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In terms of Fourier coe�cients and associated complete measures a class of just δ-subhar-
monic functions in a half-plane of a zero type is described.

Ê. Ã. Ìàëþòèí, T. È. Ìàëþòèía. Ðÿäû Ôóðüå è äåëüòà-ñóáãàðìîíè÷åñêèå ôóíêöèè íóëå-

âîãî òèïà â ïîëóïëîñêîñòè // Ìàòåìàòè÷íi Ñòóäi¨. � 2008. � Ò.30, �2. � C.132�138.

Â òåðìèíàõ êîýôôèöèåíòîâ Ôóðüå è àññîöèèðîâàííûõ ïîëíûõ ìåð îïèñàí êëàññ èñ-
òèííî δ-ñóáãàðìîíè÷åñêèõ â âåðõíåé ïîëóïëîñêîñòè ôóíêöèé íóëåâîãî òèïà.

Introduction. In the 60s several American authors (Rubel, Taylor [1], Miles [2], Shea and
others) started to use the Fourier series method for the study of the properties of entire and
meromorphic functions. An advantage of this method is its suitability for the investigation of
functions of fairly irregular growth at in�nity and functions of in�nite order. Later important
results in this direction were obtained by Kondratyuk [3], [4], [5], who generalized the Levin-
P��uger theory of entire functions of completely regular growth to meromorphic functions of
arbitrary γ-type. In paper [6], the results of Rubel, Taylor, Miles were extended to delta-
subharmonic functions in a half-plane. In the present paper we extend some of the results of
paper [6] to functions of zero-type in a half-plane.

Let Jδ be the class of just δ-subharmonic functions, and Jδ(0) be the class of just δ-
subharmonic functions of zero-type (we present the de�nitions of this class below) in the
upper half-plane.

Theorem 1. Let v ∈ Jδ. Then the following two properties are equivalent : (1) v ∈ Jδ(0);
(2) the measure λ+(v) (or λ−(v)) has �nite zero-density and

|ck(r, v)| ≤ A, k ∈ N ,

for some positive A and all r > 0.

Here λ(v)=λ+(v)�λ−(v) is the complete measure corresponding to the function v and ck(r, v)
are the Fourier coe�cients of v. A result similar one of Miles's [2] also holds for the class
Jδ(0)

Jδ(0) = JS(0)− JS(0),

where JS(0) is the class of just subharmonic functions of zero-type in the upper half-plane.
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1. Classes of functions in C+. In this paper we use terminology from [7], [8]. Let C+ =
{z : Im z > 0} be the upper half-plane. We denote by C(a, r) the open disk of radius r with
center at a, and by Ω+ the intersection of a set Ω with the half-plane C+: Ω+=Ω ∩ C+. A
subharmonic function v in C+ is said to be just subharmonic if lim supz→t v(z) ≤ 0 for each
t ∈ R. The class of just subharmonic functions in C+ will be denoted by JS. Let SK be
the class of subharmonic functions in C+ possessing a positive harmonic majorant in each
bounded subdomain of C+. Functions in SK have the following properties [7]:

(a) v(z) has non-tangential limits v(t) almost everywhere on the real axis and v(t) ∈
L1

loc(−∞,∞);

(b) there exists a charge ν on the real axis such that

lim
y→+0

∫ b

a

v(t+ iy) dt = ν([a, b])− 1

2
ν({a})− 1

2
ν({b}) ,

the measure ν is called the boundary measure of v;

(c) dν(t) = v(t) dt + dσ(t), where σ is a singular measure with respect to the Lebesgue
measure.

Following [7] we de�ne for a function v ∈ SK the corresponding complete measure λ by
the formula

λ(K) = 2π

∫
C+∩K

Im ζ dµ(ζ)− ν(K) ,

where µ is the Riesz measure of v. The measure λ has the following properties:

(1) λ is the �nite measure on each compact subset K of C;
(2) λ is a positive measure outside R;
(3) λ vanishes in the half-plane C− = {z : Im z < 0}.

Conversely, if λ is a measure with properties (1) � (3), then there exists a function v ∈ SK
with complete measure λ. The collection of properties (1) � (3) will be denoted by {G} in
what follows; if, in addition, λ is also a non-negative measure in R, then we denote the
corresponding collection by {G+}.

If D is bounded subdomain of C+ and D1 = D ∪ (∂D ∩ R), v ∈ SK, z ∈ D, then

v(z) =
1

2π

∫∫
D1

1

Im ζ
ln

∣∣∣∣z − ζz − ζ

∣∣∣∣ dλ(ζ) + h(z) ,

where h is a harmonic function in D, and if [a, b] ⊂ {R ∩ ∂D}, then h admits a continuous

extension by zero to (a, b); we assume that
1

Im ζ
ln

∣∣∣∣z − ζz − ζ

∣∣∣∣ is extended to the real axis by

continuity. The complete measure λ determines a function v ∈ SK to the same extent as the
Riesz measure µ determines a subharmonic function in C. More precisely, if v1, v2 ∈ SK are
two functions with complete measure λ, then there exists a real entire function g such that
v2(z)− v1(z) = Im g(z), z ∈ C+.

