 * * *
34 43 33 13 35 15( )e e e j e          

 

 * 2 * *
44 33 13 112j          

 

In last equations the tensors C, e and ɛ are reduced to 

the standard matrix notation [8] 

To avoid trivial solution of equation (10) , the de-

terminant of the left hand in equation (10) must be 

null. The development of this conditions leads to an 

eighth order polynomial in α, which is equal to zero: 
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Where the coefficients are purely real for an as-

sumed value of the speed. 

 

2.5 Selection Rule of the Valid Roots in the Sub-

strate 
 

From the eight roots obtained, four only from roots 

are valid witch ensure decay in the substrate; these 

four roots represent four modes of propagation; a quasi-

electrostatic mode, a quasi-longitudinal mode and two 

quasi-transversal modes one fast and the other slow. 

The roots have a complex form: 
 

 r ij      

 

The first physic consideration is r must be positive 

to ensure decay into the substrate. 

If r  0 we have a surface acoustic wave (SAW); 

If r  0 we have a bulk acoustic wave (BAW) propa-

gating in the direction θ, where: 
 

 (1 / )iarctg    

 

The electrostatic mode is characterized by no prop-

agation so it is the mode the most attenuated; the lon-

gitudinal mode is characterized by direction of propaga-

tion parallel to X1 however the two transversal modes 

are characterized by a direction perpendicular to X1. 

Taking account of all these physical considerations, 

we have suggested a rule to select and separate be-

tween the different modes in an algorithmic form re-

garding the decay coefficients only. 
 

 
 

Algorithm 1 – Pseudo code for roots selection rule 

 

2.6 Displacement Vectors Calculus 
 

Once the decay coefficients are obtained and select-

ed, one can express the total fields (mechanical dis-

placement and electric potential), as a linear combina-

tion of the fields related to the selected decay coeffi-

cients so: 
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Where the coefficients are the proportions between 

the different modes. In order to evaluate these coeffi-

cients (Bk) we have to use the next boundary condi-

tions: 

The crystal surface is stress free ( 3 0jT   at X3  0). 

If a stress  is applied on the substrate, the total 

stress will be: 
 

 '
,ij ij ik j kT T u   (14) 

 

The substitution of equations (12) and ((13) into 

equation (14) yields to the next set of homogeneous 

equations for the coefficients 
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In the above system of equations we have four vari-

ables Bk and three equations only so we have to nor-

malize by B4 to obtain a solution, in this case the solu-

tions are the eigenvectors of the system. 

 

3. SIMULATION AND RESULTS 
 

In this section we simulate the propagation of a 

small acoustic wave on Lithium Niobate subjected to 

uniaxial stress. 

The application of uniform stress according the di-

rection X1 changes the initial 23 point symmetry to 

orthorhombic class 222 according to the curie principle 

of symmetry [9]; as consequence the material constants 

are modified: 
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 (18) 

 

Taking in account equation (18) and the set of linear 

and non linear material constants[4]-[10]; the eight 

order polynomial in equation (11) is solved and the 

decay coefficients are carried out and classified in four 

modes of propagations according to the selection rule of 

valid roots already proposed in the previous section. 
 

Table 1 – Simulation parameters and cutoff slownesses 
 

Propagation 

mode 
Stress Cutoff slowness 

Quasi-

Longitudinal 

 0 Pa 

1 MPa 

100 MPa 

1 GPa 

1.3452  s/m 

1.5264 s/m 

1.4272 s/m 

1.5264 s/m 

Fast Quasi-

Transversal  

0 Pa 

1 MPa 

100 MPa 

1 GPa 

2.7708 s/m 

3.0144 s/m 

3.0144 s/m 

3.0144 s/m 

Slow Quasi-

Transversal  

0 Pa 

1 MPa 

100 MPa 

1 GPa 

2.8104 s/m 

2.5184 s/m 

2.5184 s/m 

2.6176 s/m   
 

Simulations done for Lithium niobate for the set of 

stress (1 MPa, 100 MPa, 1 GPa) shows a shift of cutoff 

slownesses as mentioned in Table 1, witch result in a 

transformation of BAW mode of propagation to SAW 

mode of propagation in these intervals, also we remark 

that the imaginary part the decay coefficient of all 

modes is null above the cutoff slownesses witch result 

in the propagation of pure SAW mode. 
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Fig. 2a – Real part of decay coefficient of quasi-electrostatic 

mode 
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Fig. 2b – Imaginary part of decay coefficient of quasi-

electrostatic mode 
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Fig. 3 – Real part of decay coefficient of quasi-longitudinal 

mode 
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Fig. 4a – Real part of decay coefficient of slow quasi-

transversal mode 
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Fig. 4b – Imaginary part of decay coefficient of slow quasi-

transversal mode 
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Fig. 5a – Real part of decay coefficient of fast quasi-

transversal mode 
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Fig. 5b – Imaginary part of decay coefficient of fast quasi-

transversal mode 

 

4. CONCLUSION 
 

Equations of propagation of a small acoustic waves 

generated by an interdigital transducer in a piezoelec-

tric substrate subjected to an external stress are ob-

tained by incorporating the stress in the equation of 

motion and taking account of the set of linear and non-

linear material constants. The effect of an external on 

the spectrum of acoustic waves is analyzed for several 

values of stress. Simulations shows that transfor-

mation of BAW mode to SAW mode occur for all the 

spectrum of acoustic waves (quasi-longitudinal, quasi-

transversal fast, quasi-transveral slow) under applica-

tion of uniform stress. Also propagation of pure SAW 

mode have been detected above the new cutoff slow-

nesses. These results can be useful for designing of 

controllable acousto-electronic devices  such as delay 

lines , pressure sensors etc. 
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