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Abstract 
We discuss different measures of the discriminative power of rating functions to examine the fore-
cast strength of ratings. Besides the measures discussed in the literature, we also consider stochas-
tic dominance to evaluate rating functions. We apply these criteria to compare empirically the rat-
ings of Standard & Poor’s and Moody’s Investors Service. 

Key Words: Credit risk, rating accuracy, discriminative power. 
JEL classification: C52, G21, G33. 

1. Introduction 
According to the Basel II accord, a bank can choose between the implementation of an internal 
ratings-based (IRB) approach and the standard approach based on ratings provided by external 
agencies in order to determine the minimum capital requirement for its credit risk. A goal of every 
rating is to estimate the specific default probability of a debtor. Within rating systems debtors with 
similar estimated default probabilities are assigned to the same rating class. Assessing creditwor-
thiness with a reliable forecast represents a central success factor in a bank’s credit business. 

The validation of rating systems has become a prevailing topic since the financial supervisory au-
thorities began to accept applications from banks for the IRB approach approval. The qualifying 
examinations require the validation of rating systems before approval. Recently the adequacy of 
measures of the discriminative power to validate rating functions has been discussed in the litera-
ture1.

 
These measures refer to methods which were developed 30 years ago and are used in medi-

cine, weather forecasting, and signal detection theory. In addition to the existing literature on 
measures of the discriminate power, we show that stochastic dominance can also be used to evalu-
ate rating functions. 

Our paper is organized as follows: Section 2 presents the measures of discriminative power. The 
comparison of rating functions using stochastic dominance will be a main point here. In Section 3 
we empirically analyze the ratings of Standard & Poor’s and Moody’s Investors Service. We con-
clude with a short summary in Section 4. 

2. Measures of Discriminative Power 
If a rating function exhibits a high discriminative power, it can differentiate between debtors with 
high and low creditworthiness. The measures to evaluate the discriminative power discussed in 
this section are: contingency table, receiver operating characteristic, cumulative accuracy profile, 
stochastic tendency, and stochastic dominance.  
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1 See, e.g., Sobehart, Keenen, Stein (2000), Sobehart, Keenan (2001), Hayden (2002, pp. 78-95), Engelmann, Hayden, 
Tasche (2003) and Hamerle, Rauhmeier, Roesch (2003). 
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2.1. Overview of Common Measures 

At first, we consider a rating model with the two possible ratings ‘default’ and ‘non-default’ to 
evaluate the rating function. Here the originator of the ratings assigns one of the two possible out-
comes to every debtor in point in time t = 0 and then observes the realizations in t = 1 (see Table 1). 

Table 1 

Contingency Table 

  Observation in t = 1 

  Default Non-default 

Default A B 
Forecast in t = 0 

Non-default C D 

 

There is a series of ratios to evaluate the discriminative power of the underlying rating function. 
Ratios commonly used here are the hit rate HR and the false alarm rate FAR: 

CA
A
+

≡HR  and 
DB

B
+

≡FAR . (1) 

The contingency table is not only applicable to models which simply allocate the ratings ‘default’ 
or ‘non-default’. It can also be extended to any number of rating classes. For models with more 
than two possible ratings it is necessary to define a cut-off point (CoP). A cut-off point represents 
the limit beyond which a debtor is rated as at risk of default. In a multi-rating class model the cu-
mulative hit rate HRs for a cut-off point CoPs results as the sum of the single hit rates of the worst 
rating classes 1,...,s. The cumulative false alarm rate FARs is calculated analogously. 

The contingency table only allows assessing the ability of a rating function to separate with regard 
to the chosen cut-off point. The total discriminative power of a rating function between debtors 
with strong and weak creditworthiness, aggregated over all cut-off points, is shown by the receiver 
operating characteristic. 

2.1.1. Receiver Operating Characteristic and Area under Curve 

The receiver operating characteristic (ROC) was developed in the fifties to test the strength of 
noise-affected radio signals. The ROC curve is generated by plotting the hit rates against the false 
alarm rates for all possible cut-off points. Figure 1 shows the ROC curve1. Cut-off points are indi-
cated by dots there. 

