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Abstract 

 

A thin film of SnS2 obtained by close-spaced vacuum sublimation was irradiated by an 

Nd:YAG laser (λ=532 nm) using two intensities of laser radiation of 8.5 MW/cm2 and 11.5 MW/cm2. 

It was shown that laser irradiation leads to evaporation of sulphur from the surface, and the formation 

of SnS and Sn2S3 phases. The study of samples’ cross-section by energy dispersive X-ray analysis 

reveals that in the case of irradiation at 8.5 MW/cm2 intensity, the SnS layer is formed only at the 

surface of the initial SnS2 thin film. The application of more intensive radiation of 11.5 MW/cm2 

leads to changes in chemical composition for the entire thin film. The formation of the predominant 

SnS phase, which includes a small amount of Sn2S3, was confirmed by the X-ray diffraction and 

Raman spectroscopy methods, as well as by measurements of optical reflectance and transmittance 

spectra. It was established that laser irradiation of the samples leads to the coalescence of grains 

accompanied by smoothing of the surface. The current-voltage characteristics of the ITO/SnxSy/Al 

samples show an ohmic behaviour in the case of non-irradiated intensity samples; for irradiated 

samples, the diode behaviour of I-V curves was observed. This is considered as evidence of the 

formation of p-SnS/n-SnS2 heterojunction by laser irradiation.  

 

*Corresponding author: E-mail address: andrey.vozny@gmail.com (PhD student A. Voznyi) 

Keywords: Tin sulphides; Thin films; Laser treatment; Phase transition; Phase composition. 

 

1. Introduction 

 

SnxSy binary compounds have high potential use in optoelectronics. In particular, the SnS2 

compound with n-type conductivity has shown significant potential for photodetectors and for the 

window layer in solar cells due to high carrier mobility and the wide band gap that ranges between 
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2.24–2.6 eV, according to different sources [1–4]. The SnS p-type semiconductor exhibits unique 

properties for application in thin films solar cells as an absorber layer that can substitute for the 

widely used CdTe and CIGS [3,5]. This is because of a combination of being near the optimal band 

gap of 1.35 eV [3] and the high optical absorption coefficient [2]. Other important advantages of SnS-

related compounds are their being low-cost, earth abundant and non-toxic [2]. The p and n-type 

conductivity of SnS and SnS2 open the opportunity for the development of p-SnS/n-SnS2 based solar 

cells [1,6]. A recent theoretical calculation reveals that the conversion efficiency of these solar cells is 

25.3 % [7]. This correlates with the estimation performed earlier for the general case (e.g. single-

junction solar cells), which shows that conversion efficiency of SnS based solar cells could be more 

than 24% [2,3]. On the other hand, the record efficiency of SnS based solar is only 4.4% [8]. The low 

efficiency is explained by the low homogeneity of the structure due to the formation of secondary 

phases and the presence of different types of defects. This requires the development of a method for 

growing high-quality SnxSy layers. Several different methods are used for obtaining SnxSy [3]. The 

close-spaced vacuum sublimation (CSS) method is widely used for deposition of high-quality 

compound semiconductor films [9–11]. However, this method has almost never been applied for the 

growth of SnxSy films [12]. 

Laser technology is a powerful tool allowing improvement of crystal quality of bulk crystals 

or highly disordered polycrystalline films, as well as phase transition in compound semiconductors 

[13–18]. This makes it possible to overcome the limitation of solar cell efficiency due to 

recombination of free carriers on defect centres, or because of the presence of unfavourable 

secondary phases. However, laser irradiation is rarely used for SnxSy compound processing [19].  

For the SnxSy compounds, controlling secondary phase formation is an important task, since 

SnS2 could be transformed to SnS and vice versa by the changing of the concentration of volatile 

sulphur [2]. This is why films of SnxSy compounds usually contain secondary phases [3]. The SnS2-

SnS phase transition has been studied only for thermal annealing [20]. At the same time, laser 

irradiation could be considered as an effective method for controllable phase transition in SnxSy since 

it provides rapid increases of temperature in materials. 

The specific crystal properties of SnS2 are very sensitive to growth conditions and post-

growth treatment. In particular, the SnS2 compound is a layered material with a CdI2-type structure, 

which consists of a sheet of Sn atoms between two sheets of hexagonally packed S atoms. The 

layered structure of SnS2 is formed due to a combination of covalent and van der Waals bonding. 

Namely, atomic layers interact via the weak van der Waals force, while intralayer bonding is due to 
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the strong covalent force. SnS2 can exist in a number of polytypes [21]. Therefore, structural analysis 

of SnS2 films is complicated not only by the possible formation of Sn2S3 and SnS secondary phases, 

but also by the presence of different polytypes. It has been established that, in most cases, SnS2 thin 

films have a hexagonal crystal structure of 2H polytype [12,22,23]. The influence of growth 

conditions on the crystal properties of SnS2 films was studied in [12,22]. However, the effect of laser 

irradiation on crystal properties of SnS2 has not yet been studied. 

