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Preface 
 

Hydroaeroelasticity as the branch of mechanics, which 
studies the interactions between the inertial, elastic and 
aerodynamic forces that occur when an elastic body is exposed 
to a fluid flow, is the highly important discipline for the 
process of formation of modern engineers. Its problems for 
many years were focused on applications in the field of aircraft 
and aeronautical industry. 

However, up-to-date subject of hydroaeroelasticity 
supplements the theory of hydraulic machines and 
turbocharges, particularly within the problems designing the 
impellers and seals. The problems of hydroaeroelasticity also 
important in the field of chemical engineering, gas and oil 
industry, particularly for investigating the process of inertia-
filtering separation of gas-liquid mixtures. Generally, 
hydroaeroelasticity draws on the study of solid and fluid 
mechanics, structural dynamics and dynamical systems. The 
synthesis of aeroelasticity with thermodynamics is known as 
aerothermoelasticity, and its synthesis with control theory is 
known as aeroservoelasticity. 

The theory of hydroaeroelasticity may be broadly 
classified into two fields: 

1. Static aeroelasticity, which deals with the static or 
steady response of an elastic body to a fluid flow. 

2. Dynamic hydroaeroelasticity, which deals with the 
body dynamics as typically vibrational response. 

General approaches used for studying the 
hydroaeroelasticity phenomena, are closely intersected with the 
issues of strength of materials and the theory of elasticity, as 
well as the theory of linear and nonlinear oscillation of 
mechanical systems. The most nonlinear boundary problems of 
hydroaeroelasticity can be solved in 2D and 3D formulation by 
using modern computer programmes that are studied by 
students of engineering specialties. Therefore the reader should 

https://en.wikipedia.org/wiki/Inertial_force
https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/Aerodynamic_force
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Solid_mechanics
https://en.wikipedia.org/wiki/Solid_mechanics
https://en.wikipedia.org/wiki/Structural_dynamics
https://en.wikipedia.org/wiki/Dynamical_systems
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Steady_state
https://en.wikipedia.org/wiki/Dynamics_(mechanics)
https://en.wikipedia.org/wiki/Vibration
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have basic skills in the field of numerical solution of problems 
of applied mechanics. 

This textbook will be intended for students of 
engineering specialties and post-graduate students from higher 
educational institutions. It is devoted to investigate the stability 
problems for deformable systems streamlined by fluid or gas 
flow. Special attention is paid to the study of hydrodynamic 
forces acting on deformable surfaces. 

The textbook consists of seven chapters, arranged in the 
order of presentation of the educational material on the didactic 
principle “from simple to complex”. Each chapter concludes 
material for self-examination and knowledge control of 
students. List of symbols, as well as subject and author indexes 
located at the end of the textbook, help students to accelerate 
the search for the necessary educational material. 

The entire material of the textbook is based on the 
authors’ teaching experience at Sumy State University within 
the disciplines “Strength of materials”, “Hydroaeroelasticity” 
and “Theory of plates and shells” for students of specialty 
“Dynamics and strength”, “Computational mechanics” and 
“Computational engineering in mechanics”, as well as on the 
research experience in close cooperation between the 
Department of Materials Strength and Mechanical Engineering 
and the Department of General Mechanics and Machine 
Dynamics of the Faculty of Technical Systems and Energy 
Efficient Technologies at Sumy State University. 

The authors are grateful to the dean of the Faculty of 
Technical Systems and Energy Efficient Technologies  
O. G. Gusak for the opportunity to publish this textbook. 

The authors sincerely hope that material presented in the 
textbook will be quite clear for understanding, and all readers 
can gain new ideas for themselves for future scientific growth. 

 

Authors:           I. B. Karintsev, 

      I. V. Pavlenko. 
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List of symbols 
 

A – oscillation amplitude; arbitrary constant; total work of 

external forces; 

A0, A1, A2, …; A, B, C, … – coefficients of complex potential; 

A12, A22 – stiffness coefficients; 

A, B – constants determined from the boundary conditions; 

A, B, ωα – parameters of the Harmonic function; 

Ai – coefficients of the characteristic polynomial; 

Ai, Bj – coefficients of minimizing forms; 

a – acceleration; complex acceleration vector; plate width; 

a, b, c – coefficients of the biquadratic polynomial; 

a2 – sound velocity; velocity of small perturbations extension; 

ai, bi, ci – coefficients of the characteristic polynomial; 

coefficients of the Fourier transform; unknown parameters; 

aij – coefficients of the system of linear homogeneous 

differential equations; 

aij, bij, cij – parameters of the matrix determinant for the 

frequency equation; 

aij, kij – compliance and stiffness coefficients; 

ax, ay – components of the acceleration; 

B11, B12, B21, B22 – damping coefficients; 

b – half-chord; 

C – constant of the Barotropic law; 

C, D – arbitrary constants; 

Ck – Carman’s coefficient; 

Cm – dimensionless moment ratio; 

Cx, Cy – lift and drag coefficients; 

C(k) – Theodorsen function; 

C(x), D(x), … – linearly independent functions; 

c – stiffness coefficient; 

c, d – additional parameters in equations of flexural-torsional 

oscillations; 
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ci – coefficients of the plate deflection function; 

D – cylindrical stiffness; 

d – total differential sign; diameter of a streamlined cylinder; 

hydraulic diameter; 

d, g, R, λ, σ, ω0, Ω – additional parameters of equation of plate 

small oscillations; 

div – divergence sign; 

E – Young’s modulus; 

e – eccentricity; 

F – unloading force; cross-sectional area; 

F


 – vector specific mass force; 

F(k), G(k) – real and imagine components of the Theodorsen 

function; 

F(x, y, z, t) – equation of the streamlined surface; 

f – vortex shedding frequency; oscillation frequency; 

f; f  – maximum bending and its dimensionless value; 

frequency of vortex shedding; 

f (…) – function sign; 

G – shear modulus; 

G(z, ζ) – influence functions; 

grad – gradient sign; 

H1, H2 – complex Bessel functions; 

h – plate thickness; 

I – axial moment of inertia; 

In, Jn – n-order Bessel functions of the first kind; 

Ip, Iα – polar moment of inertia; 

i – serial number; 

i, j – imaginary unit; 

i


, j


, k


 – unit vectors of axes x, y, z; 

K – aerodynamic ratio; 

K0, K2 – definite integral with infinite boundary; 
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k – adiabatic index; dimensionless oscillation frequency; 

specific frequency; 

k, ki – characteristic index; roots of the characteristic 

polynomial; 

ky – linear stiffness coefficient; 

kα – spring stiffness; angular (torsional) stiffness coefficient; 

L(t), M(t) – aerodynamic force and moment (torque); 

L, X – specific lift and drag (per unit of span); 

l – plate length; 

M – Mach number; specific aerodynamic moment; 

M1/2 – aerodynamic moment about the chord’s midpoint; 

MB – aerodynamic moment relative to the rotation axis; 

Mspr – elastic (spring) recovery moment; 

Mt – torque; 

Mz – experimentally measured moment; 

m – mass; specific mass; 

Nx, Ny – specific tensile forces; 

xN , yN  – dimensionless tensile forces; 

n – damping coefficient; number of half-waves; 

P – pressure function; 

P1 – inlet pressure; 

P2 – pressure in the pump chamber; 

P3 – outlet pressure; 

P
~

 – modified pressure function; 

p – pressure; 

p0 – initial pressure; 

p(x, y, t) – component of aerodynamic pressure due to 

deviation of the plate from its unperturbed position; 

p, pi – real parts of characteristic indexes; 

Q – specific share force; 

Qj – load; 
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q – kinetic head; specific hydrodynamic load; intensity of 

external forces; 

q0 – amplitude of the specific harmonic hydrodynamic force; 

q(x, y, t) – external distributed load; 

qdiv – critical value of the kinetic head and velocity in case of 

divergence; 

R – universal gas constant; 

Re – Reynolds number; 

Ri – reaction forces; 

r – radius of inertia; 

r, s – Riemann invariants; 

r, r1; θ, θ1 – linear and angular dimensions for a circle; 

rot – rotor sign; 

S – surface area; 

S, T – parameters determined from differential equations; 

St – Strouchal number; 

S(z), T(z) – form functions; 

Si(z), Ti(z) – linearly independent functions; 

T – oscillation period; axial force acting to the pump rotor; 

T0 – normal temperature on the Kelvin scale; 

t – time; 

U, V, W – unperturbed components of velocity; 

U – potential energy of deformation; 

Ucr – critical flow velocity; critical velocity of the aileron’s 

reverse; critical flutter velocity; 

Udiv – critical divergence velocity; 

u – dimensionless face gap value; 

u, v, w – components of velocity; 

V – velocity module; plate volume; volume of the pump 

chamber; 

V


 – vector of velocity; 

vl, vu – boundary velocities for the lower and upper surfaces; 



List of symbols 

 

 11 

W – complex velocity or acceleration potential; 

Wi – displacement; 

w(x, y, t), w1(x, t), wn(x) – plate displacement functions; 

X, Y, Z – components of specific mass force; 

x, y, z – coordinates; 

xm, e – coordinate of the point of force application; 

Y(x, t) – profile function; 

Yl, Yu; yl, yu – equations of the lower and upper surfaces; 

y0 – dimensionless amplitude; 

yC – coordinate of the centre of mass; 

y ,  ; y ,   – first and second time derivatives; 

ly , uy ; my  – dimensionless coordinates of lower and upper 

surfaces and its average value; 

z – face gap value; 

α – attack angle; 

αm – average attack angle; 

α, α0 – parameters for describing the rotational motion; 

α, β – real and image parts of roots; 

β – pressure difference ratio; 

γxy – shear deformation; 

Δ – delta sign; determinant; 

ΔP – total pressure difference; 

ΔP1, ΔP2 – pressure difference through the radial and axial 

gap; 

δ – variation sign; damping coefficient; logarithmic decrement 

of damping; 

δA – elementary work; 

ε – linear parameter (0 ≤ ε ≤ 2); dimensionless eccentricity; 

εx, εy – normal deformations; 

ζ, z – complex variables (vectors); 

θ – argument of the complex vector; rotation angle; 

Θ – total rotation angle; 

κ – polytropic index; 
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λ – characteristic index; parameter of the deflection function; 

λ, λi – roots of the characteristic polynomial; 

λcr – critical value of the coefficient for determining the critical 

flutter velocity; 

μ – specific mass; Poisson’s ratio; 

ν – kinematic viscosity; 

ξ – dimensionless coordinate; 

ξ, η – axes of the complex plane; 

ξ1, ξ2 – axes of fixed coordinate systems; 

Π – potential energy; 

ρ – density; 

σx, σy – normal stress; 

τ – time delay; phase shift; 

τxy – shear stress; 

υ – parameter of the Joukowsky transformation; 

Φ – generalized external impact; 

Φ, Ψ – real and imaginary parts of the complex acceleration 

potential; 

φ – velocity potential; 

φ, ψ – real and imaginary parts of the complex velocity potential; 

φi(x, y) – linearly independent coordinate functions; 

Ψ1, Ψ2 – components of an imaginary part of the complex 

acceleration potential; 

ω – oscillation frequency; eigenfrequency; 

ω, ω i – imaginary parts of characteristic indexes; 

ωα, ωx, ωy – partial frequencies; 

…0 – unperturbed parameter sing; 

…n – normal component sign; 

...w – wing sign; 

…/ – perturbed parameter sign; modified parameter sign; 

∂ – partial differential sign; 

  – differential operator (nabla sign); 
2  – Laplace operator. 
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§ 1.1. A brief historical overview 
 

Until the middle of the twentieth century the problems of 

hydroaeroelasticity were not such important as today. This is 

due to the fact that the aircrafts had a low flight velocity, as 

well as the structures were quite rigid, that prevented the 

appearance of the most of the aeroelasticity phenomena. 

However, increasing velocities with almost invariable design 

loads and absence of the rational rigidity criterion led 

constructors to solve wide varieties of the hydroelasticity 

problems. 

Perhaps for the first time the problems of aeroelasticity 

became actual in 1903, when a monoplane, designed by the 

professor S. P. Langley (Figure 1.1), suffered an accident on 

the river Potomac [1]. The phenomenon that had caused the 

failure was called torsional divergence of the wing. The 

accident of the Langley’s plane occurred shortly before the 

brothers Wright flew their biplane. It can be assumed that the 

success of the Wright brothers and the failure of the Langley’s 

monoplane are the initial causes of adherence to biplanes at the 

dawn of aircraft industry. But only in the middle of 1930th 

designers ventured to build a military monoplane [2, 3]. 

It should be noted, that biplanes were also characterized 

by mistakes that led to the aeroelasticity phenomenon, such as  

 
 

 
S. P. Langley 

(1834–1906) 

Samuel Pierpont Langley – an American 

astronomer, physicist, inventor and pioneer of 

aviation. Professor of mathematics at the United 

States Naval Academy. In 1867 – director of the 

Allegheny Observatory, professor of astronomy at 

the Western University of Pennsylvania, secretary of 

the Smithsonian Institution. Founder of the 

Smithsonian Astrophysical Observatory. 

https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Inventor
https://en.wikipedia.org/wiki/Aviation
https://en.wikipedia.org/wiki/United_States_Naval_Academy
https://en.wikipedia.org/wiki/United_States_Naval_Academy
https://en.wikipedia.org/wiki/Allegheny_Observatory
https://en.wikipedia.org/wiki/University_of_Pittsburgh
https://en.wikipedia.org/wiki/Smithsonian_Institution
https://en.wikipedia.org/wiki/Smithsonian_Astrophysical_Observatory
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Figure 1.1 – S. P. Langley’s monoplane 

 

flutter of tail plane feathers. This phenomenon was invented on 

the American bomber “Handley Page” (Figure 1.2). Several 

lives had been lost before the means of eliminating this 

phenomenon were found by a rigid torsion connection of the 

elevators [4]. 
 

 
O. Wright 

(1871–1948) 

Brothers Wright – inventors, and aviation pioneers, 

who are generally credited with inventing, building, 

and flying the world’s first successful airplane. They 

made the first controlled, sustained flight of a powered, 

heavier-than-air aircraft on December 17, 1903, four 

miles south of Kitty Hawk (North Carolina). 

In 1904 the brothers developed their flying machine 

into the first practical fixed-wing aircraft. Although not 

the first to build and fly experimental aircraft, the 

Wright brothers were the first to invent aircraft 

controls that made fixed-wing powered flight possible. 

 
W. Wright 

(1867–1912) 

https://en.wikipedia.org/wiki/Airplane
https://en.wikipedia.org/wiki/Aircraft#Heavier-than-air_.E2.80.93_aerodynes
https://en.wikipedia.org/wiki/Kitty_Hawk,_North_Carolina
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Wright_Flyer_III
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The problem of aeroelasticity was especially acute for the 

transition from biplanes to monoplanes, which can be clearly 

seen on the example of the German plane “Fokker D.VIII” 

(Figure 1.3). The first version of this aircraft was a free-

carrying monoplane with a high wing. It had excellent 

characteristics and was quickly introduced into production [5]. 

However, during its exploitation, especially with air  

 

 
Figure 1.2 – American bomber “Handley Page” 

 

maneuvers, wings began to tear off. Since these planes were 

provided for the best pilots and aviation units, there was a 

danger of total destruction of the German Air Forces. This led 

to a confrontation between the military engineers and the 

company “Fokker”. Six planes were subjected to static strength 

tests, which showed a six-time factor of safety. This fact gave 

rise to a serious dilemma. It became clear that it was necessary 

either to find the cause of the damages, or to stop the 

production of the “Fokker D.VIII”. Repeated static tests were 

carried out and wear deformations were carefully measured. 

After the test, A. Fokker thought, that increasing the attack 

angle of wing ends is a result of increasing the load, which is 
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the cause of broken wings. Obviously, the pressure load of a 

dive increases faster at the ends of the wing than in its middle. 

As a result, the cause of damage is the twisting of the wing 

during maneuvers. It was the first documented incident, when 

due to the influence of static aeroelasticity the air loading was 

redistributed, which led to the damage of the wing. 

 

 
Figure 1.3 – German airplane “Fokker D.VIII” 

 

In the thirties of the twentieth century, with the advent of 

high-speed aircrafts, a wave of catastrophes rushed through 

almost all countries in the world. Casual eyewitnesses, who 

watched the plane crashes, saw an almost identical picture: the 

plane was flying perfectly normal, and nothing foretold  

 

 
A. Fokker 

(1890–1939) 

Anton Herman Gerard (Anthony) Fokker –  

a Dutch aviation pioneer and aircraft manufacturer. 

He was the most famous in the field of the fighter 

aircraft during the First World War. His company 

was responsible for a variety of successful aircraft 

including the Fokker trimotor, a successful 

passenger aircraft of the inter-war years. 

https://en.wikipedia.org/wiki/Aviation
https://en.wikipedia.org/wiki/Aircraft_manufacturer
https://en.wikipedia.org/wiki/First_World_War
https://en.wikipedia.org/wiki/Fokker_trimotor
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troubles. But suddenly an unknown force destroyed the 

airplane in an instant. All the eyewitnesses used one 

expression: “It was an explosion”. However, inspection of the 

fallen fragments did not confirm this version, because there 

were no any traces of soot and burns. The surviving pilots as 

the most reliable source of information could not say anything 

significant due to unexpected and rapidly evolving events. 

According to them, a few seconds before the fall “nothing 

foreshadowed the trouble, but suddenly – shock, crackling, din, 

and the plane breaks into pieces”. 

The new formidable phenomenon was given the name – 

“flutter”. However, as Moliere once said, “The patient does not 

get any easier from the fact that he knows the name of his 

disease”. One by one, alarming news came about the 

mysterious death of French, British, American and Russian 

high-speed aircrafts [6]. 

Thus, in the beginning, engineers and pilots had not yet 

recognized the special form of oscillatory instability in the 

abovementioned threatening phenomenon. Only later it was 

found that flutter is instability of flexural-torsional oscillations 

of the wing. Now the flutter theory is widely investigated, and 

the determination of the flutter critical velocity is not the 

particularly difficult problem. 

To the problems of aeroelasticity it is also necessary to 

include the well-known destruction of the Tacoma Narrows 

Bridge [7]. For a centuries-old history of bridging techniques, 

calculation methods have been developed for building reliable 

bridges. However, there are many historical cases of bridge 

destructions. There will not be mentioned about incidents 

associated with resonance, but only about the destructions that 

occurred in the storm. There are known about ten such facts. 

The eleventh one is the Tacoma Narrows Bridge (Figure 1.4). 

About this incident, unlike all the previous ones, not only 



§ 1.1. A brief historical overview 

 

 19 

testimonies of eyewitnesses and non-specialists were 

preserved, but also documentary materials, which confirmed 

the cause of the collapse. 

 

 
Figure 1.4 – The Tacoma Narrows Bridge collapse 

 

The Tacoma Narrows Bridge was built in 1940 through 

the Tacoma Canyon. This bridge was always in sight of the 

researchers, because it had a higher sensitivity to the wind 

impact. In six months after commissioning it had collapsed due 

to the relative low wind, the speed of which was equal to 

18.7 m/s. It is considered that in a strong storm the wind speed 

does not exceed 45 m/s, and the Tacoma Narrows Bridge was 

designed to withstand this extreme load. 

