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In terms of Fourier coefficients and associated complete measures a class of just J-subhar-
monic functions in a half-plane of a zero type is described.
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B repvunax kosddurmentor @yphe u aCCOMUUPOBAHHBIX MTOJHBIX MEp OMHUCAH KJIACC UC-
TUHHO 0-CyOrapMOHUYECKUX B BEPXHEH MOYILIOCKOCTH (DYHKIMH HYJI€BOrO THIIA.

Introduction. In the 60s several American authors (Rubel, Taylor [1], Miles [2], Shea and
others) started to use the Fourier series method for the study of the properties of entire and
meromorphic functions. An advantage of this method is its suitability for the investigation of
functions of fairly irregular growth at infinity and functions of infinite order. Later important
results in this direction were obtained by Kondratyuk [3|, [4], [5], who generalized the Levin-
Pfliiger theory of entire functions of completely regular growth to meromorphic functions of
arbitrary ~-type. In paper [6], the results of Rubel, Taylor, Miles were extended to delta-
subharmonic functions in a half-plane. In the present paper we extend some of the results of
paper [6] to functions of zero-type in a half-plane.

Let Jo be the class of just d-subharmonic functions, and J&(0) be the class of just d-
subharmonic functions of zero-type (we present the definitions of this class below) in the
upper half-plane.

Theorem 1. Let v € J§. Then the following two properties are equivalent: (1) v € J§(0);
(2) the measure A\, (v) (or A_(v)) has finite zero-density and

ler(r,0)| < A, keN,
for some positive A and all r > 0.

Here A\(v)=A4(v)-A_(v) is the complete measure corresponding to the function v and ¢ (r, v)
are the Fourier coefficients of v. A result similar one of Miles’s [2] also holds for the class
J4(0)

J§(0) = JS(0) — JS(0),

where JS(0) is the class of just subharmonic functions of zero-type in the upper half-plane.
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1. Classes of functions in C,. In this paper we use terminology from [7], [8]. Let C; =
{z :Imz > 0} be the upper half-plane. We denote by C(a, ) the open disk of radius r with
center at a, and by €2, the intersection of a set 2 with the half-plane C,: Q,=Q N C,. A
subharmonic function v in C; is said to be just subharmonic if limsup,_,, v(z) < 0 for each
t € R. The class of just subharmonic functions in C, will be denoted by JS. Let SK be
the class of subharmonic functions in C, possessing a positive harmonic majorant in each
bounded subdomain of C,. Functions in SK have the following properties |7]:

(a) v(z) has non-tangential limits v(¢) almost everywhere on the real axis and v(t) €
L%OC(—OO7OO>;

(b) there exists a charge v on the real axis such that
b
1 1
lim - [ ot +ay) dt = v([a,b]) — Sv({a}) = Sr({b}),
y—+0 J, 2 2
the measure v is called the boundary measure of v;

(c) dv(t) = v(t)dt + do(t), where o is a singular measure with respect to the Lebesgue
measure.

Following [7] we define for a function v € SK the corresponding complete measure A by
the formula

AE) =2 [ mCdn(o) - v(K),

CinK

where p is the Riesz measure of v. The measure A has the following properties:
(1) A is the finite measure on each compact subset K of C;
(2) X is a positive measure outside R;
(3) A vanishes in the half-plane C_ = {z : Im 2z < 0}.

Conversely, if A is a measure with properties (1) — (3), then there exists a function v € SK
with complete measure A. The collection of properties (1) — (3) will be denoted by {G} in
what follows; if, in addition, A is also a non-negative measure in R, then we denote the
corresponding collection by {G™}.

If D is bounded subdomain of C, and D; = DU (0D NR), v € SK, z € D, then

v(z):%//mﬁln

where h is a harmonic function in D, and if [a,b] C {RN 0D}, then h admits a continuous

z

—C
<o +ae),

z

1
extension by zero to (a,b); we assume that ——In =| is extended to the real axis by

Im z —
continuity. The complete measure A determines aC function v € SK to the same extent as the
Riesz measure p determines a subharmonic function in C. More precisely, if vy, vo € SK are
two functions with complete measure A, then there exists a real entire function g such that
v2(2) —vi(2) =Img(z), z € C,.

The following result holds (|7]).
Proposition 1. JS C SK.

The complete measure of a function v € JS is a positive measure, which explains the
notion "just subharmonic function".

