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We investigated the structural and optoelectronic properties of p-n germanium nanocrystals based 

junctions embedded between GaAs substrate and layers of ZnO:Al or a-Si:H. Scanning electron microscopy 

and scanning tunneling microscopy were used on these junctions in this work. Calculations of tunneling 

current on the substrate showed effect of localized defects trapping Fermi level at the surface tending to 

make a semi-insulating substrate. The average value of the diameter of the Ge nanoparticle is around 12.5 

nm. These results lay the foundation for the development of solar cells which active part is made of GeNCs. 
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1. INTRODUCTION 
 

Economic and ecological perspectives related to in-

creasing energy costs and catastrophic climatic effects 

due to global warming are pushing us to find solutions 

to the issue of renewable energy. These solutions are 

becoming strategic for everyone with the socio-economic 

implications: (i) reduce the production of greenhouse 

gases, (ii) develop new energy solutions at a reasonable 

cost, (iii) have a sustainability of proposed solutions (iv) 

achieve energy independence [1].  

For several years, many devices based on nanocrys-

tals semiconductors have demonstrated the use of quan-

tum dots in solar cells [2]. Nanoparticles have the po-

tential to improve the efficiency of solar cells and photo-

detectors [1]. For example, studies on the introduction of 

quantum dots (QDs) based on III-V semiconductors in 

the pin structures showed that large energy absorption 

range may be obtained which increases the density of 

short-circuit current [3-10]. 

Thus, quantum dots offer a growing interest through 

the emergence of new concepts: 

First, half of the intensity of sunlight is in the infra-

red region of the electromagnetic spectrum [11, 12]. 

Quantum dots can serve as intermediate electronic lev-

els for the absorption of photons of energy less than the 

bandgap of the semiconductor in which they are embed-

ded. By successively absorbing more photons, it is pos-

sible to generate high energy charge carriers to keep a 

high output voltage and therefore improve the output 

power of the cells [13]. 

Second, one can produce more excitons from a single 

photon. The formation of multiple excitons by absorbed 

photon requires that the photon energy is much larger 

than the band gap of the semiconductor. This phenome-

non does not occur easily in semiconductors where ex-

cess energy is simply dissipated as heat before it can 

cause the formation of other electron-hole pairs. In the 

nanocrystals, the dissipated energy rate is significantly 

reduced [14-16]. Thus, by using the quantum confine-

ment properties, it is possible to generate a number of 

charge carriers from a single photon of high energy, 

when quantum dots constitute the active part of a solar 

cell [17]. Saeed et al. showed multiple generations of 

charge carriers through the use of quantum dots [18, 19]. 

Study of electronic properties of these nanocrystals 

are now crucial for achieving optimal generation and 

extraction of photo-excited charge carriers and then 

realize thin films of good quality. Germanium is an in-

teresting material since it has a bandgap smaller than 

that of silicon and can form the quantum dots layer ei-

ther by epitaxial growth techniques or by chemical syn-

thesis. The interest of germanium nanocrystals (GeNCs) 

comes from the high mobility of charges carriers (elec-

trons and holes), the best absorption of light due to its 

direct bandgap [20, 21] as well as compatibility with 

optoelectronics and photovoltaics applications. 

In this study, we exhibit the optical and structural 

characterization of pin photodetector based on germani-

um nanocrystals in n-GaAs/GeNCs/a-Si:H and p-GaAs / 

GeNCs/ZnO:Al samples. These results show the poten-

tial of GeNCs in the manufacturing of 3G solar cells and 

show new types of absorber based on Ge. 

 

2. EXPERIMENTAL 
 

2.1 Samples 
 

The prepared samples are n-GaAs/GeNCs/a-Si:H 

and the p-GaAs/GeNCs/n-ZnO:Al. These are precisely 

pin diodes whose substrate is GaAs layer and the in-

trinsic layer is made of GeNCs. Figure 1 shows the 

characteristic structure of the diode which are pro-

duced. The intrinsic layer of GeNCs is sandwiched be-

tween GaAs substrate and amorphous silicon or zinc 

oxide layers. The layer exposed to light is either amor-

phous silicon or zinc oxide. 
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Fig. 1 – Structure of the sample p-GaAs/GeNCs/n-ZnO based 

on germanium nanocrystals 

 

2.2 Analysis Methods and Simulation Details 
 

Once the sample is prepared by deposition technics 

of thin layers and to access the structural and electrical 

properties, it is cleaved in ultrahigh vacuum. This al-

lows performing measurements on the wafer. This 

cleavage technics is described in reference [22]. Scan-

ning Electron Microscope (SEM) allowed imaging the 

cleaved surfaces of samples and reporting the nature of 

the layers. Analysis of these images allows access to the 

layer thickness and the size of the nanocrystals. Scan-

ning Tunneling Microscopy (STM) is used to access 

more details of the sample than the SEM. Spectroscopic 

measurements were performed to extract surface states 

densities and the gap of semiconductor inspected. 