The following result holds ([7]).
Proposition 1. JS ⊂ SK.

The complete measure of a function v ∈ JS is a positive measure, which explains the
notion "just subharmonic function".

Let us now introduce the class of just δ-subharmonic function Jδ = JS − JS.
Proposition 2. Jδ = SK − SK.
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For a �xed measure λ let

dλm(ζ) =
sinmϕ

sinϕ
τm−1 dλ(ζ), ζ = τeiϕ, λm(r) = λm

(
C(0, r)

)
,

where sinmϕ/sinϕ is de�ned for ϕ ∈ {0, π} by continuity.
The next relation is Carleman's formula in Grishin's notation

1

rk

π∫
0

v(reiϕ) sin kϕ dϕ =

r∫
r0

λk(t)

t2k+1
dt+

1

rk0

π∫
0

v(r0e
iϕ) sin kϕ dϕ , (1)

in particular, for k = 1 we have

1

r

π∫
0

v(reiϕ) sinϕdϕ =

r∫
r0

λ(t)

t3
dt+

1

r0

π∫
0

v(r0e
iϕ) sinϕdϕ (2)

for all r > r0. Note also another inequality, which is useful in what follows

|λm(r)| =
∣∣∣∣∫∫

C(0,r)

dλm(ζ)

∣∣∣∣ =

∣∣∣∣∫∫
C(0,r)

sinmϕ

sinϕ
τm−1 dλ(ζ)

∣∣∣∣ ≤
≤ m

∫∫
C(0,r)

τm−1 d|λ|(ζ) ≤ mrm−1|λ|(r) . (3)

Let D+(R1, R2) = C+(0, R2)\C+(0, R1), R1 < R2. Functions v ∈ Jδ have representations
in the half-annulus z ∈ D+(R1, R2)

v(z) = − 1

2π

∫∫
D+(R1,R2)

K(z, ζ) dλ(ζ) +
R2

2π

π∫
0

∂G(z, R2e
iϕ)

∂n
v
(
R2e

iϕ
)
dϕ+

+
R1

2π

π∫
0

∂G(z,R1e
iϕ)

∂n
v(R1e

iϕ) dϕ , (4)

and in the half-disk z ∈ C+(0, R)

v(z) = − 1

2π

∫∫
C+(0,R)

K(z, ζ) dλ(ζ) +
R

2π

π∫
0

∂G(z,Reiϕ)

∂n
v(Reiϕ) dϕ ,

where G(z, ζ) is the Greens function of the half-annulus (the half-disk),
∂G

∂n
is its derivative in

the inward normal direction, and the function K(z, ζ) =
1

Im ζ
G(z, ζ), ζ ∈ D+(R1, R2) (and

z ∈ C+(0, R)), is extended by continuity to the points on the real axis with R1 ≤ |t| ≤ R2.
Using the theory of elliptic functions (see, for instance, [9], Chapter VIII) one can obtain

expansions of the kernel in formula (4) for R1 = qR, R2 = R/q, q ∈ (0, 1), z = reiθ, ζ = τeiϕ

and qR ≤ τ < r < 1
q
R

G(z, ζ) = 2
∞∑
m=1

1

m(1− q4m)

(τ
r

)m(
1− q2mr2m

R2m

)(
1− q2mR2m

τ 2m

)
sinmθ sinmϕ, (5)
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for qR ≤ r < τ ≤ 1
q
R

G(z, ζ) = 2
∞∑
m=1

1

m(1− q4m)

( r
τ

)m(
1− q2mR2m

r2m

)(
1− q2mτ 2m

R2m

)
sinmθ sinmϕ, (6)

for qR ≤ |t| ≤ r ≤ R/q

∂G(z, t)

∂n
=

2

t

∞∑
m=1

1

m(1− q4m)

(
t

r

)m(
1− q2mR2m

t2m

)(
1− q2mr2m

R2m

)
sinmθ , (7)

for qR ≤ r ≤ |t| ≤ R/q

∂G(z, t)

∂n
=

2

t

∞∑
m=1

1

m(1− q4m)

(r
t

)m(
1− q2mt2m

R2m

)(
1− q2mR2m

r2m

)
sinmθ , (8)

∂G
(
z, qReiϕ

)
∂n

=
4

qR

∞∑
m=1

1

1− q4m

(
qR

r

)m(
1− q2mr2m

R2m

)
sinmθ sinmϕ , (9)

∂G
(
z, 1

q
Reiϕ

)
∂n

=
4q

R

∞∑
m=1

1

1− q4m

(qr
R

)m(
1− q2mR2m

r2m

)
sinmθ sinmϕ . (10)

2. Fourier coe�cients of functions of class Jδ. The Fourier coe�cients of a function
v ∈ Jδ are de�ned as usual ([10])

ck(r, v) =
2

π

∫ π

0

v(reiθ) sin kθ dθ, k ∈ N .