The collapse of the bridge had attracted great attention of 

researchers. Immediately, T. Karman published a technique for 

calculating the critical speed of divergence [8]. However, the 

existing documentary video film proved that the destruction 

occurred due to flexural-torsional oscillations. Later, some 

attempts were made to correlate the destruction of the bridge 

with the classical flutter phenomenon. However, the last 

general accepted explanation is associated with the vortex 
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breakdown. This aeroelasticity phenomenon was named as a 

stall flutter [9]. Moreover, stall flutter occurs in case of aircraft 

wing streamlining if the attack angle exceeds 15°. In addition, 

propellers of turbines and compressors are increasingly 

exposed to stall flutter in case of large attack angles. 
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§ 1.2. The subject of hydroaeroelasticity 
 

Hydroaeroelasticity is a science that investigates the 

interaction of bodies of finite rigidity with a fluid or gas flow. 

Hydroelasticity problems are aimed at the research of an 

interaction between hydroaerodynamic, elastic and inertia 

forces, as well as its impact on deformable body. It can be 

explained by the following example. Up-to-date aircraft 

designs are highly flexible, which is the main cause of various 

phenomena of aeroelasticity. When flying an airplane, the 

aerodynamic forces cause deformations of the structure. At the 

same time, the deformation of the structure of the aircraft leads 

to additional aerodynamic forces, which can cause even greater 

forces. Eventually, the design either collapses or is in a stable 

equilibrium. 

Thus, the intrinsic elasticity of the structure is a 

significant factor for hydroaeroelasticity problems in contrast 

to the approaches of the classical hydro- and aerodynamics  

[10, 11], where it is assumed that the design is absolutely rigid. 

Furthermore, an important factor is taking into account the 

reverse effect of design deformation to the motion of gas or 

liquid. Therefore, main equations of hydroaeroelasticity must 

include the system of all forces acting on the deformable body 

placed into fluid or gas flow. These are elastic, 

hydroaerodynamic and inertia forces. 

The main problems shaped and solved by the theory of 

hydroaeroelasticity, can be graphically presented by the 

Collar’s triangle of forces (Figure 1.5) [12]. 

Consequently, the theory of hydroaeroelasticity is the 

complex area of mechanics, that combines techniques of the 

theory of elasticity, structural mechanics and 

hydroaerodynamics. Since the predominant part of the 

aeroelastic phenomena has a dynamic nature, therefore, 
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methods of the theory of oscillations [13–20] are widely used 

for solving the hydroaeroelasticity problems. 

 

 
Figure 1.5 – Collar’s triangle of forces 

 

The temperature factor is highly significant for up-to-date 

designs. These problems are the subjects of the theory of 

aerothermoelasticity [21–22]. Finally, in case of sufficiently 

flexible structures, elastic deformations have a noticeable 

impact on the steady motion and control processes, and vice 

versa. Hence, in the most general case it is necessary to take 

into account the complicated interaction of elastic, 

hydroaerodynamic and inertia forces, thermal loads and 

processes of the control system [23]. 

 

 
A. R. Collar 

(1908–1986) 

Arthur Roderick Collar – a scientist and 

engineer, who made significant contributions in the 

areas of aeroelasticity matrix theory and its 

applications in engineering dynamics. From 1963 to 

1964 – the president of Royal Aeronautical Society. 

 

https://en.wikipedia.org/wiki/Aeroelasticity
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Dynamics_(mechanics)
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§ 1.3. Static problems 
 

The simplest static problem of hydroaeroelasticity is the 

determination of quasi-static loads of the flow acting on the 

structure taking into account elastic deformations. For solving 

this problem joint consideration of static equations of the 

theory of elasticity [24–28] or structural mechanics [29–38] 

and equations of stationary fluid or gas flow [10, 11] is 

required. 

If the design is sufficiently flexible, a static instability of 

the original shape occurs due to the critical velocity of the 

flow. The most famous example of static instability is the 

divergence of the aircraft wings. Another one is the static 

buckling of plates and shells, streamlined by a gas stream. 

Along with aerodynamic forces an important role is played by 

initial forces in the middle surface and temperature loads. 

Other static phenomena include the impact of static 

elastic deformations on the stability of the control system, for 

example, the reverse of rudders and ailerons. When the aileron 

is deflected downwards, the lift force on the wing increases, 

and the heeling moment is being created. However, the aileron 

deflection also creates an aerodynamic diving moment, which 

twists the wing in the direction of reducing the lift force and, 

consequently, leads to the decrease of the heeling moment. 

Because the stiffness of the wing does not depend on the flight 

velocity, but the aerodynamic force depends on the square of 

the velocity U 2, then there is a critical velocity Ucr at which the 

aileron is completely ineffective. This velocity is called  

“the critical velocity of aileron’s reverse”. A similar effect also 

occurs with the reverse of lift rudders and steering wheels. 
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§ 1.4. Dynamic problems 
 

The most important example of the dynamic problems of 

hydroaeroelasticity is the flutter of the aircraft wings as a 

phenomenon of self-oscillations [39, 40] supported by the 

energy of motion or flow energy. Another example is panel 

flutter as self-oscillations of plates and shells [41–45] 

streamlined by the flow. An important role for this interaction 

is the relationship between different forms of oscillations. It is 

enough to use the linearized theory of potential flow [46, 47] 

for describing the classical flutter. 

There are self-oscillating aeroelastic phenomena, the 

origin of which has a different nature. For example, a stall 

flutter [9, 48, 49] of blades and screws, that occurs in case of 

high values of attack angles. Another one is self-oscillations of 

the wires of chimneys, beams of rigidity for suspension bridges 

[50] and other poorly streamlined bodies. The abovementioned 

phenomena are accompanied by flow disruptions on the 

streamlined surface and by the formation of the Karman vortex 

street (Figure 1.6) [51–61], as well as other non-classical 

features. 

In addition, one of the problem of aeroelasticity is 

buffting as a phenomenon, in which the deformation of the 

 
 

 
T. Karman 

(1881–1963) 

Theodore von Karman – a Hungarian-American 

mathematician, aerospace engineer and physicist, 

who was active primarily in the fields of aeronautics 

and astronautics. He was responsible for many key 

advances in aerodynamics, notably his work on 

supersonic and hypersonic airflow characterization. 

He is regarded as the outstanding aerodynamic 

theoretician of the twentieth century. 

https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Aerospace_engineer
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Aeronautics
https://en.wikipedia.org/wiki/Astronautics
https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/Supersonic
https://en.wikipedia.org/wiki/Hypersonic
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Figure 1.6 – Karman vortex street 

 

supporting surface (e. g., the aircraft wing) is caused by the 

action of powerful vortex flows formed in front of the 

supporting surface. This phenomenon is mainly affects on 

aircraft tails and blades of turbomachines. Unfortunately, 

theoretically this problem is quite complicated, because the 

nature of the jet motion behind the wing is not completely 

investigated [62–67]. 
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Questions for self-control 
 

1. What problems had predetermined the emergence of the 

subject “hydroaeroelasticity”? 

2. What mistakes of aircraft industry led to the 

aeroelasticity phenomenon? 

3. Describe the first documented incident which led to 

damage of the aircraft wing. 

4. Describe the life example of manifestation of the 

phenomenon of aeroelasticity. 

5. What phenomena of aeroelasticity can be described by 

the Karman’s theory? 

6. Set the subject of hydroaeroelasticity. Explain, what 

disciplines, in your opinion, should precede the study of 

hydroaeroelasticity. 

7. Describe in detail the Collar’s triangle of forces. What 

is its physical meaning? 

8. In which disciplines the interdisciplinary connections 

are shown with the contribution of hydroaeroelasticity? 

9. What techniques does the theory of hydroaeroelasticity 

combine? 

10. What scientists made the first contribution to the 

development of elasticity? Describe their participation. 
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§ 2.1. Potential flow equations 
 

For the determination of the hydroaeroelastic forces [68] 

equations of fluid or gas motion and deformable shapes are 

used. In the general case this problem is extremely 

complicated. Therefore, it is necessary to take a number of 

simplifying assumptions, such as gas, which streamlines the 

body (e. g. wing, blade, part of the aircraft skin), and it is ideal. 

Therefore its motion is described by Euler’s equations [69]: 
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or in vector form: 
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L. Euler 

(1707–1783) 

Leonhard Euler – a Swiss mathematician, 

physicist, astronomer, logician and engineer, who 

made important and influential discoveries in 

infinitesimal calculus and graph theory, topology 

and analytic theory. He also introduced much of the 

modern mathematical terminology and notation, 

particularly for mathematical analysis, such as the 

notion of a mathematical function. He is known for 

his works in mechanics and fluid dynamics. 
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where u, v, w are the components of the velocity: 
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X, Y, Z – the components of specific mass force, N/m3;  

p – pressure; ρ – density; i


, j


, k


 – unit vectors of axes x, y, z; 

grad – gradient operator: 
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Euler’s equation can be rewritten as Gromeka–Lamb 

equation: 
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where the vortex part is explicitly shown: 
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I. S. Gromeka 

(1851–1889) 

Ippolit Stepanovich Gromeka – a Russian 

mechanical scientist, professor at Kazan University. 

He gave an original explanation of the theory of 

capillary phenomena. The flow of an ideal fluids is 

described by the Gromeka–Lamb equation. 
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Vrot


,   zyxVrot ,,


 – rotor operator and its projections: 
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For closing the system of equations (2.1) it must be 

supplemented by a continuity equation and its vector form: 
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where div is divergence operator: 
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H. Lamb 

(1849–1934) 

Horace Lamb – an English applied 

mathematician, author of several influential texts on 

classical physics, among them “Hydrodynamics” 

(1895) and “Dynamical theory of sound” (1910). 
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Let’s take the following assumptions: 

1. The flow is potential: 
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where φ is the velocity potential, m2/s. Due to the equation 

(2.8) it can be assumed, that 
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2. Mass forces are negligibly small: X = Y = Z = 0. 

3. Fluid motion is barotropic. This means that the gas 

density is a function of only the pressure: ρ = ρ(p), which 

occurs, for example, in such cases: 

a) incompressible fluid: ρ = const; 

b) isothermal flow: p = ρ·RT0, where R – universal gas 

constant; T0 – normal temperature on the Kelvin scale; 

c) adiabatic flow: p = C·ρk, where C = const; k – 

adiabatic index (e.g., for air k = 1,45). 

Due to the abovementioned assumptions equations of 

fluid motion (2.5) will take the following form: 
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W. T. Kelvin 

(1824–1907) 

William Thomson Kelvin – a Scots-Irish 

mathematical physicist, the creator of “absolute 

zero” temperature, the low limit temperature units of 

which are now presented in units of Kelvin scale in 

his honour. He is popularly known and remembered 

for his outstanding achievements in the field of 

physics and mechanics. Kelvin also propounded the 

first and second laws of thermodynamics. 
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or 
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where P – pressure function: 
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p0 – initial pressure. 

As a result the Bernoulli integral can be obtained: 
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With an appropriate choice of the boundary conditions, 

an unknown time function f(t) = 0 can be always obtained. 

Thus,  
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D. Bernoulli 

(1700–1782) 

Daniel Bernoulli – a Swiss mathematician and 

physicist, one of the many prominent mathematicians 

in the Bernoulli family. He is particularly 

remembered for his applications of mathematics to 

mechanics, especially fluid mechanics, and for his 

pioneering work in probability and statistics. His 

name is commemorated in the Bernoulli’s principle, 

a particular example of the conservation of energy. 
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A continuity equation (2.10) can be rewritten in the 

following form: 

 

 ,0






gradVVdiv

t


 (2.19) 

 

or 

 

 ,022
2












grad
VaVdiva

t

a 
 (2.20) 

 

where a2 – sound velocity or velocity of small perturbations 

extension: 
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The pressure function (2.16) takes the form 

 

 ,ln22 









a

d
a

d

ddpdp
P    (2.22) 

 

and the equation (2.15) can be rewritten: 
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or taking into account 
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it can be obtained: 
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that after substitution in equation (2.20) gives 
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Thus, the problem consists in solving the equation (2.26) 

and the Bernoulli integral (2.18) within the boundary 

conditions. Equation of the streamlined surface F(x, y, z, t) = 0 

can be written separately for the upper and lower surfaces: 
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then the boundary conditions takes the form: 
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It is easy to notice that equations of the potential flow 

(2.18), (2.26) and the boundary conditions (2.28) are nonlinear.
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§ 2.2. Using small perturbation method 

for linearization of equations 
 

If the body placed in the flow is well-streamlined, then 

the perturbations introduced by it will be sufficiently small  

[70, 71]. Then equations (2.18), (2.26) and (2.28) can be 

linearized with respect to perturbations of the velocity potential 

φ /. An exception is the case of stall flutter in which the 

nonlinearity is highly essential. 

Let the unperturbed flow velocity U be directed parallel 

to the axis OX (Figure 2.1).  

 

 
Figure 2.1 – Streamlined aircraft wing profile 

 

Obviously, this velocity slightly changes by a small 

amount due to the streamlined body. The changed velocity 

differs from the unperturbed one by an infinitesimal amount 

with components u /, v /, w /: 
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Similarly, other physical parameters are 
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where p0, ρ0, a0 – undisturbed parameters. 

Moreover, φ = φ / + U·x, where φ / is the disturbed 

velocity potential. Thus, the velocity vector 
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Up to the first order terms it can be written: 
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Due to (2.32) the Bernoulli equation (2.18) can be 

written: 
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Similarly, the equation (2.26) can be linearized: 
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Introducing into consideration the Mach number 
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allows writing equation (2.34) in the following form: 
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The boundary conditions (2.28) after linearization: 

 

 

 

 .

;

ll

ll

l

uu

uu

u

Yy
x

Y
U

t

Y
v

Yy
x

Y
U

t

Y
v























 (2.37) 

 

Finally, the problem reduces to solving the equation (2.34) 

or (2.36) with respect to the disturbed velocity potential φ / within  

 

 
E. Mach 

(1838–1916) 

Ernst Mach – an Austrian physicist and 

philosopher, noted for his contributions to physics 

such as study of shock waves. The ratio of speed to 

the sound velocity is named by the Mach number in 

his honour. 

https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Philosopher
https://en.wikipedia.org/wiki/Shock_wave
https://en.wikipedia.org/wiki/Mach_number
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the boundary conditions (2.37) with the subsequent 

determination of pressure p by equation (2.33). 

The lift force, which must be used in hydroaeroelasticity 

problems, is defined as the curvilinear integral over the contour 

from the pressure difference. 

The equation (2.36) particularly can be reduced to the 

following forms: 

1. Transonic nonstationary flow (M ≈ 1): 
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2. Quasi-stationary transonic flow (M ≈ 1; ∂φ / / ∂t = 0): 
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3. High-frequency oscillations (U → 0; ∂φ / / ∂x = 0): 
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4. Incompressible fluid flow (a0 → ∞; M → 0): 

a. General case: 
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b. Small width wing: 

 

 .0
2

/2

2

/2











zy


 (2.42) 

 

c. Infinite length wing (∂φ / / ∂z = 0): 
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§ 2.3. Aircraft wing oscillations in two-

dimensional incompressible fluid flow 
 

Incompressible fluid flow is described by equations 

(2.41) for harmonic function φ / with the boundary conditions: 
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where Y = Y(x, t) is profile equation. 

In a linear formulation, the problem can be divided into 

two subproblems: 

1. Nonstationary flow for the case of zero thickness and 

zero curvature wing in case of rectilinear forward motion with 

the velocity U. This motion is superimposed by harmonic 

oscillations with an infinitesimal amplitude: 

a. Flexural oscillations: y(t) = yeiωt. 

b. Torsional oscillations: y(t) = αxeiωt. 

2. Stationary flow for the wing of predetermined small 

thickness, curvature and an average attack angle αm within the 

linear theory. 

The first of the abovementioned approaches is the most 

complicated and can be solved by different techniques: 

– conformal mapping [72–74]; 

– method of hydrodynamic features [75]; 

– operational calculus (Laplace and Fourier transforms) 

[76–81]. 

Unsteady harmonic oscillations of a wing of zero 

thickness and zero curvature in two-dimensional 

incompressible fluid flow are considered for the case of an 

average attack angle αm = 0°. The flow velocity U is parallel to 

the chord or axis Ox. 
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The abovementioned problem consists in solving Laplace 

equation 02   , in other words, in the determination of the 

velocity potential satisfying the boundary conditions, that 

significantly complicate the problem. 

A considerable simplification can be achieved by 

introducing the complex velocity potential 

 

      yxiyxzW ,,    (2.45) 

 

with using the conformal mapping method [72–74] and 

Zhoukovsky transform [82] 
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of the unit circle (Figure 2.2 a)    20;  ie  to the line 

segment (Figure 2.2 b)  ,11;0  xy  where i – imaginary 

unit (i2 = –1); θ – argument of the complex vector. 

If W(ζ) is well-known complex potential for the cylinder 

in auxiliary plane [83–85], then a function W(z) can be 

determined by inverse formulas: 
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P.-S. Laplace 

(1749–1827) 

Pierre-Simon Laplace – an influential French 

scholar whose work was important to the 

development of mathematics, statistics, physics and 

astronomy. Laplace formulated Laplace’s equation 

and pioneered the Laplace transform, which appears 

in many branches of mathematical physics. The 

Laplacian differential operator is widely used in 

mathematics and named after him. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Astronomy
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Mathematical_physics
https://en.wikipedia.org/wiki/Laplace_operator
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a b 

Figure 2.2 – Conformal mapping of the unit circle: 

a – auxiliary plane; b – physical plane 

 

Each fluid motion corresponds to its own complex 

velocity potential. Consequently, if the function W(z) is known, 

then potential φ(x, y), as well as the velocity components u, v 

can be determined. Thereafter, the pressure p is determined by 

the Bernoulli integral. 

However, it is more convenient to solve this problem not 

for the velocity potential, but for the acceleration potential Φ: 
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 (2.48) 

 

where ax, ay – components of the acceleration. 
 

 
J.-B. Fourier 

(1768–1830) 

Jean-Baptiste Joseph Fourier – a French 

mathematician and physicist, best known for 

initiating the investigation of Fourier series and 

their applications to the problems of heat transfer 

and vibrations. The Fourier transform and Fourier’s 

law are also named in his honour. 

https://en.wikipedia.org/wiki/French_people
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law
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Similarly the conjugate function Ψ(x, y) can be 

introduced: 
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Thus, the acceleration potential takes the following form: 

 

      ,,, yxiyxzW   (2.50) 

 

where z = x + ix – complex vector, and functions Φ(x, y ),  

Ψ(x, y) satisfy the Cauchy–Riemann theorem [86]: 
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In this case, the complex function W(z) = Φ + iΨ is not 

simply dependent on x and y, but is a function of one complex 

variable z = x + iy, and 

 

 yx iaa
dz

dW
  (2.52) 

 

as a mirror image of the complex acceleration a = ax + iay. 
 

 
N. E. Joukowsky 

(1847–1921) 

Nikolai Egorovich Zhukowsky – a Russian 

mechanic, founder of aerodynamics and 

aeromechanics as sciences. Zhukowsky’s works in 

the field of aerodynamics were the source of the 

basic ideas on which the aviation science was built. 

Zhukovsky discovered a law that determines the 

lifting power for aircraft wings and determined the 

main profiles of wings and blades. N. E. Zhukowsky 

is a founder of the Central Institute of Aerodynamics. 

https://en.wikipedia.org/wiki/TsAGI
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Moreover, 

 

 ,·
 d

dz

dz

dW

d

dW
  (2.53) 

 

where due to the equation (2.46) 
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The introduction of the complex acceleration potential is 

caused by the fact that the function Φ(x, y) is absolutely 

continuous one. 