The area below the ROC curve (bold line in Figure 1) is called the area under curve (AUC). This 
area evaluates the discriminative power by comparison with the area below the perfect rating func-
tion (thin line). An AUC value of 50% corresponds to a random experiment to forecast insolvency 
(dotted line). 

The ability of a rating function to assign the worst possible ratings to debtors becoming insolvent 
and the best ones to those remaining solvent is not evaluated by the area under curve. Within the 
ROC framework it is only important that debtors with weak creditworthiness receive worse ratings 
than those with strong creditworthiness. 

 

                                                           
1 See Sobehart, Keenan (2001) and Engelmann, Hayden, Tasche (2003). 
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Fig. 1. Receiver Operating Characteristic 

 

2.1.2. Cumulative Accuracy Profile and Accuracy Ratio 

The cumulative accuracy profile (CAP) arises in accordance with the Lorenz curve. It measures 
along the lines of the receiver operating characteristic the ability of a rating function to position 
debtors with low creditworthiness in worse rating classes than those with high creditworthiness. 

The CAP curve is generated by sorting all debtors according to their ratings. Subsequently, it is 
calculated which fraction of debtors with the worst ratings WRs exhibits which hit rates of insol-
vencies. The perfect CAP curve (thin line in Figure 2) is determined by the default rate DR of the 
portfolio. 

With the cumulative accuracy profile the accuracy ratio AR, which is calculated in accordance 
with the standardized Gini coefficient of the Lorenz curve, serves to evaluate the rating function. 
This ratio determines the relationship between two areas, the first being the area between the line 
of the observed rating function (bold line in Figure 2) and the line of the random rating function 
(dotted line) and the second being the area between the perfect rating function (thin line) and the 
random rating function1. 

 

                                                           
 

1 See Sobehart, Keenan, Stein (2000) and Engelmann, Hayden, Tasche (2003). 
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Fig. 2. Cumulative Accuracy Profile 

In contrast to the Gini coefficient the accuracy ratio can become negative. Accuracy ratio and area 
under curve can be transferred into each other as follows1: 

1AUC2AR −⋅= .  (2) 

2.1.3. Stochastic Tendency 

Stochastic tendency can also be used in order to assess whether the hit rate and false alarm rate 
distributions differ from each other. In our discrete framework the false alarm rate distribution 
tends to be stochastically larger than the hit rate distribution, if the following applies: 

( ) 0.FARHRwhere
2
1FAR-FAR

2
HRHR

RE 001
1 ≡=>⋅

+
≡ ∑ −

−

s
ss

ss   (3) 

With a relative effect RE above 0.5, companies remaining solvent in the tendency were placed into 
good rating classes and insolvent debtors tended to be positioned into bad rating classes. Relative 
effect and area under curve, both add up the products of false alarm rate per rating class and cumu-
lative hit rate. Therefore, both concepts compute the area under the ROC curve. 

Let S
d 

and S
nd denote the rating of debtors who have become insolvent and remained solvent, re-

spectively. Then, in a probabilistic interpretation, the hit rates and the false alarm rates are: 

)(ProbFARand)(ProbHR ndd
s sSsS s ≤=≤= . (4) 

In case of independent ratings, this formulation gives the following interpretation of the relative 
effect and the area under curve, respectively2: 

                                                           
1 See Engelmann, Hayden, Tasche (2003). Note, that these measures with given ratings depend, however, on the default 
rate of the credit portfolio. See Hamerle, Raumeier, Roesch (2003), and Sobehart, Keenan (2004). 
2 See (Bamber, 1975). 
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)(Prob
2
1)(ProbAUCRE nddndd SSSS =⋅+<== . (5) 

The area under curve corresponds to the probability that an insolvent company received a worse 
rating than a debtor who remained solvent (where the probability of equal ratings is weighted by a 
half). Note, that the relative effect does not react to a transformation that preserves order1. There-
fore, relative effect, area under curve, and accuracy ratio are appropriate for ordinal rating scores. 
Irrespective of whether the rating function provides scorings or default probabilities, these meas-
ures come to a consistent result as long as the estimated default probability increases with an infe-
rior rating score. 

