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In this paper, we report the effect of filament radius and filament resistivity on the ZnO, TiO2, WO3 

and HfO2 based Resistive Random Access Memory (RRAM) devices. We resort to the thermal reaction 

model of RRAM for the present analysis. The results substantiate decrease in saturated temperature with 

increase in the radius and resistivity of filament for the investigated RRAM devices. Moreover, a sudden 

change in the saturated temperature at a lower value of filament radius and resistivity is observed as 

against the steady change at the medium and higher value of the filament radius and resistivity. Results 

confirm the dependence of saturated temperature on the filament size and resistivity in RRAM.  
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1. INTRODUCTION 
 

The Resistive Random Access Memory (RRAM) is 

considered to be a strong candidate which is poised to 

substitute the conventional flash memories [1]. The 

RRAM have several advantages over its other counter-

parts, for instance, high density of data storage, long 

data retention, low operating voltage, high endurance, 

fast switching speed and compatibility with convention-

al CMOS process and so on [1-2]. Generally, physical 

and chemical mechanism of RRAM is classified in terms 

of Valency Change Mechanism (VCM) [3-5], Electro-

Chemical Metallization (ECM) [6], Thermo-Chemical 

Mechanism (TCM) [7], Phase Change Mechanism 

(PCM) [8], and Electrostatic/Electronic Mechanism 

(EEM) [9] etc. In above all mechanism the resistance of 

the RRAM switches between two resistance states viz. 

low resistance state (LRS) and high resistance state 

(HRS) [10-11]. The popular version of RRAM is known 

as a memristor which is modeled around the valency 

change mechanism [12-15].  

Temperature plays an important role in resistive 

switching and many studies have been devoted to find-

ing out the underlying physical mechanism and its ef-

fect on memory performance. Recently Shang et al re-

ported the heterostructure based thermally stable 

transparent RRAM. The reported device exhibits form-

ing-free bipolar resistive switching behavior at room 

temperature with good memory performance [16]. Wang 

et al reported the thermoelectric Seebeck effect in oxide-

based resistive switching memory. They have investi-

gated the intrinsic electronic transport mechanism by 

measuring thermoelectric Seebeck effects [17]. Yi et al 

reported the effect of annealing temperature on gra-

phene oxide-based RRAM. Their results are evident 

that the lower annealing temperature improves the 

memory performance of graphene oxide-based RRAM 

[18]. Fang et al reported low-temperature switching 

characteristics and conduction mechanism of HfOx 

based RRAM. The results suggested that at a lower 

temperature the switching voltage increases [19]. Tsu-

ruoka et al reported the effect of temperature on Cu–

Ta2O5-based atomic switch and investigated the switch-

ing mechanism of the developed device. The results rev-

el that SET and RESET voltage decreases as the tem-

perature increases [20]. Sato et al reported the thermal 

reaction model of the metal oxide-based RRAM. This 

model calculates the temperature of the conductive fil-

ament and its corresponding effect on RRAM perfor-

mance [21]. 

The present manuscript reports investigations of 

temperature effect on ZnO, TiO2, WO3 and HfO2 based 

RRAM devices using thermal reaction model reported in 

the ref. [21]. The rest of the paper is as follows, after a 

brief introduction in the first section, the second section 

deals with the overview of thermal reaction model of 

RRAM and other computational details. The third sec-

tion deals with the effect of filament radius and resistiv-

ity on the saturated temperature of ZnO, TiO2, WO3 and 

HfO2 based RRAM devices. At the end conclusion is por-

trayed. 