Thus, the aim of this paper is to study the effect of laser irradiation on SnS2 in terms of phase 

transition, crystal structure and surface modification. In particular, the influence of laser irradiation on 

chemical composition, structural, optical and electrical properties were investigated.  

2. Experimental 

Similar to our previous work [24], SnS2 thin films were obtained in a vacuum chamber VUP-

5M by the CSS method. A detailed description and scheme of the device for producing the thin films 

is available in [9]. Samples were deposited on ultrasonically cleaned ITO (300 nm thickness) coated 

glass substrates. The stoichiometric powder of SnS2 was used as an initial material for evaporation. 

The temperatures of the evaporator and substrate were 675 0C and 250 0C, respectively. The time of 

deposition was 4 min.  

Laser irradiation of SnS2 thin films samples was performed in air by the second harmonic of 

Nd:YAG laser (λ=532 nm). The samples were irradiated with two different intensities of laser 

radiation, namely I1=8.5 MW/cm2 and I2=11.5 MW/cm2. The focused laser beam (spot diameter of 

1.5×10-3 and 1.3×10-3 m for I1 and I2 intensities, respectively) was scanned over the sample surface at 

a constant speed of 1.6×10-4 m/s; the duration of the impulse was 4 ns. The scanned area was 

0.56×10-4 m2 for both I1 and I2 intensities.  

The surface morphology and chemical composition of the thin films were investigated using 

FEI Nova NanoSEM 650 Schottky field emission scanning electron microscope (FESEM) with an 

integrated Apollo X energy dispersive spectroscope (EDS) for the chemical composition analysis 

using standardless energy techniques. The following parameters of the EDS experiment were used: 

accelerating voltage 15 kV, detector resolution 125.4 eV, working distance 7 mm and spot size 5.5. 

The calculation of the concentrations was determined by averaging results of at least 10 

measurements from different points on the surface. The thickness was measured by FESEM directly 

from the cross-section of the samples.  
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Also, to study the microstructure of the surface and to estimate its roughness, the NT-MDT 

atomic force microscope (AFM) in semi-contact mode was used. 

Structural analysis was carried using Rigaku Ultima+ X-ray diffractometer (XRD) operating 

in Bragg-Brentano geometry using KαCu radiation source. The scan step was 0.05 2θ degrees, and 

the range was variable from 10–800 2θ degrees. Identification of the crystal phases was performed 

with the Crystallography Open Database (COD). 

Room temperature Raman spectroscopy (RS) spectra were studied using Renishaw 

InVia90V727 micro-Raman spectrometer in a backscattering geometry using 1200 and 1800 mm-1 

grating for the semiconductor infrared (λ=785 nm) and Ar green (λ=514nm) laser excitation, 

respectively. Recording the signal was carried out by a CCD camera. Calibration of the spectrometer 

was performed by measuring the 520 cm-1 Raman line of the silicon wafer. For the measurements, the 

power of excitation and exposure time was set in such a way as to obtain sufficient signal-to-noise 

ratio of the spectra without damaging the surface due to local overheating.  

In order to evaluate optical band gap of the materials reflectance and transmittance spectra 

were measured using Solid Spec-3700 UV-VIS-NIR Shimadzu Spectrophotometer. 

The measurements of the dark and light current-voltage (I-V) characteristics of the 

ITO/SnxSy/Al sandwich structures were carried out using Keithley M 6487 pico-amperemeter. The Al 

contacts were deposited by thermal vacuum evaporation on the surface of as-grown samples and 

immediately after laser irradiation, at a substrate temperature of 100 0C. 

 

3. Results and discussion 
 
3.1. Surface morphology and chemical composition 

 

The change in colour of the samples after irradiation was visually observed. Namely, the colour of 

the surface irradiated with the intensity of I1 changed from yellow, typical for SnS2 [2], to a dark grey 

SnS-like colour, which is the evidence of sulphur evaporation and phase transition from SnS2 to SnS. 

As well as for the previous regime of laser irradiation, the colour of the surface irradiated with the 

intensity of I2 changed to grey. However, the colour of the irradiated surface was lighter.  

The FESEM image of the surface of the non-irradiated SnS2 film is shown in Fig. 1(a). As can 

be seen, the thin films consist of plate-like crystallites randomly oriented in a plane parallel to the 

surface. The higher magnification FESEM image (Fig. 1(a), insert) shows that the length of 
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crystallites is about 1 µm, and their thickness is less than 100 nm. It should be noted that the surface 

of the thin film is homogeneous, i.e. free of any large-scale defects and precipitates. The plate-like 

structure of the crystallites is clearly visible on the FESEM cross-sectional image presented in Fig. 

1(b). Also, it can be seen that the crystallites are well oriented along a plane perpendicular to the 

surface. The thickness of the films is about 4.1 µm.  

