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The aim of the work was to obtain ZnO nanostructures with heightened surface area and to 

study relationship between formation method and gas sensor properties towards propane-butane 

mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation 

methods have been utilized. The first one was chemical bath deposition technology and the 

second one magnetron sputtering of Zn followed by oxidation. Optimal method and 

technological parameters corresponding to formation of material with the highest sensor 

response have been determined experimentally. Dynamical gas sensor response at different 

temperature values and dependencies of the sensor sensitivity on the temperature at different 

LPG concentrations in air have been investigated. It has been found, that sensor response 

depends on the sample morphology and has the highest value for the structure consisting of thin 

nanowires. The factors that lead to the decrease in the gas sensor operating temperature have 

been determined.  
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1. Introduction  

Zinc oxide (ZnO) is a promising material for application in 

optoelectronics [1], UV lasers [2], dye sensitized solar cells [3-5], photocatalysis 

[6, 7] and etс. Furthermore, it has already found application as a sensitive layer of 

cheap resistive gas sensors [8, 9]. Among different gases, the possibility to control 

propane-butane mixture (LPG) content in air is of high importance due to its high 

explosiveness. This gas is widely used in internal combustion engines, industry 

and households. 

There are only few papers devoted to investigation of sensor properties of 

ZnO based structures towards LPG [10-21]. To the best of our knowledge, in the 

majority of publications the sensitive structures were formed by chemical methods, 

such as spray-pyrolysis [10-13], sol-gel [14], chemical bath deposition [15-20]. For 

those methods, the gas sensor sensitivity had different values, which can be 

explained by the different surface area of the samples. 

Besides that, in the above-mentioned publications [10-20] the dependencies of 

gas sensors sensitivity on the temperature have been measured. The authors have 

proved that the increase in the temperature up to a certain value leads to 

enhancement in the sensitivity. However, the further temperature growth results in 

the decrease in the sensor sensitivity. Thus, there is an optimum temperature value 

corresponding to the maximum sensitivity of the sample. In various studies, the 

optimal temperature has value in range from 200 to 400 ° C. It is important to 

emphasize, that these ZnO based sensors had no impurities, which naturally 
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eliminates the one of the possible reason for this effect - doping. Clarification of 

the nature of this effect could be an important step towards the creation of low-

temperature ZnO based LPG gas sensors operating even at room temperature. 

It is known, that ZnO formation method (chemical or physical) has strong 

effect on the structural-phase state of the samples and the ensemble of the defects 

[22-24], which in turn, determine the structure dependent sensor properties of the 

material. It can be assumed, that these characteristics also affect the gas sensor 

properties of ZnO. Therefore, it is interesting to compare the sensor properties 

towards LPG of the samples obtained by physical and by chemical method. 

This work is the starting point in our study of gas sensor properties with 

respect to LPG of various ZnO structures obtained by chemical bath deposition and 

by magnetron sputtering. The aim of the work is to determine the optimal method 

and technological parameters corresponding to formation of material with the 

highest sensor response, as well as to identify the factors that lead to the decrease 

in the sensor operating temperature.    

 

2. Material and methods 

In this study two different methods have been used in order to obtain gas-

sensitive layers. The first was chemical bath deposition [25, 26]. The second one 

was magnetron sputtering of zinc followed by oxidation.  

Chemical bath deposition was carried out by immersing the substrate in an 

aqueous solution containing a zinc nitrate precursor (Zn(NO3)2) at a concentration 
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of  0.1 M under continuous magnetic stirring. The solution was heated to 90 oC and 

kept at this temperature for a certain time. To maintain the pH of the solution at 10 

level, ammonia solution (NH4OH) was slowly added to the mixture. To investigate 

the dependence of the surface on the sensor properties the deposition time was 

varied from 60 min to 120 min and two series of samples were obtained assigned 

as (Ch60) and (Ch120). 

The second method consisted of two stages. At first, zinc layers were formed 

using magnetron sputtering of zinc target in high-purity argon atmosphere. In this 

case, the modified magnetron sputtering method was utilized, which consisted in 

reverse flows of the sputtered substance deposition [27]. Two sets of the samples 

were obtained at the discharge power values 15 W (Ph15)  and 30 W (Ph30). The 

working gas pressure was 8 Pa and the deposition time 60 min for the both 

experiments. On the second stage, obtained structures were oxidized in oxygen 

atmosphere at pressure 5·104 Pa and temperature 400 °C. The above oxidation 

conditions allow to save the initial layers morphology almost unchanged [28]. 

