

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY
UKRAINIAN FEDERATION OF INFORMATICS

PROCEEDINGS

OF THE IV INTERNATIONAL SCIENTIFIC
CONFERENCE

ADVANCED INFORMATION

SYSTEMS AND TECHNOLOGIES

AIST-2016

May 25 –27, 2016

Sumy, Ukraine

The 4 th International Conference « Advanced Information Systems and Technologies, AIST 2016»

25-27 May 2016, Sumy, Ukraine

31

Software implementation of calculating the value of a

logical expression in compilers

Z.I. Maslova
1
, T.V. Lavryk

2

 Sumy State University, Ukraine,
1
maslova@sumdu.edu.ua,

2
metodist@dl.sumdu.edu.ua

Abstract. This paper describes an algorithm to

optimize a process of determining the value of a logical

expression. This algorithm is based on the principles of

the algebra of logic, graphs and automata theory. Fast

calculation of a logical expression is achieved by a

reduction in the number of operations. The program is

a multi-functional simulator.

Keywords. Logical Expression, Compiler, Boolean

Variable, Graph, Finite State Automaton.

INTRODUCTION

Since the fifth version of the Pascal

language, compiler has had a function to
compute the value of a logical expression fast.

Initially, this function could be added on a
programmer’s request. Modern compilers
except for program translators from algorithmic

language automatically have additional
functions to optimize the program [1].

One of this function is a rapid calculation of

the value of a logical expression.

PROBLEM STATEMENT

Fast calculation of the value of a logical
expression can be achieved by optimizing the
number of logical operations that affect the

result. The goal of this work is to create an
algorithm for calculating a logical expression

and to design a program code on its base. Initial
data in the given problem are logical
expression.

DESCRIPTION OF THE ALGORITM

The algebra of logic, graph theory and the

theory of automata is used to create an
algorithm for logic expression calculation.

Reduction in the number of operations is

achieved through the use of the basic properties
of the logical constants:

;1 xx

;11x
;00x
.0 xx

Boolean variable x in terms of graph theory
is represented as a binary tree, with edges x and

x , and the leaves – 0 and 1.

The graph for the whole logical expression is

constructed according to the rules [2]:
- for elementary logic conjunctions

21 xx graph
2x is attached to output one

of the graph for
1x ;

- for disjunction graph of
2x is attached to

output zero of the graph
1x ;

- for the graphical implementation of

negation x values of outputs are inverted.

Connection of the outputs of subgraphs with
the same names depends on the sequence

operations and the presence of brackets.
The graph for the logical expression (1) will

have form figure 1.

1 2 3 4 5 1 2 3 4 5(, , , ,)f x x x x x x x x x x (1)

Figure 1 –The graph for the a logical expression

The 4 th International Conference « Advanced Information Systems and Technologies, AIST 2016»

25-27 May 2016, Sumy, Ukraine

32

A visual representation of the graph (fig. 1)
is given by graph (fig. 2).

Figure 2 –The modified graph.

The next step of the algorithm is to build a
finite automaton for a calculated expression.
Automaton table (fig. 3) is constructed using

the graph. The number of states of the
automaton is equal to the number of variables in
the expression. Input alphabet (0, 1) are the

values of logical variables. The letter of output
alphabet is equal to the output value of the

previous variable, to which the current variable
is joined.

Variable Output “0” Output “1”

x1 x2, x3,

x2 x5, 0 x3, 0

x3 x5, 1 x4, 1

x4 x5, 1 x5, 1

x5 x5, x5,

Figure 3 – Automaton table.

By using this table the program quickly
calculates the value of a logical expression. So, if

the value of the variable x1 is zero, the program
proceeds to check the value of the variable x2.

And if the value of x2 is 0, the program will

immediately receive the value of the whole
expression. If the value of the variable x1 is 1, the

program proceeds to the calculation value of (2):

3 4 5x x x (2)

And the value of the whole expression will be
determined by the value of the expression (2).

PROGRAM REALIZATION

The complex [multi-functional] simulator

could be created based on the program languages

РНР, Javascript, CSS and HTML. РНР was used

for this project. JavaScript was used to create the
database, while CSS stylizes pages based on the

determined parameters. HTML language is used

for the graphic design of the project. The output
of the project is created automaton for a fast

calculation of a logic expression, logic processor.
The program is constructed so that it can be

used in the educational process as a

multifunctional simulator. Functions of this
simulator are the following: demonstration of the

algorithm for solving the problem, training and

monitoring of students’ knowledge. The solution
process could be demonstrated without

participation of a student. The learning function is

realized with participation of a student in solving
the problem. Program monitors all actions of a

student. If the program detects an error, the
process stops. A student gets an opportunity to

consult with a teacher. If necessary, a student can

read theoretical material. It is possible to correct
errors. If needed, the steps may be repeated. The

final step is the monitoring phase. At this stage, a

student solves the problem by him-/her-self. The
solution is performed without any interruptions. It

is not allowed to correct errors and to consult with
the teacher.

CONCLUSIONS

The theory of logic algebra, graph theory and
automata theory is important section of discrete

mathematics. The developed program deepens

students’ knowledge of discrete mathematics. In
addition, students enhance knowledge on system

programming and familiarize themselves with the

functions of the compiler.

REFERENCES

[1] Waite W. M. An introduction to compiler

construction / Waite W.M., Carter L. R. – New York:

HarperCollins, 1993. – 438 p.

[2] Kuznetsov, O. P. Diskretnaya matematika d lya

inzhenera [Tekst] / O. P. Kuznetsov, G. M. Adelson-

Velskiy. – 2-e izd., pererab. i dop. – M. :

Energoatomizdat, 1988. – 480 s.