The irradiation of the surface with the intensity of I1 leads to agglomeration and coalescence 

of grains and formation of islands with 1 µm length (Fig. 1(c)). As can be seen from Fig. 1(c) (insert), 

the surface of the islands is rather homogeneous and does not contain any defects such as cracks, 

holes or voids. It should be noted that the cross-sectional FESEM image (Fig. 1(d)) clearly shows that 

the surface after laser irradiation is smooth, and the shape of the crystallites became rounder. Also, 

the thickness of the samples decreased to 3.6 µm due to evaporation of material. 

Application of more intensive laser irradiation of I2 leads to further enlargement of islands due 

to agglomeration, and the distance between the islands on the surface is increased. As follows from 

Fig. 1(e), the average length of islands varies from 1 µm (in this case they have a circular shape: Fig. 

1(e), inset), to 5 µm for oblong islands. The cross-sectional view (Fig. 1(f)) shows that crystallites 

coalesced to form drop-like islands with an average height of 2.8 µm.  

The AFM study of the samples allows us to determine more accurately the size of the grains 

and surface roughness; the AFM scans and height profiles are presented in Fig. 2. In particular, as 

follows from Fig. 2(a), the average thickness and length of the plate-like crystallites of the 

nonirradiated sample is 1 and 2 µm, respectively. Moreover, using the height profile, it was found 

that the thickness of plate-like crystallites decreases with height to about 0.1 µm at the top of the 

crystallites. Thus, it can be concluded that the crystallites have a cone-like profile. The roughness of 

the non-irradiated sample is about 0.7 µm.  

Comparing Fig. 2(a) and Fig. 2(b), it was found that during the irradiation with the intensity of 

I1 the sharp crystallites coalesced into larger smooth cone-like islands. The average diameter of such 

cones is more than 2 µm near the base and 0.5 µm at the top. The distance between cones is about 2.4 

µm. The roughness of the irradiated surface is about 0.6µm (Fig. 2(b)). Under more intensive laser 

irradiation with the intensity of I2 the diameter of islands increased to 2.5 µm near the base and 1.5 

µm at the top (Fig. 2(c)). The AFM scan (Fig. 2(c)) confirms the results of the FESEM study (Fig. 

1(e)): the distance between islands increases to about 3.5 µm with increasing irradiation intensity. 

Also, the roughness of the surface is close to the height of islands of about 3 µm observed on the 

cross-sectional FESEM image (Fig. 1(f)). Thus, it was found that the surface of the sample consists of 
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free-standing drop-like crystallites, which are formed due to melting and agglomeration of 

crystallites.  

The stoichiometric composition of SnS2 was reported to be δ=0.46 [2] and δ=0.5 [25] (where 

δ=[Sn]/[S] (at.%)). However in [23,26], the EDS analysis shows more Sn-rich composition of about 

δ=0.54, whereas XRD and Raman methods reveal the single-phase structure of the samples. In our 

study the EDS analysis of the surface of non-irradiated samples shows a Sn-rich chemical 

composition, namely the value of δ is 0.57 (Fig. 1(a) inset). This can be explained by the re-

evaporation sulphur during deposition. The scan of the surface reveals concentration uniformity. A 

small variation of the chemical composition on the cross-section was observed. In particular, as 

follows from Fig. 1(b), the Sn concentration decreases with depth to δ=0.52 (at the middle of sample 

cross-section), and slightly increases again to δ=0.54. The layer at the substrate shows the highest Sn 

composition of δ=0.61. We speculate that this could be due to the interaction of the EDS beam with 

Sn contained ITO coating. 

The EDS analysis of sample irradiated with the intensity of I1 (dark grey surface) confirms our 

assumption that changes in colour from initial yellow to dark grey are due to evaporation of sulphur 

from the surface. The surface composition of the irradiated sample is δ=0.72 (Fig. 1(c)). The EDS 

analysis of the cross-section (Fig. 1(d)) shows that the thickness of the layer with δ=0.72 composition 

is about 1 µm. The chemical composition directly next to this layer was δ=0.61, which is more Sn-

rich than the composition of the nonirradiated sample at the same depth. The chemical composition at 

the middle of sample’s cross-section and at the substrate is similar to that in the nonirradiated sample. 

This reflects that the depth of the impact of laser irradiation with the intensity of I1 is about 2 µm.  

EDS analysis of surface irradiated with the intensity of I2 (light grey surface) shows that 

increasing laser intensity leads to more intensive evaporation of sulphur, hence enrichment of the 

surface with metal. The surface chemical composition was found to be δ=0.87 (Fig. 1(e)). Also, as 

follows from Fig. 1(f), the sulphur loss takes place throughout the depth of the sample. In particular, 

the concentration of Sn monotonically decreases with depth increasing from δ=0.87 on the surface to 

δ=0.72 at the substrate. Thus, the gradient in Sn concentration due to the decreased influence of laser 

irradiation with depth was formed. 

