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We say that function f € Hp is of strongly regular growth (s. r.
gr.) with respect to the function v € L if for all 6 € [0, 27], perhaps,
with the exception of 8 belonging to a countable set, the limit

lim * (In f(re') = N(r)) /v(r) = H(6, f)

L
exists. Here lim]_, . . indicates that r tends to infinity outside some
Co-set. We denote the class of functions of s. r. gr. by Hg(v).

Theorem 1. Suppose that f € Hg and for some numbers p €
[1,400), by € R and a function G € LP|0, 2x} the conditions

i6 0
“%ﬂ—bo =0, ||%f(1f)“——)-a(@)||p =0, r— +00, (1)
hold. Then f € Hg(v), H(8, f) = iG(0) for almost all § € [0, 2x].

Conversely, if f € H(v) and zeros of f are located on a finite
system of rays, then for arbitrary p € [1,+00) condition (1) holds
with G(0) = —iH(0, f), bp = imy_; 40 n(r) /u(7).

Theorem 2. There exists a function f € Hy(v), for which at
least one of the relations (1) does not hold.

Thus, the condition of that zeros of f are distributed on a finite
system of rays in Theorem 1 is essential.

Canonical functions of gamma-admissible measures in
half-plane
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For a (7, e)-admissible measure in the upper ha.lf¥plane [1] the con-

cept of a canonical function is introduced. This concept is a general-
ization of Nevanlinna’s canonical product for analytic in half-plane

40



COMPLEX ANALYSIS AND RELATED TOPICS

functions of a finite order. It is shown that for a function whose
growth is defined by a proximate order in the sense of Valiron, the
canonical function and Nevanlinna’s canonical product coincide.

1. Malyutin K. G., Kozlova I. I. Subharmonic functions of finite (7, £)-type
in a half-plane // Mat. Stud. — 2012. — V. 38, No 2.- P. 154-161.

Wiman’s type inequality and Levy’s phenomenon for
random analytic functions in the unit disk
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Let £ be the class of positive continuous functions on the interval
(0,1) increasing to +oo and such that frt h(r)dr = +o0, 9 € (0,1).
For a measurable set £ C (0,1) and h € £ the h-measure of E is
defined by h-meas (E) -] Jg h(r)dr.

Let f be an analytic function in the unit disc D = {2: |z| < 1}
of the form f(z) = 4% anz", Z = (Za(t)), t € [0, 1], be a complex
sequence of randorn variables such that Z is multiplicative system
(MS) uniformly bounded by the number 1 ([1]) on the Steinhaus
probability space, and K(f, Z) be the class of random entire func-
tions of the form fi(z) = f(z,t) = 3725 anZn(t)2". For r € (0,1) we
denote My(r) = max{|f(2)|: 2| = r}, ps(r) = max{|a,|r™: n > 0},

o InMg(r) —Inpug(r)
AR ) = S ht) + (A () ()

From a result proved in [2] it follows that in the case when h(r) =
(1 — 7)1, for every analytic function f in ID there exists a set E C
(0,1) of finite logarithmic measure, i.e. h-meas(E) < +oco for the

function A(r) = (1 — r)~! such th lim A < L
unction A(r) = (1 —r)~" such that '__)llr‘lﬁrgE w(r, f) < 3

4]