From (1) we obtain the following expressions for the Fourier coe�cients for r > r0

ck(r, v) = αkr
k +

2rk

π

∫ r

r0

λk(t)

t2k+1
dt, k ∈ N , αk = r−k0 ck(r0, v). (11)

Applying the formula of integration by parts to the integral in (11), we obtain

ck(r, v) = αkr
k +

rk

πkr2k
0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τ k dλ(ζ)+

+
rk

πk

∫∫
D+(r0,r)

sin kϕ

τ k Im ζ
dλ(ζ)− 1

rkπk

∫∫
C+(0,r)

sin kϕ

Im ζ
τ k dλ(ζ) , ζ = τeiϕ. (12)

Proposition 3. The Fourier coe�cients ck(r, v) of a function v ∈ Jδ are continuous functions
of r.

This follows from the fact that the right-hand sides of relations (12) are continuous
functions of r.

3. Subharmonic and δ-subharmonic functions of zero-type. For v ∈ Jδ let v =
v+−v−, let λ be the complete measure of v and let λ = λ+−λ− be the Jordan decomposition
of λ (note that λ− is not the complete measure of v−). We set

m(r, v) :=
1

r

∫ π

0

v+(reiϕ) sinϕdϕ, N(r1, r2, v) :=

∫ r2

r1

λ−(t)

t3
dt (0 < r1 < r2) ,

T (r1, r2, v) := m(r2, v) +N(r1, r2, v) +m(r1,−v) .
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In this notation Carleman's formula (2) can be written as follows:

T (r1, r2, v) = T (r1, r2,−v) . (13)

De�nition 1. A function v ∈ Jδ is called a function of zero-type if there exists a positive
constant A such that

T (r1, r2, v) ≤ A

r1
for all r2 > r1 > 0.

We denote the corresponding class of δ-subharmonic functions of zero-type by Jδ(0). Let
JS(0) be the class of just subharmonic functions of zero-type.

If v ∈ Jδ(0), then it follows from (13) that
lim
r→∞

m(r, v) = 0

and
(∀ r > 0) : N(r, v) := N(r,∞, v) <∞.

For a function v ∈ Jδ(0) we set
T (r, v) := m(r, v) +N(r, v) .

De�nition 2. A function v ∈ Jδ is called a function of zero-type if there exists a positive
constant A such that

(∀ r > 0) : T (r, v) ≤ A

r
.

It is clear that De�nition 2 and De�nition 1 are equivalent. In this notation Carleman's
formula (2) can be written as follows:

T (r, v) = T (r,−v) . (14)

Lemma 1. The class Jδ(0) is a real linear space and JS(0) is a real cone.

This is a consequence of (13) and the inequality T (r,
∑
vj) ≤

∑
T (r, vj).

De�nition 3. A positive measure λ has zero-density if there exists a positive constant A
such that

(∀ r > 0) : N(r, λ) :=

∫ ∞
r

λ(t)

t3
dt ≤ A

r
.

De�nition 4. A positive measure λ is called a measure of zero-type if there exists a positive
constant A such that

(∀ r > 0) : λ(r) ≤ Ar . (15)

Lemma 2. If λ is a measure of zero-density, then it is a measure of zero-type.

The proof is provided by the inequalities N(r, λ) =

∫ ∞
r

λ(t)

t3
dt ≥

∫ er

r

λ(t)

t3
dt ≥ λ(r)

e2r2
.

4. Proof of Main Theorem. Let v ∈ Jδ(0). Note �rst that each of the measures λ+(v)
and λ−(v) has zero-density. The measure λ−(v) has zero-density by the de�nition of the
class Jδ(0). The fact that λ+(v) has zero-density is a consequence of (14). The same formula
yields

π∫
0

∣∣∣v(reiϕ)
∣∣∣ sinϕdϕ ≤ A . (16)

Note also that the measure |λ| = λ+ + λ− has zero-density and therefore satis�es inequality
(15). From (16) we obtain

|ck(r, v)| ≤ Ak . (17)
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Formula (1) yields ck(r, v) =
1