It should be noted that the accuracy of EDS measurements of rough surfaces could be is only 

of 5 at.% [27]. Nevertheless, the obtained EDS results are sufficiently reliable to determine a general 

trend in the effect of laser irradiation on the chemical composition of the samples.  
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3.2 Structural analysis 

 

In order to avoid misinterpretation of XRD results due to overlapping of SnxSy and ITO-

related reflection, XRD measurements of ITO-coated glass substrate were carried out. As can be seen 

from Fig. 3(a), the XRD pattern shows diffraction lines typical for ITO [28,29]. 

The XRD patterns of the non-irradiated and irradiated samples are presented in Fig. 3. As 

follows from Fig. 3(b), the non-irradiated sample is single-phase hexagonal SnS2. In particular, 

reflections from (001), (100), (101), (110) and (111) planes at 150, 28.40, 32.20, 500, 52.60 

respectively, of hexagonal 2H-SnS2 were detected [21]. The calculated values of the lattice parameter 

were as follows: a =0.3646 nm and c =0.5859 nm. The value of a and c is in good agreement with 

reference data [30]. 

The irradiation of the sample with the intensity of I1 strongly affected the phase composition 

of the films. Namely the (111) SnS-related line at 31.80 [31] is clearly visible on the shoulder of the 

(101) line of the SnS2 phase . Also weak peaks at 16.20 and 26.60, which correspond to reflections 

from (120) and (111) respectively of the Sn2S3 phase [32], were detected (Fig. 3(c)). Taking into 

account the results of the EDS analysis of the cross-section of the irradiated sample, it can be 

concluded that the SnS and Sn2S3 phases are mostly located at the surface layer.  

For the sample irradiated with the intensity of I2 the increasing intensity of the (111) SnS-

related line as well as the (120) and (111) Sn2S3-related lines indicates the increasing concentration of 

these phases (Fig. 3(d)). Moreover, the highest intensity of the SnS-related (111) line at 31.80 shows 

that the SnS phase is dominant over the SnS2 and Sn2S3 phases. 

 

3.3 Raman analysis  

 

In order to identify SnS2, Sn2S3 and SnS-related modes on Raman spectra, we used reference 

data about their frequencies in single crystals [33–36]. However, Raman analysis of polycrystalline 

thin films can be complicated by shifting and broadening of the peaks compared to those in single 

crystals due to grain boundaries, extended defects and stresses [37–40]. 

For reliable Raman phase analysis of the SnxSy compounds, the energy of excitation should be 

close to the band gap of the studied phase. In this case, one can expect high absorption of excitation 

radiation or even resonance conditions [41], and hence high signal to noise ratio of the Raman 

spectra. Taking into account the difference between the band gap energies of SnS2, Sn2S3 and SnS2 
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compounds, we used two wavelengths of excitation. Namely, for identification of SnS2 phase, 

excitation with a 514 nm green laser is optimal, since the energy of excitation (E=2.41 eV) is close to 

the band gap of SnS2 (Eg=2.24 eV). For the identification of Sn2S3 and SnS2 phases with the band 

gaps of (Eg=1.09 eV) and (Eg=1.35 eV), the 785 nm IR excitation (E =1.58 eV) is more suitable. 

The Raman spectra measured with 514 nm excitation are presented in Fig. 4. The sufficiently 

good-quality spectra with a large signal-to-noise ratio of the non-irradiated sample (Fig. 4) were 

obtained with an exposure time of 120 s, and laser excitation power density of 33.89 W/cm2. 

Increasing the exposure time to 200 s did not lead to significant changes in the quality of the spectra 

and intensities of peaks. It should be noted that, in order to prevent sample damage due to 

overheating, the excitation power density did not exceed 33.89 W/cm2.  

As can be seen from Fig. 4(a), the Raman spectrum of the non-irradiated sample shows a 

high-intensity peak at 314.7 cm-1. This peak could be assigned with A1g optical phonon mode of 2H-

SnS2 polytype with hexagonal symmetry which is related to Sn-S bonding in the a-c plane [36,42,43]. 

The frequencies of the observed peaks and their possible interpretations are listed in Table 1. The 2H-

SnS2 polytype structure implies the presence of weak Eg mode at 205 cm-1 along with a strong A1g 

mode (Table 1) [36]. However, the Eg mode was not clearly detected. We observed only very small 

increases of intensity at around 204 cm-1 (Fig. 4(a)). The absence of other modes on Raman spectra 

confirms the single-phase hexagonal structure of the non-irradiated SnS2 sample. It should be noted 

that this finding is consistent with the results of XRD analysis.  