 

2. THERMAL REACTION MODEL OF RRAM 
 

The temperature of the conductive filament plays 

an important role in the resistive switching. It is ob-

served that the high current density present in the 

conductive filament and the aftermaths of temperature 

effects are unavoidable [22]. Hence, the analysis of 

temperature effect is of foremost important. Fig. 1 rep-

resents the cross-sectional view of the thermal reaction 

model [21].  
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Fig. 1 – Cross sectional view of the model under analysis. This 

model is popularly known as thermal reaction model of RRAM 

Device [21] 
 

The model assumes the cylindrical conducting path 

present in the active layer (oxidation membrane) of the 

RRAM. The heating temperature ∆T can be represent-

ed as [21], 
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where, Vreset is the RESET voltage of RRAM, R is a re-

sistivity of the filament, KR is known as the radial 

thermal conductance of oxidation membrane and K is 

the filament thermal conductance and they are given as 

[21], 
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where k' and k are the thermal conductivities of the 

materials, l is a thickness of oxidation membrane, and r 

is the radius of the conductive filament. Table 1 repre-

sents the various physical parameters for simulation of 

different RRAM structures. 
 

Table 1 – Simulation parameters for various RRAM devices 
 

TMO  

materials 

Thermal 

conductivity 

k'(W/cm/°C) 

Thermal 

conductivity 

k(W/cm/°C) 

Specific 

heat c'  

(J/g/ °C) 

Density of 

material   

'(g/cm) 

ZnO 1.2 116 0.5 5.61 

TiO2 6.69 21.9 0.6894 4.13 

WO3 1.63 173 0.0780 7.16 

HfO2 1.1 23 0.144 13.31 
 

In the present analysis thickness of the oxidation 

membrane is kept constant at 200 nm, and reset volt-

age at 0.5 V. To analyze the saturated temperature 

behavior of different RRAM devices, we have varied the 

filament radius in the range of 10 nm to 100 nm with 

10 nm as a step size and filament resistivity in the 

range of 10 Ω cm to 100 Ω cm with 10 Ω cm as a 

step size. To analyze the effect of filament radius on 

different RRAM devices, we have taken three observa-

tion of filament resistivity in the order of 10 Ω cm (low 

resistivity), 50 Ω cm (medium resistivity), and 100 Ω 

cm (high resistivity). Similarly, analyzing the effect of 

filament resistivity on different RRAM devices, we 

have chosen three observations for filament radius size 

in the order of 10 nm (low size), 50 nm (medium size), 

and 100 nm (high size). 

 

3. RESULT AND DISCUSSION 
 

In the present investigation, different RRAM mate-

rials are analyzed such as ZnO, TiO2, WO3 and HfO2 

owing to their fine memory performance [3-5]. The vari-

ous physical parameters of above RRAM materials are 

listed in table 1. For the first case, the radius of the fila-

ment is varied from 10 nm to 100 nm and its effect on 

the saturated temperature of different RRAM material is 

analyzed. For each case, the resistivity of the filament is 

changed as 10 Ω cm, 50 Ω cm, and 100 Ω cm. Fig 2 

(a) represent the effect of filament radius on the saturat-

ed temperature of ZnO based RRAM device. The results 

suggest that as the radius of the filament increases the 

corresponding saturated temperature decreases. It is 

also seen that saturated temperature decreases as the 

resistivity of the filament increases.  

Fig 2 (b to d) present the effect of filament radius on 

the saturated temperature of TiO2, WO3, and HfO2 based 

RRAM devices. The results clearly show the inverse rela-

tionship between the radius of the filament and saturat-

ed temperature for each RRAM devices. The results also 

prompt that WO3 based RRAM device has a lower value 

of saturated temperature than its other counterparts for 

the same value of radius and resistivity of the conduct-

ing filament. The HfO2 based RRAM device shows the 

higher value of saturated temperature than other RRAM 

materials for the same value of radius and resistivity of 

the conducting filament. The results also indicate that 

there is a steady change in the saturated temperature 

value at medium (50 Ω cm) and higher (100 Ω cm) val-

ue of the filament resistivity, but sudden change is ob-

served at the lower (10 Ω cm) value of the filament resis-

tivity. The same may be attributed to the lower value of 

filament resistivity invoking a high current density con-

ductive filament that gives rise to higher heat dissipation.  