Due to the Bernoulli integral, velocities and pressures at 

both sides of the edge are equalized while the body is 

streamlined by steady flow. 

In case of unsteady flow pressures are equalized, but 

velocities are not, what explains the origin of the aerodynamic 

trail [87]. The function φ(x, y) is discontinuous in contrast to 

Φ(x, y). 

Due to the velocity components u = U + u/ and v = V + v/, 

linearization of the acceleration components is carried out 

according to formulas: 

 

 

 
A.-L. Cauchy 

(1789–1857) 

Augustin-Louis Cauchy – a French 

mathematician, who made pioneering contributions 

to analysis. He was one of the first to state and prove 

theorems of calculus rigorously, rejecting the 

heuristic principle of the generality of algebra of 

earlier authors. He almost founded the complex 

analysis and the study of permutation groups in 

abstract algebra. 

https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Generality_of_algebra
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Permutation_group
https://en.wikipedia.org/wiki/Abstract_algebra
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and /

xx aa  , /

yy aa   because U = const, as well as the 

acceleration components are zero at infinity. 

It can be shown that a new function also satisfies 

harmonic Laplace equation. After differentiating continuity 

equation with respect to time we have: 
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because Φ = Φ0 + Φ / (Φ0 = const) due to /

xx aa  . 

The main problem is to identify the harmonic function, 

which allows determining the pressure. From the Euler’s equation 
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B. Riemann 

(1826–1866) 

Bernhard Riemann – a German mathematician, 

who made contributions to analysis, number theory 

and differential geometry. In the field of real 

analysis, he is mostly known for the first rigorous 

formulation of the integral, the Riemann integral and 

his work on Fourier series. His contributions to 

complex analysis include most notably the 

introduction of Riemann surfaces. 

https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Differential_geometry
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Riemann_surfaces
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and due to the equation (2.48): 
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so, Φ + P = f(t) = 0 or 
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 (2.59) 

 

After linearization (p = p0 + p/; ρ = ρ0 in case of 

incompressible flow) it can be obtained: 
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Thus, the acceleration potential is proportional to  

the pressure difference p/ that is the physical interpretation  

of the acceleration potential, which satisfies the Laplace 

equation (2.55). 

The boundary conditions: 

1. At the infinity (u/ = v/ = 0): Φ/ = 0; 

2. On the border: 

a. For the velocity: 
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where the subscript “w” means that the velocity or acceleration 

is on the wing surface. 

It is obviously, that the acceleration potential, which 

satisfies the condition (2.62), does not necessarily satisfy the 

previous one (2.61). Therefore it is necessary to express the 

velocity v/ through the potential Φ/. From the equations (2.48) 

and (2.55): 
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The last differential equation can be solved for the case 

of monoharmonic oscillations. A complex presentation of the 

quantities is used: 
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where j – imaginary unit ( j2 = –1). 

Substitution of expressions (2.62) into the first order 

differential equation (2.63) after simple identity 

transformations gives 
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with the condition: 0xv . 
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For solving an equation (2.63) the method of variation of 

parameters [88, 89] can be used: 

 

     ...,21  xDvxCvv  (2.66) 

 

where v1, v2, … – linearly independent solutions of 

homogeneous differential equation: 
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In case of series expansion (2.64) and taking into account 

only its first term v1C(x) it can be obtained 
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up to an arbitrary constant. Thus, 
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and after integration: 
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and the velocity function in order to the condition 0xv : 
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Thus, the boundary condition (2.61) expressed by the 

acceleration potential, takes the following form: 
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In addition to the abovementioned boundary conditions, 

the flow must satisfy the Kutta–Zhoukovsky–Chaplygin’s 

postulate [90, 91] about finiteness of the flow velocity in its 

trailing edge. 

Determining the complex acceleration potential in the 

auxiliary plane is not such a difficult problem as satisfying the 

boundary conditions on the unit circle, which is due to the fact 

that these conditions (2.61), (2.62) and (2.72) are given in the 

physical plane. 

For transforming the complex acceleration potential  

W(z) = Φ(x, y) + iΨ(x, y) into the auxiliary plane  

W(ζ) = Φ(ξ, η) + iΨ(ξ, η) by Zhoukovsky transform (2.46) with 

using the dependences (2.53), (2.54), the boundary condition at 

infinity (  ): 
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M. W. Kutta 

(1867–1944) 

Martin Wilhelm Kutta – a German 

mathematician, professor at the RWTH Aachen 

University, professor at the University of Stuttgart, 

who co-developed the Runge–Kutta method, used to 

solve ordinary differential equations numerically. He 

is also remembered for the Zhoukovsky–Kutta 

aerofoil, the Kutta–Zhoukovsky–Chaplygin’s 

postulate and the Kutta condition in aerodynamics. 

https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/RWTH_Aachen
https://en.wikipedia.org/wiki/University_of_Stuttgart
https://en.wikipedia.org/wiki/Runge-Kutta_method
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Joukowski_airfoil
https://en.wikipedia.org/wiki/Joukowski_airfoil
https://en.wikipedia.org/wiki/Kutta-Zhukovsky_theorem
https://en.wikipedia.org/wiki/Kutta-Zhukovsky_theorem
https://en.wikipedia.org/wiki/Kutta_condition
https://en.wikipedia.org/wiki/Aerodynamics
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because of 0  yx aa  and 0   aa . 

Thus, 
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where an – normal projection of the acceleration. 

Due to ax = 0 on the border, it can be written: 
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Equations (2.74), (2.76), (2.61) and the Kutta– 
 

 
S. A. Caplygin 

(1869–1942) 

Sergey Alexeyevich Chaplygin – a Russian 

physicist, mathematician and mechanical engineer. 

He is known for mathematical formulas such as 

Chaplygin’s equation and for a hypothetical 

substance in cosmology called Chaplygin gas, 

named after him. He taught mechanical engineering 

at Moscow Higher Womens’ Courses and applied 

mathematics at Moscow School of Technology. 

https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Engineer
https://en.wikipedia.org/wiki/Chaplygin%27s_equation
https://en.wikipedia.org/wiki/Chaplygin_gas
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Zhoukovsky–Chaplygin’s postulate are the general system of 

the boundary conditions. 

According to the first condition (2.74) the function W(ζ) 

can be taken in the form of the Laurent series [92, 93]: 

 

   ...
2

21
0 




AA
AW  (2.77) 

 

The constant term of this expansion can be set equal to 

zero, because it does not impact the acceleration gradient. But 

the Kutta–Zhoukovsky–Chaplygin’s postulate is satisfied due 

to the series converges at point ζ = 1, which corresponds to the 

trailing edge. Coefficients A1, A2, … have been determined 

from the boundary conditions. 

However, Laurent series taken in the form (2.77), can be 

satisfied for the boundary conditions only for the acceleration. 

For satisfying the boundary conditions for the velocity it needs 

to complete the Laurent series by the term, which adds nothing 

to the normal acceleration on the unit circle, but is the 

additional component of the normal velocity of the wing. Such 

term is the complex potential of the dipole iA0/(ζ + 1) [94–96] 

placed in the point ζ = –1 and rotated by 90° using the 

multiplication by i. 

The abovementioned approach takes the possibility for 

 
 

 
P. A. Laurent 

(1813–1854) 

Pierre Alphonse Laurent – a French 

mathematician, best known as the discoverer of the 

Laurent series, an expansion of a function into an 

infinite power series, generalizing the Taylor series 

expansion. 

Laurent was a good engineer, putting his deep 

theoretical knowledge to good practical use. 

https://en.wikipedia.org/wiki/Laurent_series
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Taylor_series
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satisfying the boundary conditions for the velocity, and the 

complex acceleration potential can be described in the 

following form: 

 

   ...
1 2


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
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
CiBiAi

W  (2.78) 

 

There are two cases of the wing movements: 

1. Vertical oscillations of the wing: 

 

   ;tjyety   (2.79) 

 

2. Rotational wing oscillations about the chord’s 

midpoint: 

 

   .tjexty   (2.80) 

 

In the first case the oscillation frequency can be 

expressed in terms of the dimensionless reduced frequency 

 

 ,
UU

b
k


  (2.81) 

 

where b is the half-chord (b = 1). Besides, y0 = y/b is the 

relative amplitude divided by the half-chord. Thus, 

 

   .0

jUkteyty   (2.82) 

 

The boundary conditions for the contour of the physical 

plane z 
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In the auxiliary plane ζ the normal component of the 

complex acceleration potential has the following form: 

 

 .sin0

22

1||  ykUan   (2.84) 

 

For this problem, the complex acceleration potential can 

be taken in the simplified form: 
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where A, B are unknown constants. 

According to the scheme presented on Figure 2, it can be 

written: 
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Figure 2.3 – Geometrical dependences on the circle of radius r 
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as well as the complex acceleration potential W(ζ) can be 

expanded on the real Φ and imaginary Ψ parts: 
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where the following components are introduced: 
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By the cosine theorem [97]: 

 

 .cos2 11

22

1

2 rrrrr   (2.89) 

 

In case of r = 1 the formulas (2.88) and (2.89) can be 

rewritten: 

 

 .
2

;cos2 111 const
A

rr    (2.90) 

 

Thus, the unit circle is the streamline for the acceleration, 

and at each of its points the acceleration vector is tangent to it. 

Consequently, the normal component of the acceleration is 

equal to zero: 
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Moreover, 
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The constant A can be determined from the boundary 

condition for the velocity /

wv  (2.72) with taking into account 

the reduced frequency k (2.81): 
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The variable x on the wing (–1 ≤ x ≤ 1) can be presented 

in the following form: 

 

  .20;1  x  (2.94) 

 

Then, the boundary condition (2.93) takes the form: 
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which can be satisfied for all values of ε. 
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After the differentiation of both parts of equation (2.95) 

with respect to ε, it can be shown, that equation (2.95) is 

fulfilled identically: 
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because of the following dependences from (2.83): 
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Consequently, if the equation (2.95) is satisfied at one 

point of the wing, then it is automatically satisfied on the whole 

wing contour. Thus, it can be taken ε = 0. After the substitution 
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it can be obtained with the use of the integration by parts [98]: 
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Because of  
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it can be written 
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where functions Ψ1, Ψ2 are given in the imaginary plane 

by the equations (2.88), but they have been calculated in the 

physical plane with the use of the inverse Zhoukovsky 

transform [99, 100]: 

 

 ,12  zzrei  (2.102) 

 

where z = x + iy. 

In case of –∞ ≤ x ≤ –1 due to the integral from the 

equation (2.101), it is important to consider the negative part of 

the real axis (Figure 2.4). If x = –1, then θ = θ1 = π, and 
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due to r = r1 + 1. 

The abovementioned allows rewriting functions Ψ1, Ψ2 in 

terms of x: 

 



Chapter 2. Determination of the dynamic forces  

acting on deformable surfaces 

 58 

 

 

.
1

1

;1
1

cos

;
1

1
1

21

1
1

2

11

cos

2

2

2

2
2

2

2

2
1

1
1








































































x

x
B

x

xxB
xx

B

r
B

x

xA

x

xA

xx

A

r
A





 (2.104) 

 

 
Figure 2.4 – Geometrical dependences of conformal mapping 

 

Substitution Ψ1 and ∂Ψ2/∂x to the integral of the equation 

(2.101) allows obtaining the following expression [64]: 
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where the modified zero and first order Bessel functions 

of the second kind [101] are introduced: 
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Thus, the equation (2.101) can be rewritten: 
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where B = U2k2y0. Finally, the constant A can be written 

in the following form: 
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F. W. Bessel 

(1784–1846) 

Friedrich Wilhelm Bessel – a German 

astronomer, mathematician, physicist and geodesist. 

He was the first astronomer, who determined 

reliable values for the distance from the sun to 

another star by the method of parallax. Special 

mathematical functions, known as Bessel functions, 

were named after him. 

https://en.wikipedia.org/wiki/Germany
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where C(k) – Theodorsen function [48, 102]  

(Figure 2.5): 
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Figure 2.5 – A complex polar plot of Theodorsen function [12] 

 

Theodorsen function can be expressed by Hankel 

functions H0, H1 [103]: 
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where I0, I1 and J0, J1 – the first order Bessel functions of  
 

 
T. Theodorsern 

(1897–1978) 

Theodore Theodorsen – a Norwegian-American 

theoretical aerodynamicist noted for his work at 

National Advisory Committee for Aeronautics 

(NACA), the forerunner of National Aeronautics and 

Space Administration (NASA), and for his 

contributions to the study of turbulence. 

https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/NACA
https://en.wikipedia.org/wiki/Turbulence
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zero and the first kind respectively. 

According to the abovementioned, all the boundary 

conditions are satisfied. Moreover, Kutta–Zhoukovsky–

Chaplygin’s postulate is satisfied due to the fact, that the 

function W(ζ) is continuous near the trailing edge, and the 

obtained solution (2.85) is closed. 

The function Φ (2.88) can be obtained by using the 

expressions for A (2.108) and B (2.92): 
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which due to the formula (2.90) in case of r = 1 takes the form: 
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where θ = 2θ1 for the wing’s contour [64]. 

Finally, the expression for the pressure p due to the 

formula (2.64) takes the following form: 
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H. Hankel 

(1837–1873) 

Hermann Hankel – a German mathematician. 

His exposition on complex numbers and quaternions 

is particularly memorable. He solved the problem of 

products of negative numbers by proving the 

corresponding theorem. 
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The aerodynamic force L is the integral of the pressure 

distribution function p with respect to x = r cosθ (r = 1): 
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It can be obtained by taking into account the previous 

dependence (2.113): 
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The aerodynamic moment about the chord’s midpoint, 

which is calculated by the following formula 
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Taking into account the following dependences: 
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the aerodynamic force and moment converts to the following 

forms: 
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where the first component y  is caused by the added 

mass of the fluid, but not due to the flow circulation, and the 

line of force action passes through the chord’s midpoint. Its 

moment is equal to zero. 

The second component  ykUC 2  is caused by the 

added vortexes due to the flow circulation, and the line of force 

action spaces from the chord’s midpoint of a quarter chord 

length b/4. 

In the second case of small rotational wing oscillations 

about the chord’s midpoint, well-known as pitching movement  

[104, 105], it is described by the equation (2.80) that due to the 

formula (2.81) takes the following form: 
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The boundary conditions for the velocity and acceleration 

on the wing surface are: 
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In this case the complex acceleration potential can be 

taken on the following form: 
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and it can me rewritten due to the formula (2.86): 
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where the following components are introduced: 

 

 

.;

;2cos;cos;cos

;2sin;sin;sin

321321

2321

1

1

2321

1

1











r

C

r

B

r

A

r

C

r

B

r

A

 (2.123) 

 

As it was previously shown, Ψ1 = 0, and the unit circle is 

the streamline for the acceleration. In addition, due to the 

dependences (2.91) it can be written: 
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and taking into account x = cosθ, it can be obtained: 
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Thus, the coefficients B, C takes the following forms: 
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and the constant A is analogously obtained from the boundary 

condition for the velocity (2.72) [64]: 
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Finally, the acceleration potential 
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and the aerodynamic force and moment 
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In the general case of joint small flexural-torsional 

harmonic oscillations (Figure 2.6), the aerodynamic force and 

moment are the results of summarizing formulas (2.118) and 

(2.129): 
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where the moment does not contain the component 

yb 25,0  because of the line of corresponding force action 

passes through the centre of gravity. 

 

 
Figure 2.6 – Design scheme for joint flexural-torsional 

oscillations of the wing 
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The solution (2.130) was first obtained by T. Theodorsen 

in 1935, and has several particular cases: 

1. Unsteady flow with the low specific frequency (k ≈ 0) 

is important for engineering practice. In this case Theodorsen 

function C(k) = C(0) = 1, which corresponds to neglecting the 

impact of the vortex slipstream [106, 107] on the flow, and the 

aerodynamic force and moment can be presented in the linear 

matrix form [108, 109]: 
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where {F} = {L; M}T – column vector of the 

aerodynamic force and moment; {Y} = {y; α}T,    T
yY  ;  – 

column vectors of displacements and velocities; [A], [B] – 

stiffness and damping matrices: 
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2. The deeper approximation can be obtained for the 

stationary flow in case of the constant attack angle α directed 

due to the vector of the total velocity. This case takes place for 

the slow flatter with frequencies below 20 Hz [64]: 
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§ 2.4. Determination of aerodynamic 

forces in case of high supersonic speed 
 

In case of Mach number M >> 1 (U >> a0) it is possible 

to significantly simplify the abovementioned theory, if the 

effects related to density, dissociation and phase 

transformations on the flow and body borders are not taken into 

account. Simultaneously, the gas compressibility must be 

carefully considered. By the way, the small perturbation 

method underlies the theory of fluid compressibility [110]. 

The supersonic flow, in contrast to the subsonic one, 

generates new phenomena [111], which is due to the fact that 

high wing velocity (U > a0) has a significant impact on the 

character of perturbations. In case of point source of 

perturbations streamlined by the flow with supersonic  

velocity U, all the disturbances of this source is inside the 

Mach cones [112, 113] schematically shown on Figure 2.7. 

There is no perturbations in front of the Mach cone, and 

the Mach angle μ is determined by the formula: 
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The analogous phenomenon takes place for the 

streamlined wing (Figure 2.7 b). The wing profile cuts into the 

gas volume, the particles of which move in narrow regions 

bounded by vertical planes (Figure 2.7 c). This explanation is 

called the law of plane sections, which simplifies the theory of 

supersonic flow [114]. Due to this law, the pressure on the 

wing surface can be obtained as the pressure on the piston in 

one-dimensional channel [115]: 
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a 

 
b 

 
c 

Figure 2.7 – Mach cone (a), its manifestation (b)  

and the low of plane sections (c) 
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where κ – polytropic index [116]. 

This approach caused the appearance of the piston  

theory [117]. 

For one-dimensional flow of ideal gas the nonlinear 

system of the Euler’s equation and the continuity equation 
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has three unknown parameters: velocity u, pressure p and 

density ρ, which can be expanded for the case of small 

perturbations: 
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Because of 
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the system of equations (2.137) takes the following form: 
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Differentiation of the first equations (2.136) with respect 

to time t and the second one – with respect to coordinate x 

allows determining a wave equation [118] after summarizing: 

 

 .0
2

/2
2

02

/2











x

u
a

t

u
 (2.140) 

 

Wave equations for the pressure p/ and density ρ/ can be 

obtained analogously. 

General solution of the equation (2.140) can be presented 

as the d’Alembert solution according to the method of standing 

waves [119]: 
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where functions f1 and f2 describe the progression and 

regression waves respectively, and depend on the initial 

conditions. 

Introduction of moving coordinate systems with 

coordinates 
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allows describing the solution (2.141) in the folloving 

form: 
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where f1(ξ1), f2(ξ1) – simple plane standing waves, which 

do not depend on time. 

Due to the kinematic approach (Figure 2.8), axes ξ1 and 

ξ2 are located along the absolute axis x and move forward 

towards the positive and negative directions of the axis x with 

the same module of the velocity a0 [120]. 

 

 
Figure 2.8 – Standing waves 

 

However, propagation of the finite perturbations is more 

complicated problem. The well-known Riemann’s solution 

[121] shows the presence of a qualitatively different character 

of waves propagation, that leads to shock waves, which are the 

discontinuity surfaces for the velocity and gas state parameters 

(pressure p/ and density ρ/). 