As can be seen from Fig. 4(b), the irradiation of the samples with the intensity of I1 leads to 

the appearance of an additional three broad weak peaks centered at 92, 189 and 227 cm-1. Taking into 

account the results of EDS and XRD studies for the irradiated, sample we assumed that these peaks 

are related to the SnS and SnS2 phases. According to selection rules [33], the presence and 

frequencies of Raman modes depend on the orientation of the crystal lattice with respect to the 

direction of the incident and scattered photons. As was shown elsewhere [33,35] for most cases, the 

Ag mode related to bonding in the a-c plane is dominant for both SnS and Sn2S3 phases. Also, in some 

cases of orientation crystal lattice, the less intensive B1g, B2g and B3g modes could be observed (Table 

1) [33,35]. Moreover, in the case of Sn2S3 only the Ag mode has been observed experimentally 

[34,44]. As can be seen from Fig. 4(c), the peak at 92 cm-1 consists of two overlapping peaks at 88 

cm-1 and 95 cm-1 related to the Ag mode of the Sn2S3 and SnS phases, respectively. The broad weak 

peak at 189 cm-1 also could be assigned to Ag mode of the SnS phase (Table 1). We speculate that 

another broad weak peak centered at 227 cm-1 is related to two close Ag modes of SnS and Sn2S3 at 
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around 220 and 236 cm-1 respectively (Table 1). However, it is difficult to distinguish the exact 

position of the peaks. It should be noted that Ag mode of Sn2S3 mode at 308 cm-1 was not observed on 

the spectrum, probably due to overlapping with the broad A1g mode of the SnS2 phase at 314.7 cm-1. 

As was shown by XRD and EDS analysis, the irradiation of the sample with the higher 

intensity of I2 results in increasing the concentration of the SnS and Sn2S3 phases. This finding was 

confirmed by Raman spectroscopy. The relative intensity of the SnS and Sn2S3-related modes is 

significantly increased, while the intensity of the A1g mode of the SnS2 phase is decreased (Fig. 4 (c)). 

Here, the SnS- related Ag mode is dominant. Moreover, one more SnS- related B3g mode at 162 cm-1 

was observed. 

The Raman spectra measured with IR 785 nm excitation are presented in Fig. 5. The good 

quality spectra of the non-irradiated sample (Fig. 5(a)) were obtained with a short exposure time of 30 

s and laser excitation power density of 2.22 W/cm2. It was found that, in contrast to measurements of 

irradiated samples with green laser excitation, the increasing of the exposure time (in this case from 

10 to 30 s) led to a significant improvement of the quality of the Raman spectra, as well as increasing 

the relative intensity of SnS- and Sn2S3-related modes (Fig. 5(b, c)). Thus, the spectra measured with 

an exposure time of 30 s were analysed.  

Application of IR excitation radiation for Raman analysis of the non-irradiated SnS2 sample 

gives very similar results to those obtained with a green laser. In particular, as follows from Fig. 5(a), 

the Raman spectrum of the non-irradiated sample shows one strong SnS2-related A1g mode at 314.5 

cm-1. In general, the spectrum measured with IR excitation for irradiated samples confirms the results 

obtained with green wavelength excitation. Namely, the trend of increasing relative intensities of 

SnS- and Sn2S3-related modes compared to the A1g mode of SnS2 with the intensity of laser 

irradiation was observed. However, in contrast to the Raman spectra measured with green excitation, 

the spectra obtained with IR excitation show strong SnS- and Sn2S3-related modes, even for the 

sample irradiated with the intensity of I1. In particular, the SnS-related Ag mode at around 221cm-1 is 

dominant on both spectra of samples irradiated with the intensities of I1 and I2. As was discussed 

above, this can be explained by the fact that relatively narrow band gap SnS and Sn2S3 compounds 

interact much stronger with IR than green wavelength radiation. As a result, three peaks of the SnS-

related Ag mode at 95, 184 and 221 cm-1 and a peak that could be assigned to the B2g mode at 288 cm-

1 (as well as three peaks of the Sn2S3-related Ag mode at 88, 154 and 309 cm-1) are clearly observed. 

In order to study the spatial distribution of phases, micro-Raman mapping using IR excitation 

of the non-irradiated and irradiated surfaces was performed. For comparing with the irradiated 
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surface, one side of the sample was left non-irradiated. On the other side, two rectangular areas were 

irradiated by a laser with intensities of I1 and I2. As a result, three areas close to each other were 

formed on a surface of the samples (Fig. 6(a, b)). These areas were visually distinguishable since they 

had a different colour. The non-irradiated area was yellow, and analogous to fully irradiated samples, 

the areas irradiated by a laser with the intensities of I1 and I2 were grey and light-grey, respectively. 

The edges of the irradiated areas were not sharp, and the narrow intermediate zones between 

irradiated areas with mixed yellow-grey or grey-light grey colours were observed (Fig. 6(a,b)). This 

can be explained by the non-uniform power density of the laser spot. The overlapping of laser spots 

during step-by-step scanning provides a uniform distribution of power density of laser irradiation. 

Thus, the non-uniformity of the laser spot manifested itself only at the edges of the scanned area.  

The measurement parameters for each spectrum of micro-Raman mapping power were as 

follows: density of laser excitation 0.05, and exposure time 10 s. Thus, the mapping spectra were 

similar to the single scan spectrum measured with an exposure time of 30 s (Fig. 5(b, c)). The 

scanned area includes non-irradiated and irradiated with the intensity of I1 surfaces, or surfaces 

irradiated with the intensities of I1 and I2, as shown on Fig. 6(a, b). This allows the effect of laser 

irradiation on the surface distribution of phases to be compared. As a parameter of study, the ratio of 

peak intensities (R=I(SnS2)/I(SnS)) of SnS2-related A1g mode at about 314.5 cm-1 and SnS-related Ag 

mode at about 95 cm-1 was used. 