For the second case, the resistivity of the filament 

is varied in the range of 10 Ω cm to 100 Ω cm with 

10 Ω cm as a step size and its effect on the saturated 

temperature of different RRAM material is analyzed. 

For each case, the filament radius is changed as 10 nm, 

50 nm, and 100 nm. Fig 3 (a) represent the effect of 

filament resistivity on the saturated temperature of 

ZnO based RRAM. The results suggest that saturated 

temperature decreases with increase in filament resis-

tivity. It is also seen that saturated temperature de-

creases as the radius of the filament increases from 

10 nm to 100 nm. 

Fig 3 (b to d) represent the effect of filament resis-

tivity on saturated temperature for TiO2, WO3, and 

HfO2 based RRAM devices. Here too an inverse rela-

tionship is observed between the resistivity of the fila-

ment and  saturated temperature. The results indicate 

that WO3 based RRAM device has a lower value of sat-

urated temperate than its other counterparts for the 

same value of filament resistivity and radius. The HfO2 

based RRAM device shows the higher value of saturat-

ed temperature than other RRAM materials for the 

same value of filament resistivity and radius.  
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Fig. 2 – Effect of the radius of the filament on the saturated temperature of (a) ZnO; (b) TiO2; (c) WO3; and (d) HfO2 based RRAM 
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Fig. 3 – Effect of the resistivity of the filament on the saturated temperature of (a) ZnO; (b) TiO2; (c) WO3; and (d) HfO2 based RRAM.  
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Table 2 – Saturated temperature change factor for the change 

in the filament resistivity value 
 

RRAM 

Material 

Saturated 

Temperature 

Change Factor 

for 10 Ω cm to 

50 Ω cm 

Saturated 

Temperature 

Change Factor 

for 50 Ω cm to 

100 Ω cm 

ZnO 5.0022 1.9997 

TiO2 5.0050 1.9983 

WO3 5.0006 1.9998 

HfO2 5.0031 1.9994 
 

Table 3 – Saturated temperature change factor for the change 

in the filament radius value 

 

RRAM 

Material 

Saturated 

Temperature 

Change Factor 

for 10 nm to 50 

nm 

Saturated 

Temperature 

Change Factor 

for 50 nm to 100 

nm 

ZnO 23.3900 3.9908 

TiO2 8.9945 3.7538 

WO3 23.5772 3.9927 

HfO2 19.0357 3.9540 
 

Table 2 and 3 represents the saturated temperature 

change factor for the change in the filament resistivity 

and radius of different materials. The results prompt 

that, the rate of change in the saturated temperature is 

higher for the lower resistivity whereas it becomes small 

for higher filament resistivity. The variation in the fila-

ment radius shows same behavior for ZnO, WO3 and 

HfO2 based RRAM devices however TiO2 material shows 

a small variation in the change factor. This is attributed 

to the higher thermal conductivity and specific heat ca-

pacity of TiO2 as compared to other ones taken in this 

investigation. The results showcase that the saturated 

temperature is the filament size and resistivity depend-

ent property. 

 

4. CONCLUSION 
 

In the present investigation, we have thoroughly 

investigated the thermal reaction model of RRAM de-

vice for different material and consequently correlated 

the relationship between saturated temperature, fila-

ment radius, and resistivity. The saturated tempera-

ture is one of the important property of high perfor-

mance RRAM and it is associated with the device relia-

bility. The higher value of the saturated temperature 

degrades the device reliability [22]. At the higher tem-

perature more sensitive detection circuitry is required 

to read and write operations of RRAM [5, 21-22]. The 

results suggest that the saturated temperature de-

creases as the radius and resistivity of the conductive 

filament increases. The results also indicate that there 

is a sudden change in the saturated temperature for 

the lower value of filament radius and resistivity 

whereas steady change is observed for the medium and 

higher value of the filament radius and resistivity. Re-

sults confirm the saturated temperature is filament 

size and resistivity dependent property. All these in-

vestigations and results thereof are definitely signifi-

cant in the application scenario of RRAMs. 
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