Let us now introduce the class of just d-subharmonic function Jo = JS — JS.
Proposition 2. J§ = SK — SK.
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For a fixed measure X let

Dnl€) = ZEET AN, € = 76, Anlr) = A (CTOLT).

where sin mep /sin ¢ is defined for ¢ € {0, 7} by continuity.
The next relation is Carleman’s formula in Grishin’s notation

. [ 1 T )
v(re’)sinkedp = / ?Zkk(ﬁ dt + T—k/v(roew) sin ke dp , (1)
0
0

0 0

1
rk

in particular, for k£ = 1 we have

™

1 . [ A A
—/v(fre“") singpdgo:/th—i——/v(roew)singodgo (2)
r t o

0 0

for all » > ry. Note also another inequality, which is useful in what follows

= | 0] = |y S v <

<o [[ oA < mem AG). ®)
C(0,r)

Let Dy (Ry, R2) = C(0, R2)\C1(0, Ry), Ry < R,. Functions v € J§ have representations
in the half-annulus z € D, (R, Rs)

/ /D i K(z,¢)dA(C) + / aG('ZaSQe %) v (Rye™) dp+

[ 0G(z, R1e%)

o on
0

and in the half-disk z € C (0, R)

//C+(0R (2,€) dAQ) + /30(2856“") (Re') dp,

where G(z, ¢) is the Greens function of the half-annulus (the half-disk), g—G is its derivative in
n

1
HG(Z,C), ¢ € D+(R1,R2) (and
z € C4(0, R)), is extended by continuity to the points on the real axis with Ry < |t| < R».
Using the theory of elliptic functions (see, for instance, [9], Chapter VIII) one can obtain

expansions of the kernel in formula (4) for Ry = qR, Ry = R/q, ¢ € (0,1), z = re?, ( = 7€'
andqR§T<r<%R

m 2m .2m 2m p2m
G(z,() —ZWZlm <;> (1_qR27’m )(1—(17_2]}; )SianSinmgp, (5)

(R16 ) dg@ ) (4)

the inward normal direction, and the function K(z,() =
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fOFQRST<T§%R

(%S) 1 r\m q2mR2m q2m7_2m . )
G(2,¢) =2 Z =g (;) (1 " am > (1 ~ pam sinmfsinmep, (6)

for gR <r < |t| < R/q

0G(z 2 — ry™ ¢ R
on _?mzzlm 1—q4m (¥> (1_ Rz ) <1_ )t
Pe Rei 4 0o 1 2m.2m
% - Z (qR) (1 - qR;m ) sinmf sinmgp, (9)
9G (2. L Re SO 4 2m p2m
(— *q Z — q4m (ﬂ) <1 _ 9 rf" ) sinm@ sinme . (10)

2. Fourier coefficients of functions of class Jd. The Fourier coefficients of a function
v € J§ are defined as usual ([10])

2 [T ,
cx(r,v) = ;/ v(re?)sinkfdfd, keN.

From (1) we obtain the following expressions for the Fourier coefficients for r > rq

2 k T
cr(r,v) = apr® + %/ Ae(t) dt, keN, ap=ry"c(ro,v). (11)

t2k+1

Applying the formula of integration by parts to the integral in (11), we obtain

sin ko ok
cr(r,v) = apr® + // dA(C
() = e Wkro oy ImC O+

rk sin k¢ 1 sin k¢ ,
aM¢) = 7" d — 7t (12
! k //D+(T‘0J“) T+ Im ¢ (C) rkmk //6'4_(07,, Im ¢ <C) (=rTe ( )

Proposition 3. The Fourier coefficients ci(r,v) of a function v € J§ are continuous functions
of r.

This follows from the fact that the right-hand sides of relations (12) are continuous
functions of r.

3. Subharmonic and J-subharmonic functions of zero-type. For v € JJ let v =
vy —ov_, let A be the complete measure of v and let A = A, —A_ be the Jordan decomposition
of A (note that A_ is not the complete measure of v_). We set
1 [ , "2 N_(t
m(r,v) := —/ vy(re®)sinpdp, N(ry,r,v) = / tig ) dt (0 <r <ry),
™ Jo T1
T(r1,72,v) :=m(re,v) + N(r1,7r2,v) + m(ry, —v) .
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In this notation Carleman’s formula (2) can be written as follows:
T(Tla T2, U) - T<T17 T2, _U) . (13)

Definition 1. A function v € J¢ is called a function of zero-type if there exists a positive
constant A such that

A
T(ry,re,v) < — forall ro >r; > 0.
1

We denote the corresponding class of §-subharmonic functions of zero-type by J4(0). Let
JS(0) be the class of just subharmonic functions of zero-type.

If v € J6(0), then it follows from (13) that

lim m(r,v) =0
and o
(Vr>0): N(rv):= N(r,oo,v) < 0.
For a function v € J6(0) we set
T(r,v) :==m(r,v) + N(r,v).

Definition 2. A function v € J¢ is called a function of zero-type if there exists a positive
constant A such that

(Vr>0): T(rv)< é.

It is clear that Definition 2 and Definition 1 are equivalent. In this notation Carleman’s
formula (2) can be written as follows:

T(r,v) =T(r,—v). (14)
Lemma 1. The class J6(0) is a real linear space and JS(0) is a real cone.