WsXM image processing software was used to process 

the images from Scanning Tunneling Microscopy Room 

Temperature (RT-STM). All these analysis were real-

ized in physics laboratories at the Institute of Electron-

ics Microelectronics and Nanotechnology (IEMN) and 

at the High Institute of Electronics of Digital (ISEN) at 

Lille in France. 

Computations of the tunneling current were per-

formed on p-doped GaAs substrate. These computations 

were conducted at Laboratory of Physics of Compo-

nents and Semiconductor at University of Lomé (Togo), 

by improved code of SEMITIP Version 6 program of 

Professor FEENSTRA group [23, 24]. This permitted 

interpretations on the nature of localized defects ob-

served on the substrate after the cleavage. This calcu-

lation involves the use of a finite element method as-

suming a metal tip serving as a hyperbolic shaped 

probe located at a typical distance of 0.7 to 0.8 nm from 

GaAs surface. The tunneling current was computed 

using an approach based on the formalism of Bardeen 

and Tersoff-Hamann approximation [25, 26]. Under 

these conditions the semiconductor was treated in an 

effective-mass approximation. Our simulation takes 

into account surface states associated with dangling 

bonds of Ga after cleavage. Due to relaxation of the 

cleaved surface these dangling bonds induce an energy 

continuum pushed beyond the conduction band. The 

surface states may be associated with localized defects 

are not taken into account by our simulation. Main 

input parameters used to perform the calculation of the 

tunneling current are the radius of curvature of the tip, 

the tip-sample distance, the contact potential, the dop-

ing level of semiconductor and density of surfaces 

states, respectively, R, s, Δ, doping, surface state. 

 

3. RESULTS AND DISCUSSIONS 
 

We present results from our samples through SEM 

and STM images and tunneling spectroscopy on n-GaAs 

substrate. 

 

3.1 SEM Analysis 
 

SEM images on the edge of n-GaAs/GeNCs/a-Si:H 

sample (Figure 2 (a)) show n-doped GaAs substrate on 

which are deposited GeNCs. We noted that GaAs (110) 

cleaved surface is atomically flat. Therefore, upper 

structure is not impeding the cleavage. A first layer is 

visible and has a high graininess. It corresponds to the 

nanocrystal layer. It is covered with a compact layer 

with darker contrast: amorphous silicon. 

SEM image of the cleaved sample p-GaAs/GeNCs/n-

ZnO:Al has a roughness-free layer (GaAs substrate) on 

which are deposited GeNCs (Figure 2 (c)). ZnO layer 

which is a transparent structure cannot be seeing on 

this image although it is present (Figure 2 (c)). 
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Fig. 2 – SEM images: (a)- n-GaAs/GeNCs/a-Si:H profile; (b) 

GeNCs from n-GaAs/GeNCs/a-Si:H; (c) p-GaAs/GeNCs/n-

ZnO:Al profile; (d) GeNCs from p-GaAs/GeNCs/n-ZnO:Al 
 

Top view shots on GeNCs layer of n-GaAs/GeNCs/a-

Si:H and on ZnO layer of the p-GaAs/GeNCs/n-ZnO:Al 

are shown in Figure 2 (b) and Figure 2 (d), respectively. 

Analysis of these images provides an assessment of size 

and shape of Ge nanocrystals. These structures have 

spherical shapes with diameters between 7-15 nm, as 

confirmed by statistical analysis shown in Figure 3. 

Overall, the average value of the diameter of the Ge na-

noparticle is around 12.5 nm. Also, one can see that the 

dispersion of nanocrystals is not very homogeneous be-

cause porosities can be observed on images. 
 

 
 

Fig. 3 – Statistics of nanocrystals size 

 

3.2 STM Analysis  
 

We have performed STM images on the  

n-GaAs/GeNCs/a-Si:H sample to appreciate details that 

can’t be accessed by SEM.  Scanning tunneling spectros-

copy (STS) was used to interpret some observations on 

the substrate (Figure 4). 
 

 
 

a 
 

                
       

  b 
 

Fig. 4 – RT-STM Images: (a) A large scale n-GaAs/GeNCs/a-

Si:H; (b) Atomic resolution on GaAs substrate (110). Tunneling 

conditions (a) VT  – 2.5 V, IT  1 pA; (b) VT  − 2 V, IT  4 pA 
 

Figure 4 (a) is a zoom out that shows the three constitu-

ent layers of the sample analyzed. Due to the ease of 

cleavage of the GaAs in the atomic planes, its surface 

does not have asperities as observed on SEM image. 

Contrary, the intrinsic layer of nanocrystals which is not 

homogeneous reveals agglomerates. It is the same on the 

very rough amorphous silicon layer. 