 

 
J.-B. d’Alembert 

(1717–1783) 

Jean-Baptiste le Rond d’Alembert – a French 

mathematician, mechanician and physicist. 

d’Alembert’s formula for obtaining solutions to wave 

equation is named after him. Wave equation is 

referred to d’Alembert’s equation. 

https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Mechanics
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/D%27Alembert%27s_formula
https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/D%27Alembert%27s_equation
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Due to the piston theory, a cylindrical pipe of infinite 

length, insulated from the external environment, is considered 

(Figure 2.9). A piston moves along the pipe with the velocity, 

which increases instantly from zero value to a certain value at 

the initial time. The resulting perturbation (compression of the 

gas) propagates through the tube. The region of the perturbed 

gas can be divided into an infinite number of infinitesimal 

volumes that are close to each other. Under the assumption that 

the distribution of perturbations along the pipe’s axis is 

continuous in time, the theory of small perturbations can be 

applied in the Galilean (moving) coordinate system, and the 

velocity of propagation of the perturbations is equal to the 

sound speed. Thus, the propagation of perturbations, generated 

by the piston, can be considered as a system of continuously 

following sound waves, and each subsequent wave moves 

along the gas disturbed by the previous waves. In this case, the 

system (2.136) can be supplemented by equation of barotropic 

motion [122]: 
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where C – constant; k – adiabatic index; R – universal gas 

constant; T – absolute temperature in Kelvin scale. 

 
 

 
G. Galilei 

(1564–1642) 

Galileo Galilei – an Italian astronomer, 

physicist, engineer and mathematician. He played a 

major role in the scientific revolution of the 17th 

century. His contributions to observational 

astronomy include the telescopic confirmation of the 

phases of Venus, the discovery of the four largest 

satellites of Jupiter, and the observation and analysis 

of sunspots. Galileo also plays a huge role for the 

development of applied science and technology. 

https://en.wikipedia.org/wiki/Italians
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Engineer
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Scientific_Revolution
https://en.wikipedia.org/wiki/Phases_of_Venus
https://en.wikipedia.org/wiki/Jupiter
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Barotrotic gas flow is accompanied by heating: 
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Due to the last-mentioned formula, compression of the 

gas increases with temperature, as well as each subsequent 

wave moves faster than the previous one with respect to the 

undisturbed flow. As a result, waves catch up to each other, 

creating one powerful compression wave, called a shock wave 

[123]. 

However, when the piston moves backwards, vacuum 

occurs due to waves cooling and, consequently, decreasing the 

velocity from wave to wave. 

The front of the shock wave is the discontinuity plane for 

the gas state parameters (pressure p, density ρ and absolute 

temperature T). It moves in gas with creating an abrupt change 

of these parameters. Herewith, the unperturbed gas before the 

shock waves front has higher pressure, density and temperature 

than after it. 

Due to the following dependences for barotropic gas flow 
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the system of equations (2.136) can be replaced: 
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Introduction of the modified pressure function 
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allows rewriting the system of equations (2.147) in the form: 
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and termwise addition and subtraction leads to equations: 
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where r, s – Riemann invariants [124]: 
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The obtained result can be interpreted as the absence of 

two plane waves propagating along the axis x with the absolute 

velocities respectively (u + a) and (u – a), where ±a – relative 

velocities of waves propagation in gas. 

In case of linearized equations for describing the gas 

movement, the analogous character of waves propagation takes 

place with the main difference: waves propagate with the 

constant values of gas parameters and velocity equal to the 

sound velocity in an undisturbed gas flow. 

For one-dimensional wave propagation in ideal gas with 

disturbances of finite intensity, the second Riemann invariant  

s = constant, and the pressure p = p0 for u = 0, as well as uP 
~

 

at any point of time. Consequently, the absolute velocity value 

(u + a) does not vary in coordinate x, thus, the wave is simple. 

The pressure p > 0, as well as p > p0 due to inequality u > 0. 

Thus, disturbances propagated by these waves, lead to 

compression waves [125]. Analogously, the case of r = const 

leads to rarefaction waves [126]. 

But in case of shock waves it can be considered, that 

waves propagate in isentropic gas flow, and the modified 

pressure function P
~

 can be expressed in terms of a: 
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and 
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After integration it can be obtained: 
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Thus, increasing the disturbed gas velocity u leads to 

increasing absolute (u + a) and relative a velocities of the wave 

propagation. 

As a result, the main difference between the small and 

finite disturbances can be stated: the initial propagation shape 

is varying for finite disturbances unlike the case of small ones. 

Corresponding images are shown on Figure 2.9 for the case of 

compression waves. 

 

 
Figure 2.9 – Shapes of compression waves propagation 
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It can be noted, that the theory of compression waves 

with finite intensity leads to the inevitable appearance of shock 

waves. 

Gas pressure on the piston can be determined by squaring 

the formula (2.154) with replacement the variable u to v: 
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Due to the formula (2.144), 
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and the Clapeyron’s formula lead to the following expression 

[128]: 
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Due to the formula (2.145): 

 
 

 
B. Clapeyron 

(1799–1864) 

Benoit Paul Emile Clapeyron – a French 

engineer and physicist, one of the founders of 

thermodynamics. His research works are aimed at 

the characterisation of ideal gases and the 

equilibrium of homogeneous solids. 
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and finally 
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Questions for self-control 
 

1. What questions are used for the determination of the 

hydroaeroelastic forces? 

2. Describe the components of Euler’s and continuity 

equations. 

3. Explain the physical meaning of such operators as rotor 

and gradient. 

4. How is the divergence of the vector field determined? 

5. Describe and explain the cases of barotropic fluid 

motion. 

6. Describe the pressure function and formula of its 

calculation. What explains the introduction of this function? 

7. Briefly describe the algorithm by which the Bernoulli 

integral can be obtained. What boundary conditions correspond 

to the Bernoulli integral? 

8. Explain the essence of the small pertrubation method. 

What purposes can it be used for? 

9. What is the Mach number? Why, in your opinion, is it 

introduced into consideration? 

10. By which equations is the incompressible fluid flow 

described? Describe the correspondent boundary conditions. 

11. Describe and explain the conformal mapping for the 

unit circle. 

12. What theorem must satisfy the real and imaginary parts 

of the complex acceleration potential? 

13. What are the dependences between Theodorsen, Hankel 

and Bessel functions? 

14. Describe the algorithm for determination of the 

aerodynamic forces acting on a streamlined surface. 

15. Explain the phenomenon of shock waves. 
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§ 3.1. Characteristics of the aircraft 

wing profiles 
 

The cross-section of a cylindrical surface with an infinite 

generatrix is denoted under the general name “profile” [64]. 

The profile of an infinite circular cydinder is a circle, but 

the circle is a poorly streamlined profile. Special well 

streamlined hydrodynamic profiles are developed on the basis 

of the theory of two-dimensional flows. Such profiles are 

named airfoils [129, 130], their geometric feature is an 

elongated form along the flow with a gradually thickened edge 

part (Figure 3.1). 

 

 
Figure 3.1 – Airfoil geometry 

 

The geometric characteristic of the profile, such as 

dimensions and shape parameters, are usually expressed in 

terms of the chord b, which connects the most distant points of 

the contour, by using dimensionless coordinates: 
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where yu, yl – equations of the lower and upper surfaces. 
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Airfoils curvature is characterized by the camber line, 

which is the locus of points located in the middle of the 

perpendicular to the chord. The airfoil thickness is determined 

as diameter d of the inscribed circle, as well as dimensionless 

ordinate of the camber line and maximum camber f are 

determined by the following formulas: 
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The series of airfoils were developed by the leading 

aerospace institutes around the world by carrying out 

theoretical and experimental investigations, and the documents 

are supplemented by the corresponding aerodynamic 

characteristics [131, 132]. 

The airfoil geometrical characteristic is a set of curves 

reflecting the dependence of the hydrodynamic force and 

moment on the attack angle, as well as attack angle α is the 

angle between the chord and direction of the undisturbed flow 

(Figure 3.2). 

 

 
Figure 3.2 – Aerodynamic force acting on the airfoil 
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If the airfoil model is placed in a plane parallel flow, then 

the specific hydrodynamic force acts per unit length.  

The components of this force are the lift force L and the drag 

force X (Figure 3.2), which can be determined immediately. 

The construction of the airfoils characteristics is 

conveniently carried out by the dimensionless coefficients  

Cx, Cy for lift and drag forces respectively, whose values 

describe a series of similar profiles. Lift and drag coefficients 

are determined by the following equations: 
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C yx   (3.3) 

 

where q – the dynamic pressure: 

 

 .
2

2U
q


  (3.4) 

 

Besides the value and direction of the hydrodynamic 

force, it is necessary to determine the point of its application by 

the coordinate x0: 
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where M – experimentally identified specific 

aerodynamic moment. 

The dimensionless moment ratio 
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with coefficients Cx and Cy, which depend on the attack angle 

α, are the aerodynamic airfoil characteristics (Figure 3.3). 

 

 
Figure 3.3 – Aerodynamic airfoil characteristics 

 

Experience shows that a small attack angle leads to the 

linearly increasing lift coefficient Cy: 
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where α0 – attack angle, at which the lift force is equal to 

zero. For symmetrical profiles (yu = yl) this angle α0 = 0, and 
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However, the linear law occurs only in a certain range of 

α for a given profile shape, which corresponds to non-separable 

continuous air flow. A significant increase of the attack angle 

leads to a nonlinear region. After the critical value α = αcr, 

when Cy reaches its maximum value max

yC , a flow separation 

from the upper surface is observed. In the supercritical region  

(α > αcr), the separation region expands, and a lift coefficient 

decreases sharply. 

The drag coefficient Cx reaches its minimum value min

xC  

for zero lift force. Increasing the attack angle α leads to slowly 

increasing the drag coefficient Cx in a subcritical region. But in 

a supercritical region it increases sharply due to the flow 

irregularity. 

According to the shape of the chord line, the airfoils are 

divided into symmetrical, slightly and strongly curved, and  

s-shaped (Figure 3.4) [2, 64, 133]. 
 

 

 
a b 

 
 

c d 

Figure 3.4 – Airfoils classification 
 

Symmetrical airfoils with a straight chord line  

(Figure 3.4 a) is widely used in cases, when the wing operates 
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similarly for positive and negative values of the attack angle, 

for example, as elements of steering wheels. 

Slightly curved airfoils (Figure 3.4 b) are used for the 

wing, which creates irreversible lift force. However, they can 

operate in case of a small negative attack angle near zero lift 

force. Such airfoils have a relatively low drag force and high 

aerodynamic ratio: 
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Strongly curved airfoils (Figure 3.4 c) are used for 

profiling the impellers of rotor machines. 

S-shaped airfoils (Figure 3.4 d) have a relatively good 

moment ratio Cm, which does not depend on the attack angle α. 

At high value of velocity, airfoils need to have low 

relative thickness. However, the minimum thickness of the 

profile is limited by the strength conditions [28, 31, 45]. 
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§ 3.2. Divergence of an elastically fixed 

wing element 
 

Before considering the divergence of a finite-span wing, 

it is necessary to consider the behaviour of a rigid elastically 

fixed wing in a two-dimensional flow (Figure 3.5) 

 

 
Figure 3.5 – Design model of the rigid elastically fixed wing 

 

This approach is justified, and earlier research works in 

the field of hydroaeroelasticity were based on the simplified 

two-dimensional presentation of bearing surfaces. For example, 

T. Theodorsen used this model for analyzing the flutter 

problem, calling it as “cross-sectional characteristics” [135]. 

Herewith, the properties of the model are set so that they 

correspond to the properties of the real wing at a distance of 

70–75 % of the half-span from the root section. 

According to the Figure 3.5, the characteristic points of 

the airfoil are: 

1) A – a centre of lift (aerodynamic center), to which the 

resultant of the pressure forces (specific lift force) is applied; 

2) B – a twist centre, which corresponds to the elastic 

axis location, around which the wing turns; 

3) C – a centre of gravity. 

Wing stiffness is simulated by the torsion spring with the 

stiffness kα. Due to the two-dimensional wing theory [134] for 
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the case of incompressible fluid flow, the lift centre is located 

at the distance b/4 behind the leading edge. In case of 

supersonic streamlining, this centre shifts it to the middle of the 

chord. 

The rotation of the wing at a certain angle leads to the 

appearance of a lift force L applied at the lift centre  

(Figure 3.5). This force causes the aerodynamic moment, 

which tends to twist the wing. The elastic moment Mspr of the 

wing (recovery moment) prevents this twisting. Since the 

elastic characteristics do not depend on the flow velocity U, 

and the aerodynamic moment is proportional to the squared 

flow velocity U 2, the critical velocity can exist, when 

infinitesimal deformation of the wing leads to a theoretically 

infinite twist angle. Such velocity is named as critical 

divergence velocity Udiv. 

In case of linear spring characteristic and zero value of 

lift force, the system is located at angle α. Due to the wing that 

is not absolutely rigid, weakening of the elastic connection 

increases this angle by an amount θ. The problem is in 

determining the equilibrium position (angle θ) of the wing in 

the air flow with velocity U. Thus, the aerodynamic force due 

to formulas (3.3) and (3.4): 
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2

1 2bUCqbCL yy   (3.10) 

 

where Cy – lift coefficient, which is proportional to the 

total attack angle (α + θ), which can be obtained due to the 

formula (3.8): 

 

  .  kCy  (3.11) 

 

A coefficient k is the slope of the curve Cy(α) (Figure 3.3): 
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The aerodynamic moment about the elastic axes: 

 

   ,· 2bqkeLM    (3.13) 

 

where e = εb – distance between the lift centre and elastic 

axis (Figure 3.5) expressed in terms of dimensionless 

eccentricity ε. If the elastic centre is behind the lift centre, then 

ε > 0. 

The recovery moment: 

 

 .kM spr   (3.14) 

 

The stationary position can be obtained from the static 

equilibrium equation for moments [136]: 

 

 ,sprMM   (3.15) 

 

which can be rewritten by taking into account the 

equations (3.13) and (3.14): 
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and the angle: 
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It is obvious, that in case  
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 kbqk 2   (3.18) 

 

the angle θ tends to infinity. Thus, the equation (3.18) is 

the condition for occurrence of divergence. In other words,  
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or critical divergence velocity: 
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Due to the strip theory [137], the coefficient k = 2π, and 

dimensionless eccentricity ε = 1/4. Thus, finally  
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It should be noted, that today the phenomenon of 

divergence is unlikely threatening airplanes, because the 

critical velocity Udiv is usually higher than the critical flutter 

velocity. However, the critical divergence velocity Udiv is a 

convenient comparative value for investigating the 

phenomenon of aeroelasticity. Because the calculation of Udiv 

is relatively simple, it has been identified in the process of 

designing an airplane. 
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§ 3.3. Critical velocity of aileron’s 

reverse 
 

The phenomenon of aeroelasticity, which takes place 

when attaching to the wing of the steering surface  

(Figure 3.6 a), is considered under the assumption that aileron 

is inclined downward by an angle β (Figure 3.6 b). 

 

 
a 

 
b 

Figure 3.6 – Rigid elastically fixed wing with the aileron 
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In case of a rigid support, the downward movement of 

the aileron is accompanied by increasing the lift force L. 

However, in case of an elastically fixed wing element, the 

downward movement of the aileron leads to twisting down the 

leading edge of the wing. Increasing the flow velocity U causes 

increasing the aerodynamic moment M proportionally to the 

squared flow velocity, whereas elastic recovery moment Mspr is 

being constant. As a result, efficiency of the aileron in the 

creation of the lift force decreases with increasing the flow 

velocity until inefficiency of the aileron is reached. 

Corresponding flow velocity Ucr is the critical velocity of the 

aileron’s reverse [138]. 

When considering the behaviour of the wing taking into 

account deflection of the aileron, the lift coefficient Cy is a 

function of both angles α and β, as well as it can be expanded 

in a series of these angles. In linear formulation it can be 

written: 
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where 


 yC
 – the change of the lift coefficient Cy per 

unit angle deviation β of the aileron. 

Increasing the angle β also leads to increasing the 

curvature of the airfoil, which causes the additional 

aerodynamic moment: 
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where Cm – coefficient of the additional aerodynamic 

moment [139]. 
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The total aerodynamic moment about the elastic centre 
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Taking into account the formula (3.14) for the elastic 

moment Mspr, the ratio of the attack angle θ to the aileron angle 

β can be determined from the condition of equilibrium (3.15): 
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The lift force L determined by the formula (3.10), 

contains the lift coefficient Cy determined by the formula 

(3.22). Substitution of the formula (3.24) in the formula (3.22), 

after identical transformations allows obtaining the following 

dependence of the lift coefficient Cy on the angle β: 
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Obviously, the aileron is ineffective in case if the 

numerator in the formula (3.26) is equal to zero: 
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and finally, the critical flow velocity: 
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Avoiding the reverse of ailerons for the straight wing can 

be reached by providing a sufficient torsional stiffness of the 

wing. In case of the sweepback wing [140], the extremely 

serious problem of the critical velocity of the aileron’s reverse 

is ensured by increasing the flexural stiffness. However, 

increasing the flexural and torsinal stiffness is often 

accompanied by an unacceptably high weight of the structure. 

Therefore, other means for increasing the reverse velocity are 

needed to invent. 

In order to clear the above-described quantities, the 

dependence of aileron’s efficiency on the flight velocity is 

shown on Figure 3.7. Wherein, aileron efficiency is the ratio of 

the angular roll rate to the aileron deflection angle. 
 

 
Figure 3.7 – The impact of flight velocity on aileron efficiency 
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It should be noted, that efficiency and reverse of the 

lifting rudders and steering wheels are less critical phenomena 

than efficiency and reverse of ailerons. However, these 

problems are complicated by a comparative large number of 

elastic elements, which cause additional components for the 

total deformation of the tail unit. For example, deformations of 

the fuselage and joint supports are as important as the 

deformations of the tail unit. Thus, efficiency of the tail unit as 

lift force per unit of the angle of the lifting rudder is presented 

on Figure 3.8. 

 

 
Figure 3.8 – The impact of flight velocity  

on efficiency of the tail unit 

 

Finally, Figure 3.9 shows three critical velocities, which 

are the flutter, divergence and reverse velocities. 

Comparison of the abovementioned relative values is a 

necessary process during designing the wing profile: 

1. In case of the straight wing of the arbitrary design, 

twisting divergence takes place for velocities, which are higher 

than the velocity of aileron’s reverse. The last one exceeds the 

velocity of a flexural-torsional flutter. 
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2. In case of forward-swept wings, it can be expected that 

the divergence velocity is less than the flutter velocity, and the 

last one is less than the velocity of aileron’s reverse. 

3. In case of the sweepback wing, the velocity of 

aileron’s reverse is less than the flutter velocity, which in turn 

is less than the divergence velocity. 

 

 
Figure 3.9 – Comparison of critical velocities for the wing 
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§ 3.4. Divergence of a full-cantilever 

wing 
 

Torsion of the full-cantilever wing [141], twisted by the 

aerodynamic moment, is considered for the case of uniform 

loading along the wing length. From a static equilibrium 

equation [142] of the infinitesimal wing length (Figure 3.10) it 

can be obtained: 

 

 ,0 M
dz

dM t  (3.29) 

 

where M – specific aerodynamic moment per unit of the 

wing length; Mt – torque, which can be calculated by the 

following espression: 
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GIp – torsional stiffness of the wing as the product of 

shear modulus G of wing material and cross-sectional polar 

moment of inertia Ip [143]; θ – twist angle; z – longitudinal 

coordinate. 