As an intermediate result, we get that the area under the ROC curve equals the relative effect of 
stochastic tendency. Both terms are in a linear relationship with the accuracy ratio. Therefore, the 
measures of discriminative power discussed so far produce identical results. 

2.2. Stochastic Dominance 

First-order stochastic dominance examines the cumulative probabilities of two random variables. 
In our framework stochastic dominance can be applied to the hit rate and false alarm rate distribu-
tions of one rating function or to the hit rate distributions of two rating functions. 

In case of one rating function, we have first-order stochastic dominance of the false alarm rate 
distribution over the hit rate distribution if the following applies: 

sss ∀≤ HRFAR  (6) 

and this inequality is strictly fulfilled for at least one rating class s. Then the observed ROC curve 
lies above the diagonal in Figure 1, resulting in an area under curve above 50%. 

For a comparison of two rating functions we consider the hit rate HR(s) = HRs and false alarm rate 
FAR(s) = FARs. Then the ROC curve is given by the vector (HR(s), FAR(s)). In the context of 
first-order stochastic dominance, rating function R dominates rating function T in case of identical 
false alarm rates if the following inequality holds and is strictly fulfilled for at least one rating 
class s: 

)( )( sss RT ∀≤ HRHR . (7) 

Since the false alarm rate is a monotone transformation of the rating score, inequality (7) holds for 
all false alarm rates, too. Therefore, in case of identical false alarm rates the ROC curve of rating 
function R runs above the curve of rating function T . Consequently, the AUC value of rating func-
tion R turns out to be higher than the value of rating function T . 

If first-order stochastic dominance is not given, then it will be appropriate to try to apply the sec-
ond-order stochastic dominance criterion. We have second order stochastic dominance of the false 
alarm rate distribution over the hit rate distribution, if the following inequality holds and is strictly 
fulfilled for at least one rating class i: 

)( )( .HRFAR
11

iss
i

s

i

s

∀≤ ∑∑
==

 (8) 

From this dominance it does not necessarily follow that the area under curve lies above 50%, as 
proved by the example in Table 2. The example is constructed in a way that although there is sec-
ond-order stochastic dominance of the false alarm rate distribution over the hit rate distribution an 
AUC value of 47% is calculated. 

                                                           
1 See (Bamber, 1975). 
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Table 2 

Second-order Stochastic Dominance for Hit Rates 

Score Issuers Defaults sHR  sFAR  s

i

s
HR

1
∑
=

 s

i

s
FAR

1
∑
=

 

1 160 100 33 % 20 % 0.33 0.20 

2 40 30 43 % 23 % 0.77 0.43 

3 200 30 53 % 80 % 1.30 1.23 

4 200 140 100 % 100 % 2.30 2.23 

 

From this example we see that the common measures of discriminative power focus on ratios of 
hit rates and false alarm rates. From an economic perspective this must not lead to the same result 
as analyzing the probability of default in every rating class. For example, without taking different 
credit amounts, opportunity costs, and credit spreads into consideration, using the rating function 
from Table 2 a credit rationing strategy would avoid the default cost of 100 and 130 debtors, if 
credit applications from clients with scores 1 and 2, respectively, are rejected. When applying a 
random rating function with identical false alarm rates, only 60 or rather 70 applications of clients 
becoming bankrupt are refused. 

In the context of second-order stochastic dominance we again compare rating functions R and T 
with identical false alarm rates. Then rating function R dominates rating function T if the following 
inequality holds and is strictly fulfilled for at least one rating class i: 

.)(HR)(HR
11

iss
i

s
R

i

s
T ∀≤ ∑∑

==
 (9) 

If we compare the rating function from Table 2 to a random rating function with the same false 
alarm rates, the random rating function will show a higher AUC value of 0.5. However, the rating 
function from Table 2 is preferred in the sense of second-order stochastic dominance. Our exam-
ples with identical false alarm rates show that the concepts of area under curve and accuracy ratio, 
respectively, may contradict with the criterion of second-order stochastic dominance. 