High resolution image, as shown on Figure 4 (b), 

was performed on the GaAs substrate highly n-doped 

shows further details on the substrate. It provides a 

vision of the surface topography. Point defects and the 

state of charge of these defects can be deduced from 

these STM images, according to various polarizations. 

It appears on our image obtained (Figure 4 (b)), atomic 

rows of Ga and As atoms in [1-10] crystallographic di-

rection and surfaces defects like black spots. These 

black spots visible on the surface are located on atomic 

rows of arsenic and are associated with depressions. 

These are localized defects which interrupt the perio-

dicity of the crystal lattice. This happens when one or 

more neighboring atoms of arsenic are absent from 

their usual incorporations sites. The defect is then as-

sociated with one or more vacancies. 

 

3.3 Tunneling Spectroscopy on p-GaAs sub-

strate - tunneling current Simulation 
 

Scanning tunneling spectroscopy measurements 

were performed on highly p-doped GaAs layer. Experi-

mental spectrum is shown in Figure 5 (red line). Two 

trends are observable: the current (C) in the conduction 

band (CB) due to the transfer of electrons from the tip to 

the empty states of conduction band and current (V) in 

the valence band (VB) due to the passage of electrons 

from filled states of the VB to the tip. The steeper slope 

and the high amplitude of the current in the VB com-

pared to that of CB indicate the high doping of the sub-

strate. The Fermi level which is expected to be near the 

maximum of the valence band (Ev) is slightly moved to 

the middle of the band gap at the surface. The fact that 

part of the voltage between the tip and the substrate is 

found in the substrate acts on the band bending. So, one 

can observe a shift of the Fermi level as noticed on our 

spectrum. 
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Fig. 5 – Comparison of experimental tunneling current spec-

trum on p-GaAs layer (red line) and computed spectra (circle, 

star): the edges of VB and CB are indicated by Ev and Ec, the 

Fermi level is given by the position of 0 V. Tunneling conditions 

(a) VT  − 2 V, IT  100 pA 
 

In order to assist with the interpretation of the spec-

troscopic tunneling measurement, the tunneling current 

produced by tungsten tip near the GaAs (110) surface 

was computed with the Semitip code. The value at-

tributed to the doping shows that the sample is highly 

doped. The density attributed to the dangling bonds is 

that used by Feenstra et al. [23, 24] on a cleaved surface 

of GaAs (110). Computation of I(V) characteristic of the 

tunneling current presents here two spectra according 

to the distance tip-surface (Figure 5, circle, star). It is 

noticed that the amplitude of the tunneling current is 

not equal to that obtained experimentally according to 

the two distances tip-surface. However, in conduction 

band (positive bias), the current amplitude is greater 

than that obtained experimentally for a value of a dis-

tance equal to 0.70 nm. In addition, the computed spec-

tra show between 1V and 1.5V discrepancy compared to 

the experimental spectrum. It also notices that the crys-

talline quality of the substrate surface may be the cause 

of the discrepancy observed between theory and experi-

ence in valence band. 

 

3.4 Measure the Dark Current 
 

I(V) characteristic obtained in the dark on the pin 

structure of the p-GaAs/GeNCs/ZnO shows a threshold 

voltage around 0.3 V (see Figure 6). This threshold volt-

age value confirms that this is a germanium diode. At 

reverse bias, a leakage current occurs. This leakage re-

lated to minority carriers is created by thermal excita-

tions. On one hand, this leakage arises from – 0.2 V and 

seems to slightly increase in intensity with polarization. 

This leakage would come from minority carriers’ 

transport due to the electric field present in the deple-

tion zone. 

Thermally generated electrons in the p region reach 

the depletion region without undergoing recombination. 

They are driven by the electric field of the depletion 

region towards the n region. This gives rise to a nega-

tive current. 

The same thing happens to holes generated ther-

mally in the n region which will go along the p region. 

On the other hand the aluminum contact could also 

contribute to the presence of the leakage current ob-

served in negative bias. The dark current is considered 

 

 
 

 a 
 

 

 
 

 b 
 

Fig. 6 – Dark current in the p-GaAs/GeNCs/ZnO (a) and its 

associated band diagram (b) 
 

as the sum of diffusion, generation-recombination and 

tunneling currents [27]. The band diagram of the pin 

structure is also shown in Figure 6. 

 

4. CONCLUSION 
 

In this present work, different techniques of optical 

and structural analysis on semiconductor surfaces are 

performed on two pin photodiodes, the n-GaAs/GeNCs/a-

Si:H and the p-GaAs/GeNCs/n-ZnO:Al. A dark current 

measurement is performed on the p-GaAs/GeNCs/n-

ZnO:Al. These results announced interest in the use of 

germanium nanocrystals in the production of solar cells. 

Computations results of the tunneling current on the 

substrate have shown the effect of localized defects trap-

ping the Fermi level at the surface tending to make the 

substrate semi-insulating. This affected the measured 

dark current. 
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