As can be seen from Fig. 6(a), the value of R for the non-irradiated yellow coloured surface is 

about 10. Basically, this corresponds to the ratio of the intensity of A1g to the intensity of the 

background. This means that no peak of SnS-related Ag mode at about 95 cm-1 was detected. Thus, 

the non-irradiated yellow coloured area corresponds to single phase SnS2. The value of R decreases 

for the intermediate zone between the non-irradiated and irradiated areas, which indicates the 

appearance of the SnS-related Ag mode. This mode became more pronounced for the irradiated area. 

The intensity of the SnS2-related A1g mode is only two times higher than that of the SnS-related Ag 

mode (R=2). It should be noted that the surface distribution of R values for the irradiated surface is 

rather uniform. This reveals the homogeneous surface distribution of the SnS and SnS2 phases.  

The R value for the surface irradiated with the intensity of I2 is about 1 or less. This indicates 

the dominance of the SnS phase. Also, mapping shows a non-uniform distribution of R. Namely, the 

value of R is varied across the surface from 0.8 to 1. This can be explained by the non-homogeneous 

surface distribution of the SnS and SnS2 phases. On the other hand, taking in account that absorption 

of laser excitation depends not only on phase composition but also on the properties of the surface, 
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the non-uniform distribution of R could be due to the high roughness of the surface formed by drop-

like islands.  

 

3.5. Optical properties 

 

The reflectance and transmittance spectra of the samples are presented in Fig. 7 (a,b). It 

should be noted that the minimum at about 1100 nm was observed on the transmittance spectrum of 

the SnS2 films deposited on ITO-coated glass substrate (Fig. 7a). It was assumed that this minimum is 

due to the presence of the ITO layer. Thus, in order to avoid the effect of ITO coating on optical 

spectra of non-irradiated SnS2 and irradiated samples, we used thin films obtained on a glass 

substrate. These samples were deposited and irradiated under the same conditions as those that were 

previously obtained on ITO-coated glass. As was expected, the minimum at 1100 nm was not 

observed on the transmittance spectrum of the glass/SnS2sample and hence, in contrast to samples 

obtained on the ITO-coated glass, there is only one clearly distinguishable transmission edge at about 

500 nm. Therefore, for further optical characterisation, only the samples obtained on glass substrate 

were used. It should be noted that both SnS2 samples deposited on glass and ITO-coated glass showed 

this transmission edge, indicating reproducibility in optical properties of the samples obtained by the 

CSS method. 

As can be seen from Fig. 7, the laser irradiation has a strong influence on the optical 

properties of the films. In particular, the transmittance of the irradiated samples decreases by about 

20% and 30% for samples irradiated with the intensities of I1 and I2, respectively. The transmittance 

edge Et1 shifts from 2.48 eV for non-irradiated samples to Et2=1.72 eV and Et4=1.59 eV for samples 

irradiated with the intensities of I1 and I2, respectively. It is important to note that an additional short-

wavelength transmission edge at about Et3=2.72 eV is observed in the transmittance spectra of the 

sample irradiated with the intensity of I1. This transmission edge could be associated with a bottom 

SnS2 layer of the SnS2/SnS two-layer structure formed after laser irradiation. 

A similar effect of the laser irradiation was observed for reflection spectra. Namely, the 

reflectance of the irradiated samples drops and the optical reflectance edge Er1 shifts from 2.48 eV for 

non-irradiated samples to Er2=1.8 eV and Er3=1.72 eV for samples irradiated with the intensities of I1 

and I2, respectively. The shift of transmittance and reflectance edges can be explained by a phase 

transition from SnS2 to SnS. The decrease of reflectance and transmittance is not only due to phase 

transition accompanied by changes in transmittance and reflectance coefficient, but also to the 
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modification of the surface after the irradiation. In particular, we speculate that the light scattering on 

platelet-like grains of the non-irradiated samples could be considerably different to that on drop-like 

islands observed on the surface of the irradiated samples.  

For the reliable determination of the band gap energies, the absorption coefficient was 

calculated using reflectance and transmittance spectra. Then, the direct and indirect energy gaps were 

determined by plotting the ��ℎ��� and ��ℎ��
�
�, respectively, as a function of the photon energy ℎ�, as 

shown in Fig. 8. As follows from Fig. 8(a), the direct and indirect band gaps of the non-irradiated 

SnS2 sample were found to be 2.70 eV and 2.62 eV, respectively. The value of the direct band gap is 

in good correlation with results of theoretical calculations reported in [4], but it is higher than values 

of about 2.2–2.5 eV obtained in [23,45–47] for SnS2 thin films. The relatively broad band gap of the 

SnS2 sample could be due to the quantum size effect, since the FESEM and AFM studies show that 

the thickness of platelet-like grains at the surface is less than 100 nm. For example, the significant 

increase of the band gap of SnS2 due to the quantum size effect was observed for nanostructured thin 

films in [26,48]. 