 

 
Figure 3.10 – Equilibrium of the infinitesimal wing length 
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Due to the formula (3.30), an equation (3.29) takes the 

following form: 
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where the aerodynamic moment can be written in the 

following form: 

 

 ,2  kbqM   (3.32) 

 

where a coefficient k is determined by the formula (3.12). 

Taking into consideration the following parameter 
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for the case of constant torsional stiffness GIp allows rewrite as 

a homogeneous second-order differential equation (3.31): 
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the total integral of which is the harmonic function: 
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where A, B – constants which can be determined by the 

boundary conditions: 
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or due to the formula (3.35): 
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Finally, in case of A ≠ 0: B = 0, and ωα l = πn/2, where  

n – an arbitrary natural number (n = 1, 2, …). 

Tacking into account the formulas (3.33) and (3.4), the 

minimum divergence velocity (for the case of n = 1) can be 

obtained in the following form: 
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§ 3.5. Using the influence functions for 

solving the problems of aeroelasticity 
 

In case of a perfectly elastic body, the dependence 

between loads and deformations is assumed to be linear, and 

the reversibility of the loading-unloading process is accepted. 

Thus, due to the Hooke’s law [144], displacement Wi of i-th 

point under the system of n loading forces Qj (j = 1, 2, …, n) 

can be obtained as the linear form: 
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where aij – compliance coefficients. Therewith, aij is 

displacement of i-th point under the unit force in j-th point. 

The abovementioned approach apparently can be used for 

two-dimensional and three-dimentional problems of 

hydroaeroelasticity by introduction the influence function  

G(z, ζ), which is the rotation angle of the cross-section with a 

coordinate z under the unit couple of forces (aerodynamic 

moment) acting on the cross-section with a coordinate ζ [145]. 

If the wing is in the static equilibrium state, the total 

rotation angle Θ(z) on the arbitrary cross-section is 

 

 
R. Hooke 

(1635–1703) 

Robert Hooke – an English architect and 

polymath, a member of the Royal Council. He is 

well-known as an important architect of his time, 

whose influence remains today. Many of Hooke’s 

scientific works were conducted in his capacity as a 

curator of experiments of the Royal Society. 

https://en.wikipedia.org/wiki/Polymath
https://en.wikipedia.org/wiki/Royal_Society
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where M(ζ) – distribution function for the aerodynamic 

moment about the wing length: 
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Finally, the angle Θ(z) can be obtained by substitution of 

the formula (3.41) to the formula (3.4): 
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where b(ζ) – distribution function for the wing width  

(Figure 3.11). 

 

 
Figure 3.11 – Distribution function for the wing width 

 

Furthermore, the problem of wing twisting under the 

action of the aileron can be analogously solved by the 

abovementioned approach. 
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Questions for self-control 
 

1. Describe the airfoil geometry with the correspondent 

geometrical parameters. 

2. Describe the components of the lift force. 

3. What equations allow determining the lift and drag 

coefficients? 

4. Explain the aerodynamic airfoil characteristics. 

5. Give the classification of airfoils with their advantages 

and disadvantages. 

6. Describe the design model of the elastically fixed rigid 

wing and all characteristic points. 

7. How can the aerodynamic force be calculated? What 

parameters does it depend on? 

8. Explain the design model of the elastically fixed rigid 

wing with the aileron. 

9. How do the efficiencies of ailerons and tail units 

depend on the mach number? 

10. Describe the algorithm for determination of the critical 

aileron’s velocity. 

11. Compare all the critical velocities of the wing. 

12. Describe briefly the technique for determination of the 

divergence velocity of a full-cantilever wing. 

13. How can the influence functions be used for solving the 

problems of aeroelasticity? 

14. How can be solved the problem of wing twisting under 

the action of the aileron? 
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§ 4.1. Equations of small flexural-

torsional oscillations of a wing in the gas 

flow 
 

From the viewpoint of the theory of hydroaeroelasticity, 

the wing can be considered as an elastic full-cantilever beam 

with an infinite flexural stiffness in direction x and a finite one, 

that is equal to EI, in direction y, where I – an axial moment of 

inertia. The torsional stiffness is equal to GIp. To simplify the 

problem, the centre axis is assumed to be straight and directed 

perpendicular to the flow (Figure 4.1). 

 

 
Figure 4.1 – Design scheme of the streamlined wing 

 

Equation of purely flexural oscillations can be obtained 

by using the basic law of dynamics (the Newton’s second law 

of motion) [146] for an infinitesimal element with specific 

mass μ: 
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account due to static equilibrium equations for the infinitesimal 

wing element (Figure 4.2): 
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where Q – specific share force. 

 

 
Figure 4.2 – Infinitesimal wing element 

 

 
I. Newton 

(1643–1727) 

Isaac Newton – an English mathematician, 

astronomer and physicist, who is widely recognized 

as one of the most influential scientists of all the time 

and a key figure in the scientific revolution. His book 

“Mathematical principles of natural philosophy” 

(1687) laid the foundations of classical mechanics. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Astronomy
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Scientific_revolution
https://en.wikipedia.org/wiki/Classical_mechanics
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Due to the formula [147] 
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the equation of purely flexural oscillations (4.1) takes the form: 
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The angular momentum theorem [148] 
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due to equations (3.29) and (3.30) for the design scheme 

presented on Figure 3.10, allows obtaining the equation of 

torsional oscillations in the following form: 
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where α – rotation angle; r = Ip/F – radius of inertia as 

the ratio of polar moment of inertia Ip to the cross-sectional 

area F. 

Obviously, in case of the coordinate of the point of lift 

force application xm = BC ≠ 0, there are joint flexural-torsional 

oscillations (Figure 4.3), which is due to Figure 2.6: 
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Thus, equations (4.4) and (4.6) create the system of 

differential equations: 
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 (4.8) 

which describes small flexural-torsional wing oscillations. 

 

 
Figure 4.3 – Joint flexural-torsional wing oscillations: 

C – mass centre; m – specific mass; ky – linear stiffness 

coefficient; kα – angular (torsional) stiffness coefficient 

 

The system of equations (3.8) takes the simplest form in 

two cases: 

1. Using the quasi-stationary theory of subsonic 

incompressible fluid flow. 

2. Taking into consideration high supersonic velocities 

with using the piston theory. 

A simplified solution of equations (4.8) can be obtained 

under the assumption of a quasisteady character of the  
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wing motion with the constant linear and angular velocities 

( 0y ) in case of a small value of dimensionless reduced 

frequency. Thus,  
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where Ai2, Bij (i, j = {1; 2}) – stiffness and damping 

coefficients, which depend on the flow velocity U, and don’t 

depend on time t and coordinate z. 

For the abovementioned case, equations of joint flexural-

torsional oscillations of the wing are linear with constant 

coefficients, the solution of which can be written in the 

following form: 
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where S(z), T(z) – form functions; λ – characteristic 

index, which can be presented as a complex number: 

 

 . ip   (4.11) 

 

In terms of different values of parameters p and ω there 

are several types of movement. In case of a positive real part  

(p > 0), oscillations amplitude increases, which corresponds to 

the unstable wing motion. In another case, when p < 0, 

oscillations are damped. The case of p = 0 (λ = iω) physically 

corresponds to a simple harmonic motion. In case of ω = 0 the 

phenomenon of divergence takes place. The case of ω ≠ 0 

corresponds to the critical flutter state. 
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Thus, investigations of the flutter phenomenon can be 

provided for undamped harmonic oscillations (p = 0; λ = iω). 

This approach allows using the linearized aerodynamic theory 

[149] and the linear theory of oscillations [16]. 

The geometrical boundary conditions for the full-

cantilever wing at point z = 0 are zero displacement y and angle 

α, as well as zero deviation 
z

y




 (the case of fixed cross-

section): 
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The physical boundary conditions at point z = l, which 

corresponds to a free edge, are: 
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which can be rewritten due to the formulas (4.2), (4.3) and 

(3.30) in the following form: 
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§ 4.2. Using Galerkin method for 

determination of the critical flutter velocity 
 

The consideration of the wing motion for the case of 

critical flutter (U = Ucr; λ = iω) allows determining the critical 

flight velocity Ucr. Wherein, harmonic oscillations can be 

presented in the form (4.10): 

 

     ,; titi ezTezSy     (4.15) 

 

for the form functions S(z) and T(z), which due to Galerkin 

method [150] can be taken in the following form: 

 

        ,;
11





n

j

jj

n

j

jj zTBzTzSAzS  (4.16) 

 

where Aj, Bj – complex constants in amount of n needed 

to be found; Sj(z), Tj(z) – linearly independent functions, which 

satisfy all the geometrical (4.12) and physical (4.14) boundary 

conditions. 

In the first approximation (n = 1): 
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B. G. Galerkin 

(1871–1945) 

Boris Grigoryevich Galerkin – a Russian 

mathematician and engineer. Galerkin method for 

solving differential equations is known all over the 

world. Its approach provides a foundation for 

algorithms in the fields of mechanics, 

thermodynamics, electromagnetism, hydrodynamics 

and many others. 

https://en.wikipedia.org/wiki/USSR
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Engineer
https://en.wikipedia.org/wiki/Galerkin_method
https://en.wikipedia.org/wiki/Mechanics
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Hydrodynamics
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where S1, T1 – form functions for purely flexural and 

torsional oscillations respectively (the case of xm = 0). Then, 

due to the formula (4.15): 
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where ω – oscillation frequency. 

Due to the formula (4.9), the system of equations (4.4) 

can be presented in the following form: 
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and with taking into account the formula (4.18): 
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After multiplying the first equation (4.20) by S1 and the 

second one by T1, after subsequent integration with respect to z 
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in the range from z = 0 to z = l (l – wing length), there can be 

obtained the homogenous system of linear algebraic equations: 
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where aij, bij (i, j = {1; 2}) – coefficients which depend 

on the flow (or flight) velocity U, and can be calculated by the 

following formulas: 
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The condition of existence of non-trivial solutions of the 

equation (4.21) is vanishing the determinant [151]: 
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The obtained complex determinant is a frequency 

equation in the Galerkin form. Its disclosure must be 

accompanied by the separation of the real part from the 

imaginary one. As a result, both equations with respect to ω 

and U create the following system of nonlinear algebraic 

equations: 
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where the following coefficients are introduced: 
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Oscillation frequency can be determined from the second 

equation (4.24): 
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Substitution of this frequency to the equation (4.24) 

allows obtaining an equation for determining the critical flutter 

velocity: 
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It can be shown, that the equation (4.27) can be rewritten 

in the form of biquadratic equation [64] 
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with the constants a, b, c. 

The minimum value of real roots 
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corresponds to the critical flutter velocity Ucr. 

Due to the practical necessities, the critical flutter 

velocity Ucr is usually determined, rather than the oscillation 

form. Therefore, the solution of the aeroelasticity problem ends 

at this stage. 

It should be noted, that in general case the aerodynamic 

force L and the moment M depend on the Theodorsen function, 

which leads to the nonlinearity of the abovementioned 

equations for determining the oscillation frequency ω and the 

critical flutter velocity Ucr. 
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§ 4.3. Flutter of a single-mass system 

with two degrees of freedom 
 

The flexural-torsinal wing oscillations as the single-mass 

system can be considered by taking into account the design 

scheme presented on Figure 4.3. Wherein, the total specific 

mass m of the system is concentrated at point C. The system 

has two degrees of freedom corresponding to transverse 

displacement yC of the mass centre C and rotation around it at 

the angle α. 

Equations of purely flexural and torsional oscillations of 

the partial systems have the following forms [152]: 
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where ky, kα – linear and angular (torsional) stiffness 

coefficient respectively; Iα – polar moment of inertia. 

The system of equations, which describes the joint 

flexural-torsional oscillations, can be obtained by using the 

formula [4.7]: 
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where ωk, ωα – eigenfrequencies of partial systems: 
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and q – coefficient calculated by the formula: 
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The list force L(t) and its moment M(t) can be taken into 

account in the coarsest approximation (2.133). In this case, the 

equations (4.32) take the following form: 
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where coefficients are introduced: 
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The system of equations (4.35) can be reduced to the 

following form: 
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the solutions of which can be obtained in the form: 
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The substitution of expressions (4.38) into the fourth 

order system of differential equations (4.37) gives the 

homogeneous system of two linear algebraic equations with 

respect to unknown amplitudes A and B: 
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The condition of existence of non-trivial solutions of the 

equation (4.39) is vanishing of the following determinant: 
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as the complex frequency equation, which after its disclosure 

can be described by the following system of nonlinear 

algebraic equations with respect to ω and U: 
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The eigenfrequency ω of the joint flexural-torsional 

oscillations can be obtained from the first equation of the 

system (4.41): 
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and the velocity U – from the second one: 
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It should be noted, that in case of zero value of the 

eigenfrequency (ω = 0), the critical divergence velocity Udiv 

can be obtained: 
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which corresponds to the equation (3.21). 

The critical flutter velocity Ucr can be obtained by 

substitution of the eigenfrequency ω (4.42) to the equation (4.43): 
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 (4.45) 

 

graphically presented on Figure 4.4 as an example for the 

different values of xm/b and ωy/ωα. 
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Figure 4.4 – Dependence of the critical flutter velocity  

on the partial frequencies 

 

Analysis of the abovementioned formula determines the 

following conclusions: 

1. The partial frequency ratio ωy/ωα has a significant 

impact on the critical flutter velocity Ucr. 

2. The critical flutter velocity Ucr can be either higher or 

lower than the divergence velocity Udiv. 

3. Divergence is dangerous only for small torsional 

stiffness kα of the system: ωα << ωy. 
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§ 4.4. Using Routh–Hurwitz criterion 

for determination of the critical flutter 

velocity 
 

The general problem related to the stability of the 

cantilever wing at a certain flight velocity U can be 

investigated by solving the system of equations (4.19). 

Wherein, the solution is found in the form: 
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where A, B – constants needed to be found;  

S(z), T(z) – functions that satisfy all the geometrical (4.12) and 

physical (4.14) boundary conditions; λ – solution of the 

characteristic equation described below. 

Due to the formula (4.46) the system of equations (4.19) 

can be rewritten in the following form: 
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 (4.47) 

 

For the approximate solution, Galerkin method is 

applied. In this case, after multiplying the first equation (4.47) 

by S and the second one by T, after subsequent integration with 

respect to z in the range from z = 0 to wing length z = l, there 



Chapter 4. Flexural-torsional flutter of beams and plates 

 

 122 

can be obtained the homogenous system of linear algebraic 

equations: 
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where aij, bij (i, j = {1; 2}) – coefficients, that can be 

calculated with the following formulas: 
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 (4.49) 

 

The condition of existence of non-trivial solutions of the 

equation (4.49) is vanishing of the following determinant: 
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disclosure of which leads to the fourth degree algebraic 

equation: 
 

 ,001

2
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3

4  AAAA   (4.51) 

 

with the constant coefficients Ai (i  = {0; 1; 2; 3}). 

It should be noted that Routh–Hurwitz approach is based 

on investigation of the roots of equation (4.51). 

The equation (4.51) has two pairs of complex conjugate 

roots [153]: 
 

 .; 224,3112,1  ipip   (4.52) 

 

Minus sign “–” before real parts p1 and p2 is chosen for 

ensuring stability of the system. 

Moreover, the following expression is valid: 
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or after expanding: 
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E. J. Routh 

(1831–1907) 

Edward John Routh – an English mathematician, 

well known for his contribution for systematization 

of the mathematical theory of mechanics, as well as 

for development of modern control systems theory.  

He derived the stability criterion for linear systems. 

https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Mechanics
https://en.wikipedia.org/wiki/Control_theory
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Thus, substitutions of the roots (4.52) in the equation (4.54) 

with taking into account the formula (4.51) gives the expressions 

for determining unknown coefficients Ai (i  = {0; 1; 2; 3}): 
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As a result, all the coefficients Ai are positive, which is 

the necessary condition for stability of the wing oscillations. 

However, the positivity of the coefficients Ai is not sufficient 

condition for ensuring stability of the system. In addition, the 

compatibility condition [154] for the coefficients (4.55) are: 
 

 ,2
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2

1321 AAAAAA   (4.56) 

 

which can be ensured on the stability threshold. But, the 

unknown fact is from which side of this equality the stability 

takes place. This can be determined for one of the particular 

cases for the values of the parameters pi, ωi (i = {1; 2}). 

For example, p1 = ω1 = 1; p2 = ω2 = 2. In this case  

A0 = 16, A1 = 24, A2 = 18 and A3 = 6. Finally,  

A1A2A3 > A1
2 + A0A3

2 due to 2592 > 1152, as well as the  
 

 
A. Hurwitz 

(1859–1919) 

Adolf Hurwitz – a German mathematician, who 

worked on algebra, analysis, geometry and number 

theory, and well-known for his works in the field of 

control systems and dynamical systems theory. 

Independently of E. J. Routh, he derived the stability 

criterion for linear systems by a different method. 

https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Control_systems
https://en.wikipedia.org/wiki/Dynamical_systems_theory
https://en.wikipedia.org/wiki/Edward_John_Routh
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion
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Routh–Hurwitz conditions of the stability are: 
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It can be shown, that the conditions (4.57) lead to the 

equation (4.28), which was obtained previously, as well as the 

critical flutter velocity is determined by the formula (4.29). 
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§ 4.5. Flexural-torsional flutter of a 

plate 
 

Oscillations of the streamlined elastically fixed 

rectangular plate are considered (Figure 4.5). Supporting 

stiffness on the leading edge is k1 and on the tailing edge is k2. 

The lift force L acting on the plate is applied at point B located 

at a distance e from the mass centre C. Due to the formulas 

(3.3), (3.4), (3.8) and taking into account the strip theory [137] 

(∂Cy/∂α = 2π), the total lift force is approximately determined 

by a formula: 
 

 ,
2

2
2







blUbl
UC

qblCL
y

y 



  (4.58) 

 

where ρ – fluid density; U – flow velocity; α – attack 

angle; b – chord; l – plate length. 
 

 
Figure 4.5 – Design scheme of the streamlined  

elastically fixed rectangular plate 
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Due to the elastic supports, the elastic forces act on the 

plate: 
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The aerodynamic and elastic forces lead to flexural-

torsional oscillations of the plate, which can be described by 

linearized differential equations for plane movement of the 

mechanical system [155]: 
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where m – mass of the plate; I – axial moment of inertia 

of the rectangular plate about the mass centre C [155]: 
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 (4.61) 

 

μ – specific mass per unit area. 

Due to the formulas (4.58) and (4.60), the system of 

equations (4.60) takes the form: 
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which can be rewtitten by taking into account eccentricity  

e = εb (ε – dimensionless eccentricity) and the formula (4.59): 
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or after identical transformations: 
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Introduction of the coefficients 
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allows rewriting the system of the differential equations (4.64): 
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The case of 0y  describes the plate divergence: 
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The condition of existence of non-trivial solutions of the 

equation (4.67) is vanishing of the following determinant: 
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Taking into account the expressions (4.65) gives: 
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or after simplifying: 
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Thus, the divergence velocity can be obtained: 

 

 
    

.
2121

2

12

21

 


kk

kk
U div  (4.71) 

 

Resulting the formula (4.71) let’s consider the following 

partial cases: 
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1. Due to the strip theory [137], dimensionless 

eccentricity ε = 1/4: 
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In this case divergence is possible for 3k2 > k1. 

2. In case of zero eccentricity (ε = 0): 
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And divergence takes place for k2 > k1. 