Structural investigations of the samples were carried out using an X-ray 

diffractometer (Bruker D8 Advance) with Ni-filtered Kα radiation of copper anode 

in a range of angles 20º <2θ <80º, where 2θ is the Bragg angle. XRD patterns were 

normalized to the intensity of the (002) peak of the hexagonal ZnO phase. Phase 

analysis was performed by comparing interplanar distances and relative intensities 

of the investigated samples with the standard according to JCPDS 79-0207 [23]. 

The X-ray beam was focused using the Bragg–Brentano method.  
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The texture quality of the ZnO films was estimated using Harris method [24, 

25]. The pole density was calculated using the equation: 
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where iI  and iI0  are the integral intensity of the i-th diffraction peak for the 

investigated film and for the standard, respectively; N is the number of lines in the 

diffraction pattern. Then we built the dependences Pi versus (hkl)i and Pi versus φ. 

Here φ is the angle between the chosen direction and normal to crystallographic 

planes corresponding to the reflection in the XRD pattern and (hkl)i  are Miller 

indices. This angle was calculated for the hexagonal lattice, using the equations 

given in Ref. 25. The axis of the texture has indices corresponding to the maximal 

value of Pi. The orientation factor was estimated via equation: 
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The interplanar distances of ZnO wurtzite structure were found from the position 

of Kα1 component of all of the most intense lines present in the XRD pattern. 

In order to investigate the gas sensor properties, the samples were placed 

inside a quartz reactor, which was equipped with resistive heater outside. Before 

the sensor test, the samples were heated to the desired temperature value.  The 

temperature was regulated by chromel-alumel thermocouple with an accuracy of   

1 °C. The samples were contacted by molybdenum gold-plated contacts and the 

voltage 5 V was applied. After that, the value of the current passing through the 
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sample was measured at different concentrations of propane-butane in air inside 

the quartz reactor.  

 

3. Results and discussion 

The morphologies of ZnO samples produced using two different methods are 

presented in the Fig.1. Zinc oxide layers obtained through the decomposition of 

zinc nitrate precursor in the presence of complex agent via chemical bath 

deposition consist of hexagonal rods that have different inclination angles to the 

substrate surface. At the same time, the increase in the reaction time from 60 min 

(Fig 1a) to 120 min (Fig 1b) leads to the increase in the thickness (from 0.2-0.8 µm 

to 1.0 - 1.9 µm) and in the rods length. Besides that, the merging of the gaps 

between rods by thin lamellar crystallites is observed, which leads to the formation 

of a very porous layer. The samples prepared by magnetron sputtering followed by 

oxidation, also have a developed surface. At the discharge power 15 W, a porous 

structure consisting of interconnected particles (Fig. 1c) was formed. With an 

increase in the discharge power up to 30 W, a structure consisting of nanowires 

with a diameter of 100 - 300 nm start to grow (Fig 1d). 

The phase analysis of the samples produced by chemical bath deposition and 

magnetron sputtering has shown that the layers have hexagonal structure of ZnO. 

The maximum intensity has the reflections from the crystallographic plane (001) 

which indicated the presence of growth texture [002] coinciding with the crystal 

lattice axis. In addition, we have registered fairly intense lines at angles 31.65º, 
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36.13º, and 47.52º in the diffraction patterns. They were identified as the 

reflections from (100), (101), (102) ZnO wurtzite planes, respectively [JCPDS 79-

0207]. 

 

Figure 1. SEM images of ZnO films produced by chemical bath deposition 

at different reaction time: 60 min (a), 120 min (b); and by magnetron sputtering at 

different discharge power: 15 W (c) and 30 W (d).  

 

Furthermore, in the XRD patterns of ZnO produced by chemical bath 

deposition, the presence of another phase was found. It was identified as 

reflections from (311), (020), (021) planes of H12N2O16Zn5 compound. [JCPDS 

024-1460, 30]. This fact can be explained by residual sediment incorporation into 

the crystalline lattice of the film during the chemical reaction. 
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The pole density and the orientation factor calculations of the hexagonal 

phase of ZnO films (Fig. 2b) confirmed the presence of [002] axial growth texture 

for the samples obtained by both methods. This growth texture is typical for ZnO 

films. Furthermore, the orientation factor values have shown that the crystallinity 

of the films produced by chemical bath deposition is improved by increase in the 

deposition time from 60 (f = 0.45) min to 120 min (f = 1.1) and in the layer 

thickness correspondingly. The same dependence was observed for the ZnO 

samples obtained by magnetron sputtering (Ph15: f = 0.61, Ph30: f = 0.76). 

 

Figure 2. XRD patterns (a) and the dependencies of the pole density on the 

angle φ between the texture axis and the normal to the reflection plane for ZnO 

films obtained by chemical bath deposition (60 min (1) and 120 min (2)) and 

magnetron sputtering 15 W (3) и 30 W (4).   