2k
ck(2r, v)− 2rk

π

∫ 2r

r

λk(t)

t2k+1
dt , which, in view of (3), (15) and

(17), gives us the inequality |ck(r, v)| ≤ Ak

2k
+

2A

π
. This completes the proof of the implication

(1) =⇒ (2).
Assume now that condition (2) in the theorem holds. Then it follows by the inequality

|c1(r, v)| ≤ A and formula (2) that if one of measure λ+(v) and λ−(v) has zero-density, then
the other measure also has zero-density, and therefore |λ| has zero-density. We can now �nd
an estimate of v+(z) using formula (4) with R1 = r/2, R2 = 2r. By considering the expansion
(9), (10) in Fourier series for q = 1/2 and R = r = |z| we obtain∣∣∣ r

π

∫ π

0

∂G (z, 2reiϕ)

∂n
v
(
2reiϕ

)
dϕ+

r

4π

∫ π

0

∂G
(
z, 1

2
reiϕ

)
∂n

v

(
1

2
reiϕ

)
dϕ
∣∣∣ ≤

≤
∞∑
m=1

1

2m
4m

1 + 4m

[
2|cm(2r, v)|+ 8

∣∣cm(r
2
, v
)∣∣] ≤ A for some A > 0.

This inequality and formula (4) yield v+(z) ≤ 1

2π

∫∫
D+( 1

2
r,2r)

K(z, ζ) dλ−(ζ) + A . Now,

using the orthogonality of system of polynomials {sin kθ}, k ∈ {1, 2, ...}, on the interval
[0, π] and formulae (5)�(8) we obtain∫ π

0

v+

(
reiθ
)

sin θ dθ ≤ 1

2π

∫ π

0

{[∫∫
D+(r/2,r)

+

∫∫
D+(r,2r)

]
K(z, ζ) dλ−(ζ)

}
sin θ dθ + 2A ≤

≤ 1

2

∫∫
D+(r/2,r)

sinϕ

Im ζ

τ

r

4

5

(
1− r2

4τ 2

)
dλ−(ζ) +

1

2

∫∫
D+(r,2r)

sinϕ

Im ζ

r

τ

4

5

(
1− τ 2

4r2

)
dλ−(ζ)+

+2A ≤ 2

5r

∫ r

r/2

(
1− r2

4τ 2

)
dλ−(τ) +

2

5r

∫ r

r/2

(
1− τ 2

4r2

)
dλ−(τ) + 2A ≤ 2λ−(2r)

5r
+ 2A .

Since the measure λ− has zero-density, it is a measure of zero-type according to the Lemma
2. Hence, the right-hand side of the last inequality is bounded. This yields m(r, v) ≤ C/r,
C is a constant. Together with the inequality N(r, v) ≤ A/r, A is a constant, this gives
v ∈ Jδ(0).

Theorem 2. Let v ∈ JS. Then the following properties are equivalent : 10. v ∈ JS(0);
20. |ck(r, v)| ≤ A, k ∈ N , for some positive A and for all r > 0.

This is an immediate consequence of Theorem 1 because the measure λ− vanishes for
functions in the class JS.

In addition to Theorem 1 we claim that property (1) does not yield the following re�-
nement of 20 |ck(r)| ≤ εk with εk → 0 as k →∞). It can be seen in the example below
Example. Consider a harmonic and non-positive function in C+

v(z) =
+∞∑

k=−∞

Im
2k

z − 2k
.

The function v satis�es the relation v(2z) = v(z). Hence C1 ≤
π∫
0

|v(reiϕ)| sinϕdϕ ≤ C2 ,

where C1 = inf
{
−
∫ π

0
v(reiθ) sin θdθ : r ∈ [1; 2]

}
, C2 = sup

{
−
∫ π

0
v(reiθ) sin θ dθ : r ∈

[1; 2]
}
. Let z = reiθ, 2k0 < r < 2k0+1. Using the expansion

v
(
reiθ
)

= −
∑
2k<r

∞∑
m=0

2mk sin(m+ 1)θ

rm+1
−
∑
2k>r

∞∑
m=1

rm sinmθ

2mk
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we can verify by the direct calculation that

cn(r, v) = − 1

rn

∑
2k<r

2kn − rn
∑
2k>r

2−kn = − 1

rn

k0∑
k=−∞

2kn − rn
∞∑

k=k0+1

2−kn =

= − 1

rn
2k0n

1− 2−n
− rn2−(k0+1)n

1− 2−n
.

By Proposition 3 these relations hold also for r = r0 = 2k0

cn(r0, v) = − 1

2k0
2nk0

1− 2−n
− 2k0

2−n(k0+1)

1− 2−n
= − 1

1− 2−n
− 1

2n(1− 2−n)
.

Hence |cn(r0, v)| ≥ 1, n ∈ N . Since r0 = 2k0 can be taken arbitrarily large, the last
inequality shows that Theorem 1 cannot be re�ned.
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