3. In case of infinite stiffness k2 → ∞ (Figure 4.6 a): 

 

 .
2 1



k
U div   (4.74) 

However, the case k1 → ∞ (Figure 4.6 b) cannot lead to 

divergence. 

 

 
a 

 
b 

Figure 4.6 – Design scheme for the case of infinite stiffness 
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In the general case of the flexural-torsional oscillations 

described by the fourth order system of homogeneous 

differential equations (4.66), the solution can be presented in 

the form of mono-harmonic oscillations [156]: 
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where A, B – unknown amplitudes; ω – oscillation 

frequency. 

Substitution of the formula (4.75) to the equations (4.66) 

leads to the homogeneous system of linear algebraic equations 

with respect to amplitudes A and B: 
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The condition of existence of non-trivial solutions of the 

equation (4.76) is vanishing of the following determinant: 
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which is the frequency equation. Its roots are: 
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It should be noted, that the following conditions must be 

satisfied: 

1. Square eigenfrequency ω2 is real: 

 

 
 

.
4

2

2211
21122211

aa
aaaa


  (4.79) 

 

2. Square eigenfrequency ω2 is positive: 

 

 .021122211  aaaa  (4.80) 

 

On the stability threshold, the first condition (4.79) after 

equivalent transformation leads to an equation: 
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which can be rewritten due to formulas (4.65) in the form of 

biquadratic equation (4.28) with the following coefficients: 
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Its roots (4.29) take the form: 
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In case of small eccentricity (ε << 1), the coefficients 

(4.82) take the form: 
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and the biquadratic equation (4.28) reduces to a quadratic 

equation: 
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the positive root of which  
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Thus, the flexural-torsional flutter is possible under the 

condition k1 > k2. 
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Questions for self-control 
 

1. Explain the design model of small flexural-torsional 

oscillations of a wing streamlined by the gas flow. What 

equations can be used for describing such oscillations? 

2. Describe Galerkin method for determination of the 

critical flutter velocity. 

3. Describe briefly the approach for determining the 

critical flutter velocity of a single-mass system with two 

degrees of freedom. 

4. Explain graphically the dependence between the critical 

flutter velocity and the partial frequencies of a single-mass 

system with two degrees of freedom. 

5. Specify Routh–Hurwitz criterion for determination of 

the critical flutter velocity. 

6. Explain the approach for investigating oscillations of 

the streamlined elastically fixed rectangular plate, elastically 

supported on the leading and tailing edges. 

7. Describe the special cases of the design schemes of the 

elastically fixed rectangular plate. 

8. What design scheme of the streamlined elastically fixed 

rectangular plate cannot lead to divergence? 

9. Set the differences and similarities between using 

Galerkin method and Routh–Hurwitz criterion for investigating 

small flexural-torsional oscillations of a wing. 
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§ 5.1. Oscillations of a cylinder in the 

gas flow 
 

Oscillations of a circular cylinder, poorly streamlined by 

the gas flow, are considered. A characteristic feature of this 

phenomenon is the appearance of Karman vortex street  

(Figure 5.1) as well-ordered set of vortices moving periodically 

in space and in time [51–53, 55]. 

Separation of the single vortex from the cylinder surface 

is accompanied by the flow circulation, which changes by the 

amount equal to intensity of the vortex. If Karman vortex street 

forms behind the cylinder, then vortices emerge alternately on 

the opposite directions from the cylinder surface in equal time 

intervals. Therefore, the lift force is changed periodically, 

which is the cause of the oscillations occurring transversely to 

the flow direction [64]. 

The abovementioned phenomenon of emerging the 

trailing vortices was investigated for the first time by T. 

Karman. His experimental research allows determining the 

dependence between the frequency of vortex shedding f, 

cylinder diameter d and flow velocity U: 

 

 ,2.0
U

df
St  (5.1) 

 

where St – Strouchal number [156], which physically 

means the specific frequency of vortex shedding. 

The more accurate empirical formula [157] 

 

 









Re

1.20
1195.0St  (5.2) 

 



§ 5.1. Oscillations of a cylinder in the gas flow 

 

 137 

 
a 

 
b 

 
c 

Figure 5.1 – Flow separation over a cylinder  

at different Reynolds number 

 

 
V. Strouchal 

(1850–1922) 

Vincenc Strouhal – a Czech physicist specializing 

in experimental physics. He was one of the founders 

of the Physics department at Charles University in 

Prague. 

https://en.wikipedia.org/wiki/Czech_people
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Experimental_physics
https://en.wikipedia.org/wiki/Charles_University
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takes into account Reynolds number Re [158] in the range of 

40…5·103: 

 

 ,Re


Ud
  (5.3) 

 

where d – a hydraulic diameter; ν – kinematic viscosity 

of environment. 

It should be noted, that there are several cases of the flow 

pattern due to the Reynolds number: 

1. In case of small Reynolds numbers (Re < 40), smooth 

flow about a cylinder occurrs (Figure 5.1 a). 

2. In case of Re = 40, vortices become asymmetric, they 

detach from the cylinder surface and move downstream 

alternately on its both sides. 

3. The case of 40 < Re ≤ 150 corresponds to the regular 

vortex detaching (Figure 5.1 b). 

4. The case of 150 < Re < 300 corresponds to a transient 

mode. 

5. There is irregular vortex street with random amplitude 

at Reynolds numbers Re ≥ 300. 

6. The turbulent wake appears at Reynolds numbers Re > 

105 (Figure 5.1 b). 

However, the theoretical investigation of the vortex street 

under assumption of an ideal fluid cannot disclose the impact  
 

 
O. Reynolds 

(1842–1912) 

Osborne Reynolds – a prominent innovator in the 

understanding of fluid dynamics. Separately, his 

studies of heat transfer between solids and fluids 

brought improvements in boiler and condenser 

design. He spent his entire career at University of 

Manchester.  Reynolds most famously studied the 

conditions in which the flow of fluid in pipes 

transitioned from a laminar flow to a turbulent one. 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/Laminar-turbulent_transition
https://en.wikipedia.org/wiki/Laminar_flow
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of Reynolds number Re on the flow pattern. Simultaneously, 

allowance of friction involves certain mathematical 

complexities. 

Thus, vortex detaching from the cylinder surface caused 

the periodically changing force perpendicular to the flow 

direction. Its amplitude can be presented in the following form: 

 

 ,
2

2

0 d
U

Cq k


  (5.4) 

 

where ρ – density of environment; U – flow velocity;  

d – cylinder diameter (Figure 5.2). 

 

 
Figure 5.2 – Karman vortex street 

 

Karman’s coefficient Ck takes values in the range 

0,5…1,7 and can be determined by the following formula 

[159]: 

 

 ,122 







 St

d

b

d

b
Ck  (5.5) 

 

where b – vortex step (Figure 5.2). 
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Due to the huge experimental experience, oscillations of 

poorly streamlined bodies can be interpreted from two 

viewpoints: 

1) forced oscillations in the system with delay [160]; 

2) self-oscillations [39, 40]. 

The first case corresponds to the fluid flow, whereas the 

second one is more suitable for the gas flow. 

The design scheme describing forced oscillations of the 

streamlined cylinder in the fluid flow is presented on  

Figure 5.3. 
 

 
Figure 5.3 – Design scheme of forced oscillations  

of the streamlined cylinder in the fluid flow 

 

An equation of oscillations of the damped single-mass 

system has the following form [161]: 
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where m – specific mass; y – displacement of the centre 

mass; n – damping coefficient; ω – eigenfrequency;  

q – specific square-wave external force (Figure 5.4): 
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where q0 – amplitude (5.4); f – frequency; τ – time delay. 

 

 
Figure 5.4 – Specific square-wave external force 

 

Displacement is changed by the harmonic law: 

 

   .cos tfAty   (5.8) 

 

The aerodynamic force q(t) can be expanded as a Fourier 

series [162]: 
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the coefficients a0, ai, bi (  ...1i ) of which are determined by 

following formulas: 
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where T = 2π/f – oscillation period. 

Restricting the first terms of the expansion 
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allows obtaining the following law of external force: 

 

    .cos
4 0 


 tf
q

tq  (5.12) 

 



§ 5.1. Oscillations of a cylinder in the gas flow 

 

 143 

Taking into account trigonometric equality 

 

    ftfftftf sinsincoscoscos   (5.13) 

 

with substitution of the formulas (5.8) and (5.12) to the second 

order, the differential equation (5.6) leads to the following 

trigonometric equation [163]: 
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decomposed into two equations of the system: 
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Due to the system (5.15), the oscillation amplitude A and 

frequency f are the roots of the following transcendental 

equations [164]: 
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In the first approximation (f ≈ ω) the oscillation 

amplitude A can be obtained in the following form: 
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 ,1 



 ctgA   (5.17) 

 

where δ – logarithmic decrement of damping [165]: 
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Introduction of the stiffness coefficient 

 

 2mc   (5.19) 

 

with taking into account experimental dependence for time 

delay 
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allows to determine the module of the oscillation amplitude 

(5.16): 
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Obtained formulas remain valid for any cross-sections, 

differing only by the dimensionless Karman’s coefficient Ck 

and Strouchal number St. 
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§ 5.2. The Tacoma Narrows Bridge 

failure 
 

According to the materials [64, 165], the original Tacoma 

Narrows Bridge located in Washington State was opened to 

traffic on July 1, 1940. It was the third-longest suspension 

bridge in the United States at the time, with the average length 

of 855 m, width 11,7 m and beam height 2,4 m. 

Prior to this time, most bridge designs were based on 

trusses, arches, and cantilevers to support heavy freight trains. 

Automobiles were obviously much lighter. Suspension bridges 

were both more elegant and economical than railway bridges. 

Thus the suspension design became favoured for automobile 

traffic. Unfortunately, engineers did not fully understand the 

forces acting upon bridges. Neither did they understand the 

response of the suspension bridge design to these poorly 

understood forces [165]. 

Furthermore, the Tacoma Narrows Bridge was built with 

shallow plate girders instead of the deep stiffening trusses of 

railway bridges. Note that the wind can pass through trusses. 

Plate girders, on the other hand, present an obstacle to the 

wind. As a result of its design, the Tacoma Narrows Bridge 

experienced rolling undulations which were driven by the 

wind. It thus acquired the nickname “Galloping Gertie”. 

Strong winds caused the bridge to collapse on  

November 7, 1940. Initially, 16 m/s winds excited the bridge’s 

transverse vibration mode, with an amplitude of 0.3 m. This 

motion lasted 3 hours. The wind then increased to 19 m/s. In 

addition, a support cable at mid-span snapped, resulting in an 

unbalanced loading condition. The bridge response thus 

changed to a 0.2 Hz torsional vibration mode, with an 

amplitude up to 8.5 m. The torsional mode is shown on  

Figure 5.5. 
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Figure 5.5 – The Tacoma Narrows Bridge 

 

The torsional mode shape was such that the bridge was 

effectively divided into two halves. The two halves vibrated 

out-of-phase with one another. In other words, one half rotated 

clockwise, while the other rotated counter-clockwise. The two 

half spans then alternated polarities [165]. 

One explanation of this is the law of minimum energy.  

A suspension bridge may either twist as a whole or divide into 

half spans with opposite rotations. Nature prefers the two half-

span option since this requires less wind energy. The dividing 

line between the two half spans is called the “nodal line”. 

Ideally, no rotation occurs along this line. 

The bridge collapsed during the excitation of this 

torsional mode. Specifically, a 183 m length of the centre span 

broke loose from the suspenders and fell a distance of 58 m 

into the cold waters below. The failure is shown on Figure 1.4. 

The fundamental weakness of the Tacoma Narrows 

Bridge was its extreme flexibility, both vertically and in 

torsion. This weakness was due to the shallowness of the 
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stiffening girders and the narrowness of the roadway, relative 

to its span length. 

There are several failure theories about the Tacoma 

Narrows Bridge collapse, and engineers still debate the exact 

cause. Three theories are: 

1) random turbulence; 

2) periodic vortex shedding; 

3) aerodynamic instability (negative damping). 

These theories are taken within the work [166] about 

aerodynamic instability which is the leading candidate. 

An early theory was that the wind pressure simply 

excited the natural frequencies of the bridge. This condition is 

called “resonance”. The problem with this theory is that 

resonance is a very precise phenomenon, requiring the driving 

force frequency to be at, or near, one of the system’s 

eigenfrequencies in order to produce large oscillations. The 

turbulent wind pressure, however, would have varied randomly 

with time. Thus, turbulence would seem unlikely to have 

driven the observed steady oscillation of the bridge [165]. 

Theodore von Karman, a famous aeronautical engineer, 

was convinced that vortex shedding drove the bridge 

oscillations. T. Karman showed that blunt bodies such as 

bridge decks could also shed periodic vortices in their wakes. 

A problem with this theory is that the natural vortex 

shedding frequency was calculated to be 1 Hz. The torsional 

mode frequency, however, was 0.2 Hz, observed by the 

professor F. B. Farquharson, who witnessed the collapse of the 

bridge. The calculated vortex shedding frequency was five 

times higher than the torsional frequency. It was thus too high 

to have excited the torsional mode frequency. 

In addition to Karman vortex shedding, a flutter-like 

pattern of vortices may have formed at a frequency coincident 

with the torsional oscillation mode. Whether these flutter 
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vortices were a cause or an effect of the twisting motion is 

unclear. 

Aerodynamic instability is a self-excited vibration. In this 

case, the alternating force that sustains the motion is created or 

controlled by the motion itself. This phenomenon is also 

modeled as free vibration with negative damping. 

Airfoil flutter and transmission line galloping are related 

examples of this instability. Further explanations of instability 

are given in the works [167–170]. The following scenario 

shows how aerodynamic instability may have caused the 

Tacoma Narrows Bridge to fail. For simplicity, consider the 

motion of only one span half. Assume that the wind direction 

was not perfectly horizontal, perhaps striking the bridge span 

from below, as shown on Figure 5.6 a. 

Thus, the bridge is initially at an angle-of-attack with 

respect to the wind. Aerodynamic lift is generated because the 

pressure below the span is greater than the pressure above. This 

lift force effectively places a torque, or moment, on the bridge. 

The span then begins to twist clockwise as shown on  

Figure 5.6 b. Specifically, the windward edge rotates upward 

while the leeward edge rotates downward. The span has 

rotational stiffness, however. Thus, elastic strain energy builds 

up as the span rotates. Eventually, the stiffness moment 

overcomes the moment from the lift force. The span then 

reverses its course, now rotating counter-clockwise 

The span’s angular momentum will not allow it to simply 

return to its initial rest position, however. The reason is that 

there is little or no energy dissipation mechanism. Thus, the 

span overshoots its initial rest position. In fact, it overshoots to 

the extent that the wind now strikes the span from above as 

shown on Figure 5.6 c. The wind’s lift force now effectively 

places a counter-clockwise moment on the span. 
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a 

 
 

b c 

Figure 5.6 – Streamlining of the bridge span 

 

Once again, strain energy builds up in the span material. 

Eventually, the stiffness moment exceeds the moment from the 

wind’s lift force. The span thus reverses course, now rotating 

clockwise. Again, it overshoots its rest position. The cycle of 

oscillation begins anew from the position shown on  

Figure 5.6 a, except that the span now has rotational velocity as 

it passes through the original rest position. The cycles of 

oscillation continue in a repetitive manner. 

Note that the wind force varies as a function of the span 

angle during the cycle. The wind force may also vary with the 

angular velocity. The wind force is not a function of time, 

however. Eventually, one of two failure modes occurs. One 

possibility is that the span experiences fatigue failure due to an 

excessive number of stress reversals. The other is that the 

angular displacement increased in an unstable manner until the 
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material is stressed beyond its yield point, and then beyond its 

ultimate stress limit. In reality, these two failure modes are 

interrelated. For example, accumulated fatigue effectively 

lowers the yield and ultimate stress limits. Regardless, the 

bridge collapses. 

As a final note, the aerodynamic instability oscillation is 

not a resonant oscillation since the wind does not have a 

forcing frequency at, or near, the bridge’s torsional mode 

frequency. Some physics and engineering textbooks mistakenly 

cite the Tacoma Narrows Bridge as an example of resonance. 

This problem is discussed in the work [171]. Nevertheless, the 

bridge’s collapse remains the most well-know structural failure 

due to vibration. 

A new Tacoma Narrows Bridge was built (Figure 5.7). It 

has truss girders, which allowed the winds to pass through. It 

also had increased torsional stiffness because it was thicker and 

wider. Furthermore, wind tunnel testing was performed to 

verify the new design prior to its construction. 
 

 
Figure 5.7 – New design of the Tacoma Narrows Bridge 
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§ 5.3. Other examples of instability 
 

One of the examples of instability concerns the case of 

using steel factory pipes systematically falling into the 

resonance caused by Karman vortices at a wind velocity in the 

range of 12…14 m/s. However, concrete pipes are not 

subjected to this phenomenon. The situation with welded pipes 

is especially bad, but riveted pipes better damp. In this case it is 

necessary to install a special friction damper built into the wire 

brace. The energy dissipation in the damper must be the same 

as in the tube [172]. 

Another case of instability is so-called galloping of 

power lines, when oscillations occur with large amplitude and 

low frequency [173]. A similar phenomenon is observed in 

countries, where the air temperature fluctuates from 0 °C to 

either side, and a strong gusty wind in the transverse direction 

is blowing. In this case self-oscillations occur, caused by the 

wind acting on the wire, which due to the frost took the shape, 

that cross-section of the resulting body is no longer circular. 

Thus, for the case of a wire of non-circular cross-section 

formed as a result of icing, it is a certain angle between the 

force and wing directions (Figure 5.8), that is the main cause of 

self- oscillations. 

 

 
 

a b 

Figure 5.8 – The relative position of the wind force  

and velocity for cases of circular (a) and non-circular (b)  

cross-sections of a wire 
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Unsteady oscillations of wires can also occur for the case 

of the circular cross-section. Due to the formula (5.1), the 

critical frequency can be obtained by the following formula: 

 

 .2.0
d

U

d

U
Stf   (5.22) 

 

For example, in case of d = 25 mm and wind velocity  

U = 13 m/s :  f = 0.2 · 13/0.025 = 104 (Hz). 

Oscillations of power wire lines at such high frequencies 

with small amplitudes occur quite often and are accompanied 

by fatigue fractures, i. e. the resonance takes place at higher 

harmonics, obtained for the span divided into several 

sinusoidal half-waves in an amount of 20…30. At the same 

time, it is possible to successfully apply dynamic vibration 

dampers (Figure 5.9), which should not be installed in the 

nodes [174]. This device cannot be used when galloping, 

because the weight should be unacceptably high. 

 

 
Figure 5.9 – Dynamic vibration damper 
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Unstable oscillations are experienced by the submarine 

periscope, which is the six-meter cantilever tube with the 

diameter 0.2 m. Resonance occurs at the velocity 2.2 m/s, 

which leads to an unclear image and can lead to fatigue failure. 

To eliminate this problem, the cross-section of the tube must be 

non-circular, but well streamlined. However, the periscope 

must rotate freely. All this leads to constructive complications. 

Finally, as meteorological observations show, rain drops 

in calm air fall vertically except for drops with a diameter of  

1 mm. Such drops fall with pulsing in different directions, and 

their trajectories differ from the vertical ones. 
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Questions for self-control 
 

1. Explain the physical meaning of Reynolds and 

Strouchal numbers. 

2. Describe the phenomenon of emerging the Karman 

vortex street. How does the correspondent pattern depend on 

Reynolds number? 

