МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

ІНФОРМАТИКА, МАТЕМАТИКА, АВТОМАТИКА

IMA :: 2016

МАТЕРІАЛИ та програма

НАУКОВО-ТЕХНІЧНОЇ КОНФЕРЕНЦІЇ

(Суми, 18-22 квітня 2016 року)

Суми Сумський державний університет 2016

Численное исследование нелинейных процессов в магнитных пленках

Ерофеенко В.Т. 1 , г.н.с.; Громыко Г.Ф. 2 , зав. отделом; Заяц Г.М. 2 , вед.н.с 1 Учреждение БГУ «Научно-исследовательский институт прикладных проблем математики и информатики», г. Минск, Беларусь 2 Институт математики НАН Беларуси, г. Минск, Беларусь

В пространстве R^3 разместим цилиндрический тонкостенный экран $D(R_1<\rho< R_2,\ 0\le \phi\le 2\pi,|z|<\infty)$ толщины $\Delta=R_2-R_1$, ограниченный поверхностями $\rho=R_1,\ \rho=R_2$. Экран выполнен из материала с магнитной проницаемостью $\mu_a=\mu\mu_0\ (\mu\sim 10^3-10^4)$. Внутри экрана в области $D_1(0\le \rho< R_1)$ и вне экрана в области $D_2(\rho>R_2)$ — вакуум ($\mu=1$). Из области D_2 на экран воздействует постоянное магнитное поле $\mathbf{H}_0=-\operatorname{grad} u_0=-H_0\mathbf{e}_x$, $u_0=H_0\rho\cos\phi,\ H_0-\operatorname{const}.$ Образуются поля: $\mathbf{H}_1=-\operatorname{grad} u_1$ — поле, прошедшее в область D_1 ; $\mathbf{H}=-\operatorname{grad} u=-\operatorname{none} B$ слое экрана D; $\mathbf{H}_2'=-\operatorname{grad} u_2'$ — отраженное от экрана поле в D_2 ; $u_1,\ u,\ u_2',\ u_0$ — магнитные потенциалы, $u_2=u_0+u_2'$.

Краевая задача. Для заданного потенциала u_0 требуется определить потенциалы u, u_1, u_2' , которые удовлетворяют условиям:

$$\Delta u_{j} = 0 \text{ B } D_{j}, \quad \operatorname{div}(\mu \text{ grad } u) = 0 \text{ B } D,$$

$$\left. u \right|_{\rho = R_{1}} = \left. u_{1} \right|_{\rho = R_{1}}, \quad \mu \frac{\partial u}{\partial \rho} \right|_{\rho = R_{1}} = \left. \frac{\partial u_{1}}{\partial \rho} \right|_{\rho = R_{1}}, \quad \left. u \right|_{\rho = R_{2}} = \left. u_{2} \right|_{\rho = R_{2}}, \quad \left. \mu \frac{\partial u}{\partial \rho} \right|_{\rho = R_{2}} = \left. \frac{\partial u_{2}}{\partial \rho} \right|_{\rho = R_{2}},$$

$$\left. (1)$$

где зависимость $\mu = \mu(|grad\ u|)$ имеет специальный вид.

Для решения задачи построена неявная разностная схема, которая решена итерационным методом с помощью матричной прогонки.

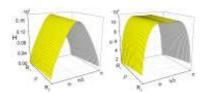


Рисунок 1 — Распределение напряженности магнитного поля H А/м и магнитной проницаемости μ в пленке D при R_2 =1.1cм, Δ =0.18 мм, H_0 =15.9A/м.

Вычислена эффективность экранирования $\mathcal{G}=H_0/H_1$ в зависимости от внешнего поля H_0 , согласующаяся с экспериментом [1].

1. С.С. Грабчиков, и др., *Известия НАН Беларуси. Сер. физ.-техн.* наук. **4**, 107 (2015).