This is a consequence of (13) and the inequality T (r, > v;) < > T(r,v;).
Definition 3. A positive measure A has zero-density if there exists a positive constant A

such that
A

r

(Vr>0): N(r\) ::/wydtg

Definition 4. A positive measure A is called a measure of zero-type if there exists a positive
constant A such that
(Vr>0): \r) < Ar. (15)

Lemma 2. If )\ is a measure of zero-density, then it is a measure of zero-type.

A(r)

e2r2

At TNt
The proof is provided by the inequalities N (r, ) = / % dt > / ]5(3) dt >
4. Proof of Main Theorem. Let v € J§(0). Note first that each of the measures A (v)
and A_(v) has zero-density. The measure A_(v) has zero-density by the definition of the
class J§(0). The fact that A, (v) has zero-density is a consequence of (14). The same formula
yields

™

J

0

v(rei“")‘ sinpdp < A. (16)

Note also that the measure |\| = A, + A_ has zero-density and therefore satisfies inequality
(15). From (16) we obtain
lex(r,v)| < Ak (17)
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2r )\k (t)
t2k;+1

1 2rk
Formula (1) yields ¢x(r,v) = @ck(%, v) — L/ dt , which, in view of (3), (15) and
™ T

Ak 2A
(17), gives us the inequality |ck(r,v)| < 2—+— This completes the proof of the implication
m

(1) = (2).

Assume now that condition (2) in the theorem holds. Then it follows by the inequality
le1(r,v)| < A and formula (2) that if one of measure A\, (v) and A_(v) has zero-density, then
the other measure also has zero-density, and therefore |A| has zero-density. We can now find
an estimate of v, (z) using formula (4) with R, = r/2, Ry = 2r. By considering the expansion
(9), (10) in Fourier series for ¢ = 1/2 and R = r = |z| we obtain

r [T O0G (z,2re*) OG (z,4re™) (1
‘;/0 — v (2re’ )dgp+4ﬂ/ —an v ére‘p) dcp‘ <

1 4m
sz::_m 11 4m [2|Cm(27’ v) |+8‘Cm )‘] < A for some A > 0.
This inequality and formula (4) yield vy (z) < // ,Q)dXA_(¢) + A. Now,
D+ —r2r

using the orthogonality of system of polynomlals {sin k:@} k: € {1,2,...}, on the interval
[0, 7] and formulae (5)—(8) we obtain

/ v+<re )s1n9d9<—/ {[// // 1 (2,C) dA_ (()}sin9d6+2A§
0 D4 (r/2,r) D4 (r2r
1 sinp 74 r sinpr4 72
< = 1— _ 1-—
1/ e s (1 1) =1/ Imc75< ) -0

2 (7 r? 2 22_(2r)
24 < — 1——) d\_ 1— d\_ 2A < 2A.
ToAs 51/, /2 ( 47'2) (7) + 5r /T/Q( 47’2) (7) + - br +

Since the measure A_ has zero-density, it is a measure of zero-type according to the Lemma
2. Hence, the right-hand side of the last inequality is bounded. This yields m(r,v) < C/r,
C' is a constant. Together with the inequality N(r,v) < A/r, A is a constant, this gives
v e J§0).

Theorem 2. Let v € JS. Then the following properties are equivalent: 1°. v € JS(0);
20 |ex(r,v)| < A, k€N, for some positive A and for all r > 0.

This is an immediate consequence of Theorem 1 because the measure A_ vanishes for
functions in the class J.S.

In addition to Theorem 1 we claim that property (1) does not yield the following refi-
nement of 2° |cx(r)| < ey with g, — 0 as k — o0). It can be seen in the example below

Example. Consider a harmonic and non-positive function in C,
400 2k’

The function v satisfies the relation v(2z) = v(2). Hence C; < f |v(re®)|sinpdp < Cy,

where €} = inf { — Jo v(re®)sinfdf - r e [1;2] 1}, Co =sup{ — fo v(re®)sinfdf : r €
[1;2]} . Let z = re®, oo < p 2’“0+1 Usmg the expansion

5 9P PEERLURRNS 5 SR L

2k <p m=0 ok >r m=1
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we can verify by the direct calculation that

k 00
cn(r,v) = _ri" Z okn _ pm Z 9—kn _ _ri” ZO okn _ .n Z 9—kn _

2k < 2k > k=—o00 k=ko+1
1 2kon 2—(k0+1)n
Tl oo
By Proposition 3 these relations hold also for r = ry = 2%
1 onko A 2—n(k0+1) 1 1
S — 9ko - _ _ _
enlro,v) = — 55 T gmn 1—2n 1-27 2n(1—2")
Hence |c,(rg,v)| > 1, n € N. Since ry = 2% can be taken arbitrarily large, the last

inequality shows that Theorem 1 cannot be refined.

10.

11.
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