3. What formula allows obtaining Karman’s coefficient? 

In what range does it change? 

4. Describe the design scheme of forced oscillations of the 

streamlined cylinder in the fluid flow. 

5. What formula allows expanding the aerodynamic force 

as a trigonometric series? How are its coefficients determined? 

6. Describe the dependences between the logarithmic 

decrement of damping and oscillation frequency. 

7. What formula determines the oscillation amplitude of 

the poorly streamlined cylinder in case of square-wave external 

specific force? 

8. Specify the main theories for explanation of the Tacoma 

Narrows Bridge collapse. Which theories are mistaken? 

9. Describe and explain the true theory of the Tacoma 

Narrows Bridge failure. 

10. Specify the cause for the instability of the steel factory 

pipes and electric wires. 
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§ 6.1. Problem shaping 
 

This chapter is devoted to the dynamic problems of 

hydroaeroelasticity of plates. The fact is that in previous 

problems on the flutter, deformation of the wing or distortion 

of its cross-section played an insignificant role, and motion of 

the wing as a rigid body was taken into consideration for 

investigating flexural-torsional oscillations. 

However, there is another type of the flutter, the main 

influence on which is deformation along the chord. For 

example, the case of a rectangular plate with two opposite 

freely supported edges (Figure 6.1) is taken into consideration. 

 

 
Figure 6.1 – Streamlining of a rectangular plate with  

two opposite freely supported edges 

 

To simplify the problem, it is assumed that the air flow 

streamlines a plate only on one side, remaining motionless on 

the other side. Thus, when streamlining a plate with a 

supersonic flow, self-oscillations may occur. This phenomenon 

is known as panel flutter [41–43]. 

One of the possible causes of the panel flutter of the 

aircraft wing is thermal stress in wing skin due to aerodynamic 

heating at high speeds. 

Geometrical dimensions, initial curvature, stiffness, ratio 

of air and body densities, and boundary conditions particularly 

impact on panel flutter occurrence. 
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The most practical method of preventing the panel flutter 

is the creation of tensile forces acting on the wing skin. 

In general case, investigation of the abovementioned 

phenomena of the panel flutter is connected with certain 

mathematical complexities due to solving non-conservative 

problem of the theory of elastic stability [175]. However, this 

problem can be simplified by taking into consideration 

cylindrical bending [176] or the case presented on Figure 6.1. 
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§ 6.2. Flutter of a rectangular plate with 

two opposite freely supported edges 
 

Small oscillations of a rectangular plate streamlined on 

one edge by supersonic flow (Figure 6.2) are described by the 

equation [45]: 
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where w(x, y, t) – plate displacement function;  

p(x, y, t) – function of normal pressure due to influence of plate 

deformations about the undisturbed state; ρ0, h – plate density 

and thickness; δ – damping coefficient; Nx, Ny – specific tensile 

forces (per unit of edge length); 2  – Laplace operator: 
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D – cylindrical stiffness of a plate [177]: 
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E – Young’s modulus; μ – Poisson’s ratio. 
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The components
2
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w
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
0  and wD 22  of 

the differential equation (6.1) are specific inertia, damping and 

elastic forces (per unit of the middle surface area). 

 

 
Figure 6.2 – Free supported rectangular plate  

streamlined by supersonic flow 

 

Aerodynamic pressure due to linearized formula of the 

theory of plane flow can be presented in the form [178]: 
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where p0, a0 – undisturbed pressure and acceleration;  

U – flow velocity. 

The system of geometrical and simplified physical 

boundary conditions [45] 
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allows to present the solution of the differential equation (6.3) 

in the following form: 
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 (6.6) 

 

and the equation (6.3) can be rewritten with respect of only two 

independent parameters x and t: 
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 (6.7) 

 

An unknown function w1(x, t) as a solution of the 

equation (6.7) can be found in the following form: 
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where ω – oscillation frequency; wn(x) – unknown 

function obtained by a substitution formula (6.8) to the 

equation (6.7): 
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An ordinary differential equation (6.9) can be rewritten in 

the following form 
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due to introduction of the following parameters: 
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Taking into account a form function 

 

 ,k
n Cew   (6.12) 

 

the characteristic equation for (6.11)  
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has four complex conjugate roots: 
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and the parameters λ, σ (6.11) take the forms: 

 

 
 

  .2

;4

2222244

222

RR

k








 (6.15) 

 

In general case, the form function (6.12) takes the form: 
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where Cj – unknown constants; kj – roots of the 

characteristic equation (j = {1; 2; 3; 4}). 

The function (6.16) must satisfy all the boundary 

conditions (6.5), which due to the expressions (6.11) can be 

rewritten in the following form: 

 

 


















,0

;0

1

2

2

0

2

2

10





 d

wd

d

wd

ww

nn

nn

 (6.17) 

 

that leads to the system of homogeneous algebraic equations 
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with respect to unknown constants C1, C2, C3, C4. 

The condition of existence of non-trivial solutions of the 

system (6.18) is vanishing of the following determinant: 
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which is highly cumbersome for calculations. However, due to 

the formula (6.14) it can be reduced to a more simplified form: 
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An obtained transcendental equation can be solved 

numerically with respect to parameters α, β for the certain 

value of R. Then, parameters λ and σ are calculated by formulas 

(6.11). 

Studying the equation (6.20) allows obtaining qualitative 

and quantitative characteristics and making conclusions about 

the impact of various parameters on the stability of the plane 

shape of the streamlined rectangular plate with two opposite 

freely supported edges. 
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§ 6.3. Divergence of a cylindrical panel 
 

The case of a cylindrical panel as a cantilever plate with 

infinite length b → ∞ (∂/∂y = 0) is considered (Figure 6.3) for 

the case of absence of inertia, damping and tensile forces 

(∂2w/∂t2 = ∂w/∂t = 0; Nx = Ny = 0). In this case the function of 

the plate displacement w(t) depends only on one coordinate x. 

 

 
Figure 6.3 – Streamlined cylindrical panel 

 

Due to the abovementioned assumptions, a differential 

equation (6.7) of plate bending takes the form: 
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Introduction of the following parameters  
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allows rewriting the equation (6.21): 
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with the boundary conditions [45, 64]: 
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which correspond to the case of free leading edge (zero 

shearing force and bending moment) and fixed tailing edge 

(zero deviation and displacement). 

A particular solution of the equation (6.3) can be 

presented in the following form: 

 

   kCexw   (6.25) 

 

with unknown constant C and characteristic index k as root of 

characteristic equation  
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obtained by substitution of the formula (6.25) to the equation (6.23). 

There are four roots of characteristic equation (6.26): 
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and the function of plate displacement w(x) takes the following 

form: 
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In this case, the boundary conditions (6.24) lead to the 

system of homogeneous algebraic equations 
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with respect to unknown constants C1, C2, C3, C4. 

The condition of existence of non-trivial solutions of the 

system (6.29) is vanishing of the following determinant: 
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(6.30) 
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The equation (6.30) can be simplified and reduced to the 

equivalent transcendental equation: 
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which can be solved graphically (Figure 6.4). 

 

 
Figure 6.4 – Graphical solving of transcendental equation 

 

Minimum positive root λ = 1.85 allows obtaining the 

divergence velocity Udiv from the formula (6.22): 
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§ 6.4. Flutter of a cylindrical panel 
 

The case of a cylindrical panel as a cantilever plate with 

infinite length b → ∞ (∂/∂y = 0) is considered (Figure 6.5) for 

the case of absence of damping and tensile forces (∂w/∂t = 0; 

Nx = Ny = 0). In this case the function of plate displacement 

w(x, t) depends only on coordinate x and time t, and the 

differential equation (6.7) takes the following form: 
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Figure 6.5 – Streamlined cylindrical panel 

 

The solution of an equation (6.33) is found in the form: 

 

     ,, 1

tiexwtxw   (6.34) 

 

where w1(x) – the form function; ω – vibration frequency. 
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Substitution of the formula (6.34) to the equation (6.33) 

allows obtaining the ordinary differential equation with respect 

to dimensionless coordinate ξ 
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where the introduced parameters are  
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A particular solution of the equation (6.35) can be 

presented in the following form: 

 

   kCexw 1  (6.37) 

 

with unknown constant C and characteristic index k as a root of 

characteristic equation  
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obtained by a substitution formula (6.37) to the equation (6.35). 

An algebraic equation (3.38) has four roots k1, k2, k3, k4. 

The first pair can be presented in the complex conjugate form: 
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and other roots also can be expressed in terms of parameters  

α and β. 

Comparison of the equation (6.38) with its another equal 

form 
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allows concluding that 
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which is due to the formula (6.39) leads to the following 

expressions for the last two roots: 
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The general solution of an equation (6.38)  
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must satisfy the geometrical and physical boundary conditions 
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which lead to the system of homogeneous algebraic equations 
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with respect to unknown constants C1, C2, C3, C4. 

The condition of existence of non-trivial solutions of the 

system (6.47) is vanishing of the following determinant: 

 

     .0

1111

,;,

4321

4321

3

4

3

3

3

2

3

1

2

4

2

3

2

2

2

1

43212 

kkkk

kkkk

ekekekek

ekekekek

kkkk
  (6.48) 

 



Chapter 6. Panel flutter 

 

 172 

A transcendental equation (6.48) can be solved 

graphically (Figure 6.6). 

 

 
Figure 6.6 – Graphical solving of transcendental equation 

 

In case of λ < 0, which corresponds to the direction of the 

flow from the free edge to the fixed one, divergence first 

occurs with increasing the velocity U. Furthermore, in case of  

λ > 0, divergence is not possible, and flutter occurs when  

λ = λcr = 135. Thus, taking into account the dependences (6.36), 

the critical flutter velocity Ucr can be obtained by the following 

formula: 
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It should be noted that for other cases of a boundary 

condition, the critical flutter velocities Ucr can be obtained by 

the following formulas similar to (6.49) with different values of 

the coefficient λcr (Table 6.1). 

 

Table 6.1 – Critical value λcr of the coefficient λ  

for determining the critical flutter velocity 

Design scheme λcr 

Cantilever 

 

 
 

135 

Simply supported 

 

 
 

343 

Fixed ended 

 

 
 

636 
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§ 6.5. Euler–Lagrange variational method 
 

The previously considered analytical method for solving 

the panel flutter problem by using the differential equation of 

plate oscillations is very limited since it makes possible to take 

into consideration extremely simple cases. Consequently, the 

approximate methods of solution can be interesting, 

particularly Euler–Lagrange variational method [179], the use 

of which in contrast to Galerkin method [150] allows avoiding 

the difficulties associated with the choice of the coordinate 

functions [180]. 

Variational methods are based on the principle of 

possible displacements. It consists in the fact that the 

equilibrium state of the mechanical system is achieved, when 

the necessary and sufficient condition of stationarity for the 

total potential energy of the system is satisfied. In other words, 

the variation of the total strain energy δU must be equal to the 

sum of the elementary works δA of all the external volume and 

surface forces applied to this system: 

 

   ,0 AU  (6.50) 

 

where U – potential energy of deformation; A – total 

work of external forces. 

The vanishing of the first variation of the total potential 

energy indicates that it has an extreme value. It can be shown 

that the second variation δ2(U – A) > 0 [181], hence the total 

potential energy of the mechanical system achieves a minimum 

value: (U – A) → min. 

It should be noted that the equation (6.50) is valid at a 

constant temperature. Otherwise, stresses and deformations 

occur independently of external forces, and potential energy  

Π = U – A. 
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Variational Euler–Lagrange method is applicable to thin 

plates using the appropriate theory [45], within which the work 

of external forces  
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where (S) indicates that the double integral is determined 

by the surface area of the plate; q – intensity of total external 

inertia and aerodynamic forces: 
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The potential energy of plate deformation is determined 

by the following formula [147]: 
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where σx, σy – normal stresses; εx, εy – normal 

deformations; τxy, γxy – shear stress and deformation [45]: 

 

 
 

 
J.-L. Lagrange 

(1736–1813) 

Joseph-Louis Lagrange – an Italian and French 

Enlightenment Era mathematician and astronomer. 

He made significant contributions to the fields of 

analysis, number theory, classical and celestial 

mechanics. 

Lagrange’s treatise on analytical mechanics 

offered the most comprehensive treatment of 

classical mechanics since Newton and formed a 

basis for the development of mathematical physics in 

the nineteenth century. 
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The triple integral (6.53) by the plate volume (V) can be 

reduced to a double integral by the plate surface (S) due to the 

next equality: 
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where D – cylindrical stiffness. 

Finally, it can be obtained: 
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or due to variational calculation in a simplified  

form [182]: 
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where A/ means a modified expression. 

Thus, Euler–Lagrange method allows reducing the 

boundary value problem of plate oscillations to the condition of 

stationary value of the following energy functional: 
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Due to Rayleigh–Ritz method [180, 183], achieving the 

stationary value of the functional R (6.58) can be realized by 

using the series expansion in n linearly independent coordinate 

functions φi(x, y): 
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where ai – unknown constants; λ – characteristic index. 

Substitution of the formula (6.59) to the equation (6.58) 

leads to the system of n algebraic equations with respect to 

unknown parameters ai (i = {1; 2; …; n}): 
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J. Rayleigh 

(1842–1919) 

John William Strutt Rayleigh – an English 

physicist, who discovered argon – an achievement 

for which he earned the Nobel Prize for Physics in 

1904. He also discovered the phenomenon now 

called Rayleigh scattering, which can be used to 

explain why the sky is blue, and predicted the 

existence of the surface waves now known as 

Rayleigh waves. 
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The system of equation (6.60) can be solved as the 

problem of eigenvalues λ. 

It should be noted that linearly independent coordinate 

functions φi(x, y) for Euler–Lagrange method must satisfy only 

geometrical boundary conditions, because the physical ones are 

satisfied automatically. 

Another advantage of using the Euler–Lagrange 

variational method is the possibility of solving the 

hydroaeroelasticity problems for plates of variable thickness. 

In contrast to the Euler–Lagrange method, if replace the 

energy functional (6.58) by Galerkin’s functional [184] 
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the integrand of which corresponds to the differential  

equation (6.1), all the coordinate functions (6.59) must satisfy 

both geometrical and physical boundary conditions, which 

makes Galerkin method practically unsuitable for a number of 

problems, e. g. for the case of cantilever plates. 

 

 

 
 

 
W. Ritz 

(1878–1909) 

Walter Ritz – a Swiss theoretical physicist. He is 

mostly famous for his work with the Rydberg–Ritz 

combination principle. Ritz is also known for the 

variational Ritz method named after him. 
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§ 6.6. Nonlinear problems of a panel 

flutter 
 

The problems of hydroaeroelasticity considered below 

are classified as linear. As it is known, solving problems of the 

stability of plates and shells in a linear formulation allows 

determining only the critical velocity of the flutter. Wherein, 

determination of flutter amplitudes or a limiting cycle of self-

oscillations, and buckling amplitudes, as well as behaviour of 

the panel when the self-oscillations occur, are not completely 

solved. However, their solution is possible only for a nonlinear 

formulation of the initial differential equations of dynamics. 

It should be noted that the critical flutter velocity as a 

solution of linear problem of hydroelasticity, in some cases can 

have the meaning of upper critical velocities, below of which 

the stable limit cycles arise for sufficiently large initial 

deviations of the mechanical system. 

Furthermore, the solution of hydroaeroelasticity is 

especially important for a panel flutter, because its appearance 

due to the predominant geometric nonlinearities has 

predominantly soft character. This means that getting the 

system into the flutter region is not catastrophic, because the 

destruction of the skin due to the fatigue damage occurs after a 

certain number of loading cycles. Therefore, in contrast to the 

problem of classical wing flutter, when the excitation is rigid, 

investigation of the nonlinear problem acquires a special 

practical meaning related to finding the expected lifetime of the 

panel. And for this it is necessary to know the amplitude of 

oscillations in the flutter region. 

Methods of the theory of nonlinear oscillations [17] can 

be applied for evaluation of amplitudes of oscillations, such as 

a harmonic balance method, a small parameter method,  

a method of successive approximations, etc. [185]. In the 
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region near the flutter boundaries, it is rational to apply the 

small parameter method. For a wider region, more reliable 

results are obtained by using the harmonic balance method 

based on trigonometry series. 

The most important factor, which limits the amplitudes of 

flutter and buckling deflections, is nonlinearities of geometric 

origin associated with the emergence of tensile forces applying 

to the middle surface, which essentially depend on the 

boundary conditions. In addition, the effect of constructive 

nonlinearities also can be considered. 

In some problems it is also necessary to take into account 

physical nonlinearities associated with inelastic or nonlinear 

elastic effects. 

Aerodynamic nonlinearities are important for supersonic 

flows with high values of Mach number (M >> 1). This 

problem is especially acute in determination of the possibility 

of existence of periodic regimes and stable static configurations 

at velocities, which are lower than the same critical velocity 

identified by using the linear theory. 

Today the nonlinear problems of the flutter are less 

studied due to difficulties of two kinds: 

1) difficulties in determining the aerodynamic forces in a 

nonlinear formulation; 

2) complexities in solving systems of nonlinear 

differential equations describing a boundary value problem. 

Some investigations in the field of a nonlinear flutter are 

described below. 

In the work [186] a systematic way of applying both 

perturbations methods and harmonic balance methods to the 

nonlinear panel flutter problems is developed. The results 

obtained by both these methods for two-dimensional simply 

supported and three-dimensional double-clamped plates with 

six modes agree well with those obtained by the 
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straightforward direct integration method, yet require less 

computer time and provide better insight into the solutions. 

Effects of viscoelastic structural damping on the flutter stability 

boundary are generally found to be destabilizing and the post-

flutter behaviour becomes more explosive. 

In the work [187] a nonlinear panel flutter using high-

order triangular finite elements is investigated. A 54-degree-of-

freedom, high-order triangular plate finite element extended for 

geometrically nonlinear static and dynamic analysis is used to 

formulate and analyze the supersonic nonlinear panel flutter 

problems. The finite element formulation is based on the 

classical theory of plates. The quasi-steady aerodynamic theory 

is used, and numerical solution procedures are presented. The 

limit cycle oscillation analyses are performed for two-

dimensional and square panels with all edges simply supported 

and clamped respectively. The effect of in-plane 

comprehensive force, mass ratio, and in-plane edges stress free 

condition are considered. Stress distribution for the limit cycle 

oscillations of two-dimensional panel is plotted. For the case of 

panels under the static pressure differential, the results for the 

steady mean amplitude and flutter dynamic pressure are 

obtained for the two-dimensional and square panels 

respectively. The effect of biaxial in-plane comprehensive 

stress for a simply supported square panel is studied and 

boundaries among the flat and stable region, dynamically 

stable buckled region, and the limit cycle oscillation region are 

found. Alternative analytical and numerical solutions are 

available for the most examples for comparison and all are in 

excellent agreement. 

In the work [188] the numerically analysis of nonlinear 

flutter oscillations of elastic plate in a gas flow is studied. In 

contrast to many other approaches, an inviscid flow model was 

used instead of a piston theory or other simplified aerodynamic 
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theories. This study aims to investigate the region of low 

supersonic Mach numbers (1 < M < 2), where several plate 

eigenmodes can be simultaneously unstable, and resulting 

oscillations are governed by the nonlinear interaction of 

growing modes. Three types of unstable plate behaviour have 

been obtained. First, at 0.76 < M <1, the plate diverges. 