3. Empirical Results 
Our empirical examination aims to clarify two questions: Firstly, what discriminative power do the 
ratings of the agencies Standard & Poor’s (S & P) and Moody’s Investors Service (Moody’s) ex-
hibit? As these companies are the most well-known rating agencies worldwide, we expect that they 
possess high and significant AUC and AR values. Secondly, does the rating function of one 
agency dominate the function of the other? In order to answer these questions we analyze the pe-
riod from 1982 to 2001. The number of issuers as well as the default rates for this period and the 
seven classes of both rating scales of S & P (AAA, AA ... CCC) and Moody’s (Aaa, Aa ... C) were 
available. Reports from these agencies constituted the database1. 

The Moody’s data includes issuers of long-term bonds from the sectors industry, transport, utili-
ties, and financial institutions. Issuers of structured financial products and public issuers are not 
included. The S & P data also come from issuers of long-term bonds, mainly from the sectors in-
dustry, utilities, financial institutions, and insurance. Again issuers of structured financial products, 
public issuers, and issuers whose ratings were exclusively based on public information were ex-

                                                           
1 See Moody’s Investors Service (2002) and Standard & Poor’s (2002). Moody’s numbers of issuers were provided by 
Moody’s KMV. 
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cluded. Figure 3 demonstrates the AUC values for our sample. All calculated AUC values are sig-
nificantly different from 0.5 using the Mann-Whitney statistics (all p-values are below 0.1%). 

S & P’s and Moody’s rating functions show discriminative power for our sample. The average 
AUC value of the Moody’s sample is 90.9%, with S & P this value is 90.5%. According to a sign 
test Moody’s AUC values are significantly higher than those of S & P (p value below 6%). All the 
ascertained ROC curves run above the diagonal in Figure 1. In every case considered here, we find 
first-order stochastic dominance of the false alarm rate distribution over the hit rate distribution. 

80%

90%

100%

1980 1985 1990 1995 2000
Year

A
U

C

S&P Moody's
 

Fig. 3. AUC Values for S & P and Moody’s Ratings (1982-2001) 

A different result emerges when only the hit rate distributions are compared. In 17 of the 20 years 
examined a ranking of the rating functions is possible according to second-order stochastic domi-
nance with no significant advantage of one rating agency. In the years 1985, 1986, and 1990 we 
observe different rankings between stochastic dominance of the hit rates and the AUC criterion. 
Since the differences in false alarm rates seem to be small, this supports our theoretical argument 
from section 2.2. Table 3 gives an overview. 

Table 3 

Second-order Stochastic Dominance and AUC Dominance 

Year 2nd-order hit rate stochastic dominance AUC dominance FAR difference 

1982  none S & P 4.1 % 

1983  Moody’s Moody’s 1.5 % 

1984  none Moody’s 2.7 % 

1985  S & P Moody’s 2.1 % 

1986  S & P Moody’s 2.9 % 

1987  S & P S & P 3.6 % 

1988  S & P S & P 3.3 % 

1989  S & P S & P 2.8 % 

1990  S & P Moody’s 2.2 % 
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Table 3 (continuous) 
Year 2nd-order hit rate stochastic dominance AUC dominance FAR difference 

1991  S & P S & P 1.8 % 

1992  S & P S & P 2.4 % 

1993  S & P S & P 2.4 % 

1994  none Moody’s 2.5 % 

1995  Moody’s Moody’s 2.6 % 

1996  Moody’s Moody’s 2.4 % 

1997  Moody’s Moody’s 2.6 % 

1998  Moody’s Moody’s 2.1 % 

1999  Moody’s Moody’s 1.7 % 

2000  Moody’s Moody’s 2.7 % 

2001  Moody’s Moody’s 3.4 % 

 

2
6

1

sMoody'P&S )FARFAR(
6
1differenceFAR ∑

=
−≡

s
ss . 

4. Conclusion 
Besides the common measures to evaluate the discriminative power of rating functions, i.e. area 
under curve, accuracy ratio, and relative effect, we introduced stochastic dominance into this topic. 
Although first-order stochastic dominance leads to the same results as the common measures, sec-
ond order stochastic dominance turns out to produce possibly different results. 

Our empirical analysis provides the following result. The rating functions of Standard & Poor’s 
and Moody’s Investors Service possess discriminative power, as expected, for the years 1982 to 
2001. However, a persistent dominance of one rating agency cannot be observed here. 
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