 

It has been established, that measurement of the gas sensor properties was 

hard to implement for freshly prepared samples by chemical bath methods. In this 

case, even at constant environment conditions the value of the current through the 

sample changes significantly. From our point of view, it is caused by presence of 
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residual impurities, which contaminate the samples. The presence of other than 

ZnO phases was also confirmed by X-ray diffraction measurements. However, 

after one hour annealing in air atmosphere at 500 °C, the impurity phases disappear 

from the X-ray diffraction pattern and the current stabilizes at a constant level.  

The gas sensor sensitivity was defined as the ration of the current through the 

sample in air containing propane-butane mixture at desired concentration to the 

current value in pure air atmosphere (ILPG/Iair). The measurements were performed 

in the temperature range from 300 °C to 450 °C with 50 °C step. The gas sensor 

tests have shown, that an increase in propane-butane concentration leads to an 

increase in the current value (Fig. 3). After the gas mixture introduction, the 

current dependencies have very similar character for all of the samples. It is 

necessary to point out, that the current value stabilizes after about 10 min.  

 

 

Figure 3. Dynamical response at different temperature values of the samples 

Ph30 (a) and Ch60 (b) during puffing and pumping of air containing different LPG 

concentrations (0%, 0.2%, 0.5%, 0.7%).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

 

Figure 4. Dependencies of the sensor sensitivity on the temperature for the 

samples Ch60 (a), Ch120 (b), Ph15 (c), Ph30 (d) at different LPG concentrations in 

air.  

 

It has been determined experimentally, that regardless of the deposition 

method the gas sensor sensitivity has negligibly small values below 300 °C (Fig.4). 

The increase in the temperature up to 350°C greatly intensifies the samples 

sensitivity, which continues to grow even at higher temperature values up to 

450°C. Thus, the distinctive feature of our samples, in comparison to ZnO based 

LPG sensors reviewed in the literature [10-20], is the absence of the characteristic 

maximum on the sensitivity versus temperature dependencies. For conventional 

sensors such maximum is observed in range of temperatures from 200 to 400 °C. 
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The above described tendency toward monotonic increase in the gas sensor 

sensitivity is observed for all of the samples. Thus, at the first sight it seems that 

the sensor properties are not affected by the deposition method.  However, it is 

necessary to point out, that all of the samples were subjected to annealing. The 

samples Ch60, Ch120 were annealed at 500 °C in order to exclude impurities and  

Ph15, Ph30 were kept at 400 °C with purpose to transform Zn into ZnO. It is well 

known, that annealing can greatly influence structure-phase state, the surface 

morphology, and the defect structure of ZnO films [31-34]. That is why, the 

monotonic character of the sensor sensitivity towards LPG can be explained by 

their annealing and corresponding assembling of the defect in the samples. But, 

this assumption requires additional prove.  If to order the samples according to 

their gas sensor sensitivity, we obtain:  Ph15 → Ch120 → Ch60 → Ph30 (Fig. 5).  

 

Figure 5. Dependencies of the sensor sensitivity to different LPG 

concentrations at  450 °C. 
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The result is quite predictable from their morphology. The highest response 

has the sample Ph30 that consists of thin ZnO nanowires and has the largest value 

of the surface area to the volume ration.  The sample Ch60 has structural elements 

of bigger size, and as a result has lower gas sensitivity value.  

 

4. Conclusions 

The sensor properties of ZnO films with developed surface obtained by two 

different methods have been investigated. The first one was chemical bath method 

and the second magnetron sputtering followed by the samples oxidation. It has 

been established, that the presence of propane-butane mixture in air atmosphere 

causes decrease in the samples resistance. The films formed by chemical bath 

method need annealing before the sensor tests in order to eliminate residual 

impurity phases and in such a way to stabilize the current value. It has been shown, 

that the gas sensor sensitivity differs significantly for various samples. This fact is 

caused by different values of the surface area to the volume ratio. Besides, the time 

required for the resistance and the temperature to reach stable values at which the 

sensor properties start to observe is the same for all of the samples. It has been 

found, that the increase in the temperature in the range from 300 °C to 450 °C 

causes corresponding increase in the gas sensor sensitivity. The absence of 

maximum on the sensitivity versus temperature dependencies for the samples 

obtained by the both methods can be explained by their annealing at 400°C and 

500 °C. 
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• ZnO porous nanostructures have been synthesized by chemical and physical 
methods; 
• influence of deposition method on sensor properties to LPG has been studied; 
• it is shown that LPG sensor response depends on the porous layer morphology. 
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