Second, at 1 < M <1.67, a single-mode flutter occurs in three 

distinct forms: limit cycle in the first mode (1 < M < 1.33 and  

1.5 < M < 1.67) or higher modes; limit cycle in the first and 

second modes being in internal 1 : 2 resonance  

(1.12 < M < 1.33 and 1.42 < M < 1.5); and non-periodic 

oscillations with several dominating frequencies being in more 

complex ratio (1.33 < M < 1.42). Third, at M = 1.82 and 

increased dynamic pressure, a coupled-mode flutter appears. 

Amplitudes and spectra of each limit cycle type are analyzed. 

The role of aerodynamic nonlinearity in the formation of limit 

cycle oscillations is discussed. 

Finally, a new look at nonlinear aerodynamics in analysis 

of hypersonic panel flutter is stated in the work [189]. A simply 

supported plate fluttering in hypersonic flow is investigated 

considering both the airflow and structural nonlinearities.  

The third-order piston theory is used for nonlinear aerodynamic 

loading, and the Karman plate theory is used for modeling the 

nonlinear strain-displacement relation. The Galerkin method is 

applied to project the partial differential equations into a set of 

ordinary differential equations in time, which is solved by the 

numerical integration method. In observation of limit cycle 

oscillations and evolution of dynamic behaviours, the nonlinear 

aerodynamic loading produces a smaller positive deflection 

peak and more complex bifurcation diagrams compared with 

linear aerodynamics. Moreover, a limit cycle oscillation, 

obtained with the linear aerodynamics, is mostly a nonsimple 

harmonic motion; but when the aerodynamic nonlinearity is 
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considered, more complex motions are obtained, which is 

important in the evaluation of the fatigue life. The parameters 

of the Mach number, dynamic pressure, and in-plane thermal 

stresses all affect the aerodynamic nonlinearity. For a specific 

Mach number, there is a critical dynamic pressure beyond 

which the aerodynamic nonlinearity has to be considered. For a 

higher temperature, a lower critical dynamic pressure is 

required. Each nonlinear aerodynamic term in the full third-

order piston theory is evaluated, based on which the nonlinear 

aerodynamic formulation has been simplified. 
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Questions for self-control 
 

1. What factors can cause the emergence of a panel 

flutter? Describe them briefly. 

2. What parameters impact on the panel flutter 

occurrence? 

3. What is the most practical method for preventing  

a panel flutter? 

4. Describe the assumptions that simplify the problem of 

the panel flutter. 

5. Write an equation and boundary conditions describing 

small oscillations of a rectangular plate streamlined on one 

edge by a supersonic flow. 

6. How do the tensile forces impact on the critical flutter 

velocity? 

7. Write an equation and boundary conditions that allow 

investigating divergence of a cylindrical panel with the infinite 

length. Analyze the expression for the divergence velocity. 

8. What equation and boundary conditions allow 

investigating flutter of a cylindrical panel? 

9. Analyze the expression for the critical flutter velocity. 

What does the critical value of the coefficient for determining 

the critical flutter velocity depend on? 

10. Describe Euler–Lagrange variational method and its 

advantages over Galerkin method. 

11. How can Rayleigh–Ritz method be applied to solving 

the problem of plate oscillations? 

12. Identify and characterize the main nonlinear problems 

of hydroaeroelasticity. How can they be solved? 
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§ 7.1. Aeroelastic phenomena in 

turbomachines 
 

In turbomachines, such as steam and gas turbines, air and 

gas compressors, hydraulic turbines and pumps, the gas or 

incompressible liquid move through the system of motionless 

parts, e. g. guide vanes, and the system of rotating blades. And 

the working process in turbomachines consists in the exchange 

of energy between the gas or liquid and a rotating impeller 

[190]. Thus, force interaction between the fluid flow and 

elastic blades play a significant role, and deformations lead to 

the possibility of the formation of hydroaeroelastic oscillations, 

that include the following phenomena: 

1. A conventional flexural-torsional flutter, when the 

energy transfer occurs from the flow to the blades [191]. 

2. Aerodamping phenomena in oscillations of deformable 

blades in the aerodynamic grid are streamlined by the flow 

[192]. In this case the energy transfer occurs from blades to the 

flow. 

3. A latticed flutter [193], which can occur only in grids 

with purely bending or purely torsional vibrations of all the 

blades. 

4. A stall flutter, for example at large angles of attack 

[194]. A stall flutter is also possible for one blade, although the 

interaction between elements of the blade system has a 

significant effect. 

5. A wave flutter, which occurs in case of the supersonic 

flow and the presence of shock waves interacting with the 

boundary layer [195]. 

The complexity of considering the abovementioned 

problems is that the blades influence the oscillations of 

adjacent blades. Moreover, individual blades can oscillate with 
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different amplitudes and phases. The influence is also exerted 

by the mutual displacement of the profiles. 

Recently, a large number of scientific papers have 

appeared for solving other applied problems of 

hydroaeroelasticity. For example, the work [196] is devoted to 

investigating gust loads and aircraft. Hydroelasticity of ships is 

investigated in the work [197]. Hydroelasticity phenomena in 

marine hull bottom panels are stated in the work [198]. 

Hydroelasticity problems with special reference to hydrofoil 

craft are presented in the work [199]. 

The following paragraphs are devoted to the presentation 

of the problems of hydroaeroelasticity, which has recently 

engaged the departments of the Faculty of Technical Systems 

and Energy Efficient Technologies at Sumy State University, 

such as stability of the automatic balancing devices of 

centrifugal pumps, analysis of the operation of seals with 

floating rings, and investigations of the aeroelasticity 

phenomena in the processes of gas separation. 
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§ 7.2. Stability of the automatic 

balancing devices of centrifugal pumps 
 

The recent research works of the Department of General 

Mechanics and Machine Dynamics of Sumy State University 

were devoted to solve the following problems commissioned 

by the Ministry of Education and Science of Ukraine and 

Yuzhnoye State Design Office: 

1. Development of methods for numerical simulation and 

optimization of hydrodynamic characteristics for gap and 

labyrinth seals, and investigation of their impact on the 

rotordynamics for centrifugal machines [200]. 

2. Numerical simulation and optimization of gas-

dynamics and vibration characteristics for turbochargers of 

gas-pumping units and their components [201]. 

3. Development of the new mathematical models of 

centrifugal machines rotors and methods of their  

diagnosis [202]. 

4. Investigation of oscillations of centrifugal machines 

rotors associated with nonlinearity reactions in gap bearings 

and seals, and their vibration diagnosis [203, 221]. 

5. Rotordynamic research for the turbopumps of the 

liquid rocket engines [204]. 

The automatic balancing device and other unloading 

devices can be used for the equilibration of the axial forces 

operating on a rotor of multistage centrifugal pumps  

(Figure 7.1). In case of usage of any unloading device, the 

presence of persistent bearings and system of consolidation 

leads to the complication of the system of the axial 

equilibration of rotor, reduction of its wear-resistance and 

economy decrease. The reliability of these devices can be 

decreased in case of intensive wear of a cylindrical throttle 



§ 7.2. Stability of the automatic balancing devices  

of centrifugal pumps 

 189 

before and after the unloading device of the balancing disk 

[205]. 

Therefore, the locking automatic balancing device is 

offered, operating as the axial hydrostatic bearing with hyper 

bearing capacity and, simultaneously, as the non-contact 

consolidation with self-adjustable leaking. The dynamic 

calculation is based on the equations of pump rotor and 

regulator rod axial movement and also on equations of the fluid 

flow balance through the throttles taking into consideration the 

compression and displacement flow. The methodology of 

dynamic calculation gives the opportunity to select the main 

parameters of hydro-mechanical system engineering based on 

providing stability conditions of the transient processes  

[206, 207]. 

 

 
Figure 7.1 – Multistage centrifugal pump 

 

Investigation of the impact of elastic deformations of 

unloading disk at their static and dynamic stability is the 

complicated problem of hydroelasticity, the solving of which 

contributes to the efficiency of the automatic balancing devices 

[208, 209, 210]. 
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The main elements of the automatic balancing device 

(Figure 7.2) are the unloading disk 1, rigidly connected to the 

rotor; radial gap 2 with the constant coefficient of hydraulic 

resistance; face gap 3, the coefficient of hydraulic resistance of 

which depends on the gap value varying due to the rotor axial 

movement. 

 

 
Figure 7.2 – Automatic balancing device 

 

The operation of the abovementioned device is based on 

the fact that the axial force T acting to the pump rotor depends 

on the face gap z. Due to the control theory, the rotor is the 

object of regulation; the face gap z is the regulated parameter; 

axial force T, as well as the inlet and outlet pressures P1 and P3 

are external influences. 

In the limiting case of zero face gap (z = 0) and there is 

no leakages through the automatic balancing device, the 

pressure P2 in the pump chamber of volume V reaches the 
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maximum value and is equal to the pressure P1 before the 

radial gap 2 (inlet pressure), and the pressure difference ratio is  

 

 ,2

P

P




  (7.1) 

 

where ΔP2 = P2 – P3 is the pressure difference through 

the axial throttle, and ΔP = P1 – P3 is the total pressure 

difference. 

In this case, the maximum value of unloading force F 

acts on the unloading disk. 

In another limiting case (z → ∞), all the pressure 

difference ΔP is throttled on the radial gap (ΔP = ΔP1;  

ΔP2 = 0), and the pressure difference ratio β = 0. Consequently, 

the axial force decreases to zero. 

Under operating conditions, if the axial force T increases, 

the rotor moves to the left, and z decreases until the pressure P2 

increases to restore the equality F = T. 

In the steady state, each force value F corresponds to a 

certain face gap z, at which holds the equation of axial rotor 

equilibrium is  

 

 .TF   (7.2) 

 

While designing the automatic balancing devices it is 

necessary to minimize volumetric losses, but at the same time 

to avoid excessive decreasing of the face gap since this can 

lead to an unwanted contact of the end pair. Both these 

conditions are satisfied for a sufficient slope of the static 

characteristic, when even large changes of the axial force lead 

to insignificant changes in the face gap value. 

The dependence of the unloading force F (or its 

dimensionless analogue – generalized external impact Φ) on 
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the face gap value z (or dimensionless face gap u) is the static 

characteristics of the automatic balancing device (Figure 7.3). 

 

 
Figure 7.3 – Static and flow characteristics  

of the automatic balancing device 

 

The curve 1 corresponds to the case without the impact 

of elastic deformations of the unloading disk, but the curve 2 

takes into account such impact. In the region of low face gap 

values, the system is statically unstable. 

Thus, the abovementioned results are achieved due to 

solving the hydroelasticity problem for the automatic balancing 

device of the multistage centrifugal machine. 

Like any system of automatic control, the system of axial 

rotor balancing must have certain dynamic properties. 

Therefore, along with static calculation, it is necessary to 

investigate the dynamic stability of the hydromechanical 

system “rotor – automatic balancing device”. 

For the abovementioned system, a characteristic equation 

takes the form of the fourth-order polynomial equation: 
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for which Routh–Hurwitz criterion takes the form of the 

system of unequalities: 

 

 
 











.

;4,10

4

2

1

2

30321 aaaaaaa

iai
 (7.4) 

 

The first group of conditions is always satisfied [205], 

but the second condition has nine independent parameters, the 

connection between them cannot be obtained in a form 

convenient for practical use. However, numerical simulations 

allow asserting that the causes of dynamic instability are the 

fluid compression in the pump chamber of volume V and 

deformations of the unloading disk. Thus, in case of 

incompressible fluid the conditions (7.4) are always satisfied. 

Inertia forces of the rotor and fluid in the gaps are 

destabilizing factors that decrease the reserve of the dynamic 

stability. The most acceptable means for ensuring the dynamic 

stability is reduction of the axial dimension of the pump 

chamber of volume V. 

The abovementioned analysis is stated for the case of 

one-dimensional axial movement of the rigid rotor without 

taking into consideration connections between axial and 

flexural oscillations of the flexible rotor. Moreover, a number 

of limitations was admitted, which allowed only assessing 

tentatively the impact of individual factors. 
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§ 7.3. Analysis of the operation of seals 

with floating rings 
 

Seals with floating rings (Figure 7.4) are used in 

centrifugal compressors and other types of rotary machines. In 

some cases, especially for sealing the internal cavities of high-

speed machines, seals with floating rings become the most 

appropriate alternative to conventional gap seals due to their 

relatively simple design and ability to provide the required 

reliability and tightness under appropriate debugging [211]. 

 

 
Figure 7.4 – The seal with floating ring 

 

Seals with floating rings are the consecutive set of the 

radial and face gaps operating under facilitated conditions. The 

ability of the floating ring to be centred relative to the rotating 

shaft due to the hydrodynamic forces in the axial gap allows 

decreasing radial clearance, which leads to sufficiently 

decreasing leakages without rapid mechanical wear. 

Moreover, since the floating ring does not rotate, the loss 

of frictional power in the end contact pair is significantly 
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reduced. This fact removes the most complicated problem of 

the seals designing [212]. 

From the principle of sealing operation it can be obtained 

that their advantage is realized especially when the maximum 

centring force in the radial gap exceeds the frictional force 

between the surfaces of the axial contact pair. In this 

connection, the seals with deformable floating rings are of 

particular interest (Figure 7.5). 

 

 
Figure 7.5 – The shaft seal with the deformable floating ring 

 

The appropriate choice of the geometry of the radial 

cross-section of the ring can provide the certain shape of the 

throttling gap after deformation due to the pressure difference, 

which finally increases the hydrostatic stiffness and at the same 

time reduces leakages [213]. 

The flow characteristics of seals with deformable and 

rigid floating rings are presented on Figure 7.6. 
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Figure 7.6 – Flow characteristics of seals with floating rings:  

1 – deformable ring; 2 – rigid ring. 

 

For the proper designing of the geometric shape of the 

ring, the problem of hydroelasticity must be solved, because of 

the equilibrium shape of the throttling gaps is determined by 

the pressure diagram, which depends on the gap shape. 

However, the hydroelasticity problem is complicated by 

the fact that the hydrodynamic characteristics of the seal, such 

as stiffness, damping, inertia effects and hydraulic resistance, 

depend not only on the geometric dimensions and shape of the 

throttling gap, but also on the nature of the rotor motion. Thus, 

there is the feedback between the seal and rotor, which creates 

the unified hydromechanical system “rotor – seal” (Figure 7.7). 

Radial and angular oscillations of the rotor are due to the 

hydrodynamic forces and moments, which depend on the 

nature of the rotor movement. 

Another feedback exists between the gap shape, such as 

average gap and taper parameters, and the pressure difference 

in the throttle. In other words, deformations of the floating ring 
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are due to the pressure distribution, which is extremely 

sensitive to changes of the gap shape. 

 

 
Figure 7.7 – Schematic diagram of the mechanical  

system “rotor – seal” 

 

Due to the abovementioned, the steady equilibrium 

deformable state is determined by solving the system of 

equations for the turbulent flow in the throttle with a complex 

gap shape taking into account the rotor movement, and 

equations of the theory of elasticity. Solving this 

hydroelasticity problem allows creating seals, which are able to 

self-adjust under operating conditions, and the throttle acquires 

an optimal geometric shape from the point of view of the 

hydrodynamic characteristics. Such approach can increase not 

only the vibrational reliability of the system “rotor – seal”, but 

also the volumetric efficiency of the centrifugal machine. 
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§ 7.4. Aeroelasticity phenomena in the 

processes of gas separation 
 

Close cooperation between the Processes and Equipment 

of Chemical and Petroleum-Refineries Department and  

the Department of General Mechanics and Machine Dynamics 

allows investigating the hydroaeroelasticity phenomena as a 

result of interdisciplinary research in chemical and petroleum 

industry within the following problems commissioned by the 

Oil-Petroleum Companies and Ministry of Education and 

Science of Ukraine: 

1.  Development of the “Heater–Treater” equipment for 

the comprehensive oil treatment. [214]. 

2. Hydrodynamic parameters of two-phase flows for the 

heat and mass-transfer granulation and separation  

equipment [215]. 

3. Numerical simulation and optimization of the gas-

dynamic and vibration characteristics of turbochargers and gas 

pumping units and their components [216, 217, 218]. 

4. Development and implementation of energy efficient 

modular separation devices for oil and gas purification 

equipment [219]. 

Natural gas contains a large amount of impurities 

including water and heavy hydrocarbon fractions of the 

condensate. Therefore, for its further transportation through the 

main gas pipeline, it must be processed appropriately in the 

complex gas processing units, the integral element of which is 

the separation equipment. The high operational characteristics 

of this equipment are achieved only under the design values of 

operational parameters. 

The processes of formation and separation of the 

heterogeneous dispersion system (emulsions, suspensions, 

aerosols) play an important role in science and technology. In 
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terms of specific energy consumption and efficiency of 

separation, the methods of inertial gas-dynamic and inertial-

filtering separation, which differ in the ways of forming  

the geometrical configuration of the separation channels, and 

the character of movement and the path of flow, are considered 

to be optimal [220]. 

The scientific problem of modeling hydrodynamic 

processes is aimed at ensuring the efficiency by developing the 

reliable engineering design techniques for the separation 

equipment. 

All the mathematical formulations as a system of the 

second order nonlinear differential equations have an analytical 

solution only in very limited cases of the simple geometry. 

Investigations for the case of flexible walls is directed to the 

numerical simulation of the gas-dynamic separation, which is 

associated with the solution of the hydroaeroelasticity problem 

for interaction of a dispersed gas-liquid flow with baffle 

elements. 

This boundary value problem (Figure 7.8) can be solved 

by using methods of computational fluid dynamics embedded 

in the up-to-date software systems [221, 222]. 

Investigation of the deformable elements oscillations 

under the separation process for the components of gas-liquid 

mixture is a highly complicated problem of 

hydroaeromechanics, which requires carrying out the 

procedure of parameter identification for the mathematical 

model describing the interaction between the gas-liquid flow 

and deformable elements. 
The abovementioned approach has certain peculiarities 

and limitations, such as using dynamic meshing for taking into 
consideration movement of the deformable plate, as well as the 
model of contact interaction must be activated by the certain 
gap value to prevent the appearance of “negative volume” 
elements. 
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Figure 7.8 – Design scheme for modeling the separation 

 

As a result, displacement of the deformable element can 

be obtained as a time function for the critical regime 

corresponding to the critical value of the average flow velocity 

and self-oscillations of the gas-dynamic separation elements. 
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Questions for self-control 
 

1. What purposes the automatic balancing devices of 

multistage centrifugal pumps are used for? 

2. What leads to decreasing the reliability of the automatic 

balancing devices of centrifugal machines? 

3. Describe the operation principle of the automatic 

balancing device of the multistage centrifugal pump. 

4. Explain the influence of the unloading disk 

deformations on static and flow characteristics of the automatic 

balancing device. 

5. Write down and define the characteristic equation 

describing oscillations of the automatic balancing device. 

6. Indicate Routh–Hurwitz criterion of its dynamic 

stability. What geometrical parameters does a primary impact 

have on the automatic balancing device stability? 

7. What purposes the seals with floating rings are used 

for? 

8. Explain the operation principle of seals with floating 

rings. 

9. Explain the difference between the flow characteristics 

for seals with deformable and rigid rings. 

10. What factors and parameters do the hydrodynamic 

characteristics of seals with floating rings depend on? 

11. Justify the importance of the hydroaeroelasticity 

problem for the separation of gas-liquid mixtures. 

12. Describe the design scheme for the numerical 

simulation of the gas-liquid dynamic separation process in gas-

dynamic separators with deformable elements. 
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