The direct band gap of films irradiated with the intensities of I1 and I2 was found to be 2.33 

eV and 2.04 eV, respectively, and the indirect band gap 2.16 eV and 1.67 eV, respectively (Fig. 

8(b,c)). Taking into the account the multi-phase composition of the samples irradiated with the 

intensities of I1 and I2, it is difficult to associate unambiguously the obtained energies with one of the 

phases. However, the decreases of the optical band gap with the intensity of the laser irradiation are 

obvious. This corresponds to the evaporation of sulphur from initial pure SnS2 films and the 

appearance of the Sn2S3 or SnS phases.  

 

3.5. Electrical properties 

 

The main aim of the I-V measurements is to study the possibility of the formation of the n-

SnS2/p-SnS junction after laser irradiation. Thus, in order to avoid the formation of Schottky barriers 

and hence misinterpretation of the results of the I-V measurements, it is necessary to obtain ohmic 

contacts for the samples.  

The electron affinity of SnS2 is 4.2 eV [2,49], and it is difficult to obtain the ohmic contact for 

n-SnS2, since the work function �	
� of the most commonly used metals is more than 4.2 eV. Taking 

this into account, Al with 	
 of about 4.2 eV could be considered as one of the best candidates for 
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ohmic contact ton-SnS2. For example, the Al contacts were found to be ohmic for n-SnS2 crystals in 

[50,51]. Also, Al is suitable for formation of the ohmic contact with p-SnS [1,52].  

It should be noted that metal-semiconductor barriers could be reduced due to the presence of 

surface states, which are typical for highly disordered polycrystalline material, or with the doping of 

semiconductor. In the case of doping, the width of the depletion region decreases, and the charge 

carriers can tunnel through the depletion region [53]. With this purpose, in order to provide diffusion 

of Al into the sample and hence doping at the surface of as-grown and irradiated samples, the 

deposition of contact was performed under a substrate temperature of 100 0C.  

The I-V curves measured for non-irradiated SnS2 and irradiated with the intensities of I1 and I2 

samples are shown in Fig. 9. As can be seen, the I-V curve of ITO/SnS2/Al sample is linear (ohmic). 

This means that there are no electrical barriers between SnS2 and Al, or ITO contacts were found. The 

dark conductivity of the sample was 7.7×10-4 Ω-1·cm-1. This value is in a good agreement with the 

results obtained in [45,54,55].0 -7 ~-1  

The I-V curve of the sample irradiated with the intensity of I1 shows typical diode behaviour. 

On the other hand, for the I-V curve of the sample irradiated with the intensity of I2, the current 

rectification was much less pronounced. In particular, the degree of current rectification calculated as 

the ratio of currents at +0.5 and -0.5 V for the samples irradiated with the intensities of I1 and I2 is 13 

and 2, respectively. Taking into account the results of EDS analysis of the samples’ cross-sections, it 

can be concluded that in the case of laser irradiation with the intensity of I1, the two-layer n-SnS2/p-

SnS junction was formed, which is reflected in the diode behaviour of the I-V curve. The application 

of higher intensity laser irradiation of I2 leads to the formation of a mixture of SnS and SnS2 phases, 

rather than a two-layer structure with a sufficiently sharp boundary between the layers. 

4. Conclusions 

It was shown that laser irradiation of the SnS2 films provides evaporation of sulphur and 

hence phase transition to the SnS and Sn2S3 phases. The depth phase distribution in irradiated 

samples is strongly dependent on the intensity of the laser radiation. In particular, the irradiation of 

the samples with intensity of I1=8.5 MW/cm2 leads to the formation of the SnS layer at the surface. 

This results in the formation of two-layer SnS/SnS2 structure. Also, irradiated films contain a small 

amount of the Sn2S3 phase. We speculate that this phase is located between the SnS and SnS2 layers 

since the Sn to S ratio concentration monotonically decreases with depth. The application of a more 

intensive irradiation with the intensity of I2=11.5 MW/cm2 leads to changes in chemical composition 
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for whole thin films and the formation of a mixed-phase layer with a predominance of the SnS phase 

over the SnS2 and Sn2S3 phases. The clearly distinguishable phase separation (i.e. multilayer 

structure) was not found. 

Thus, it has been established that laser irradiation could be effectively used for modification 

of chemical and phase composition of SnxSy thin films. In our opinion, this opens new possibilities 

for improvement of SnxSy-based optoelectronic devices. For example, the evaporation of sulphur 

under laser radiation may lead to the formation of the thin Sn-rich layer at the surface of the SnS film. 

Such a metal-rich layer could have properties similar to highly-doped semiconductors. In turn, this 

allows metal-semiconductor barriers to be avoided between the absorber layer and the top metal 

contact. Highly doped semiconductors usually form ohmic contacts with most metals, even with those 

metals having a high work function. In the best case scenario, the Sn metal contact could be formed 

on the surface of SnS by the laser-induced evaporation of the sulphur. Also, the smoothing of the 

surface observed here due to the melting accompanied by the agglomeration of the grains into the 

islands could lead to increasing of the area of contact between layers, and suppression of the grain 

boundaries’ recombination. 

The possibility of the formation of the n-SnS2/p-SnS heterojunction using laser irradiation of 

SnS2 thin film requires additional careful experimental study. However, preliminary results obtained 

in here are promising, as the diode behaviour of the current-voltage dependencies of the irradiated 

samples was observed. Further improvement of the performance of n-SnS2/p-SnS heterojunctions 

formed by laser irradiation could be achieved by the interplay between thicknesses of the initial SnS2 

thin film and the conditions of laser annealing.  
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peaks. 

Phase 
Crystal 

symmetry 

Modes frequencies, cm-1 

Reference 
data 

[33,34,36] 

Non-irradiated 
Irradiated 

I1=8.5 MW/cm2 
Irradiated 

I2=11.5 MW/cm2 
excitation excitation excitation 

green IR green IR green IR 

SnS2 
A1g 315 314.7 314.5 314.7 314.5 314.7 314.5 
Eg 205 204 204 - - - - 

Sn2S3 Ag 

308±2 - - - 309 310 309 
236±2 - - 236 - 236 - 
154±2 - - - 154 - 154 
~ 90  - - 88 88 88 88 

SnS 

Ag 
218±2 - - 220 222 220 221 

192±2 - - 189  184 189 184 
95±2 - - 95 95 95 95 

B3g 164±2 - - - - 162 - 

B2g 

290±4 - - - 288 - 288 

160 - - 
- 
 

 -  

85±2 - - -  -  
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 Fig.1 FESEM images of surface and cross section of the samples: non-
irradiated sample (a)-surface, (b) - cross section; sample annealed with laser of I1=8.5 
MW/cm2 intensity (c)-surface, (d)- cross section; sample annealed with laser of 
I2=11.5 MW/cm2 intensity (e)-surface, (f)- cross section. Results of EDS study of 
chemical composition (δ=Sn/S) for the surface are presented on insets and for the 
cross section on rectangles (position of δ values on images of cross section 
correspond to a spot of measurement). 
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Fig.2 AFM 3-D and surface images with their profile (along red line on the 
surface): non-irradiated sample (a); samples annealed with a laser of I1=8.5 MW/cm2 
(b) and I2=11.5 MW/cm2 (d) intensities. 
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Fig. 3. XRD patterns of the samples: ITO-coated glass substrate (a); non-
irradiated sample (b); samples annealed with laser of I1=8.5 MW/cm2 (c) and I2=11.5 
MW/cm2 (d) intensities. 
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Fig. 4. Raman spectra of the samples obtained with excitation by the green Ar 
laser λ=514 nm: non-irradiated sample (a); samples annealed with a laser of I1=8.5 
MW/cm2 (b) and I2=11.5 MW/cm2 (c) intensities. 
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Fig. 5 Raman spectra of the samples obtained with excitation by the IR laser 
λ=785 nm and different exposure time of 10 or 30 sec: non-irradiated sample (a); 
samples annealed with a laser of I1=8.5 MW/cm2 (b) and I2=11.5 MW/cm2 (c) 
intensities. 
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Fig. 6 Raman spectra of the samples obtained with excitation by the IR laser 
λ=785 nm: non-irradiated sample (a); samples annealed with a laser of I1=8.5 
MW/cm2 (b) and I2=11.5 MW/cm2 (c) intensities. 
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Fig. 7. The reflectance (a) and transmittance (b) spectra of: non-irradiated 
sample (1); samples irradiated with a laser of I1=8.5 MW/cm2 (2) and I2=11.5 
MW/cm2 (3) intensities. 
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Fig. 8. The energy gap determination for: non-irradiated sample (a); samples 
irradiated with a laser of I1=8.5 MW/cm2 (b) and I2=11.5 MW/cm2 (c) intensities. 
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Fig. 9. The current-voltage dependencies of the ITO/SnxSy/Al samples: 
nonirradiated (1); samples irradiated with a laser of I1=8.5 MW/cm2 (2) and I2=11.5 
MW/cm2 (3) intensities. 
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HIGHLIGHTS 

 

• The SnS2 single-phase thin films were obtained by the close-spaced vacuum 

sublimation method. 

• Laser irradiation of the SnS2 films provides evaporation of sulphur and hence phase 

transition to the SnS phase. 

• Irradiation of the sample leads to the smoothing of the surface due to the melting 

accompanied by the agglomeration of the grains into the islands. 

• The electrical measurements of the irradiated samples show diode behavior of the 

current-voltage dependencies that is evidence of formation of the two-layer n-SnS2/p-

SnS heterojunction structure. 

 


