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Abstract 

We report on CrN/MoN multilayer coatings, their structure, elemental and phase composition, 

residual stresses, mechanical properties and their dependence on deposition conditions. The 

hardness and toughness were considered as main parameters for improvement of the protective 

properties of coatings. Multilayers with varying bilayer periods, ranging from 40 nm to 2.2 µm, 

were obtained by using cathodic arc physical vapour deposition (Arc-PVD) on stainless steel 

substrate. The elemental analysis was performed using wavelength-dispersive X-ray 

spectroscopy (WDS). The surface morphology and cross-sections were analysed with scanning 

electron microscopy (SEM). The X-ray diffraction (XRD) measurements, including grazing 

incidence X-ray diffraction (GIXRD), in-plane diffraction analysis and electron backscatter 

diffraction (EBSD), were used for microstructure characterisation. Mechanical properties of 

deposited films were studied by measuring hardness (H) and Young’s modulus (E) with micro-

indentation, H/E and H3/E2 ratios were calculated. The dependences of internal structure and, 

hence, mechanical properties, on layer thickness of films have been found. Significant 

enhancement of hardness and toughness was observed with decreasing individual layer thickness 

to 20 nm: H = 38-42 GPa, H/E = 0.11.  
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1. Introduction 

It is well known that various surface modification techniques (ion implantation, surface 

oxidation, ablation, protective coatings, etc.) [1–4] are widely used nowadays to satisfy the needs 

of engineering, industry and business, in materials with desirable properties for an acceptable 

price. Hard coatings are the most efficient in providing protection from deformation and wear 

[5–12]. But often hard materials may be brittle and prone to cracking, which is why for 

protective coatings, it is crucial to have both high hardness and toughness. Transition metal 

nitrides (TMN) are largely employed as hard protective coatings in the cutting and forming tool 

industry, as they exhibit high hardness, chemical inertness and thermal stability under harsh 

environments (oxidation, radiation). Research strategies are currently deployed to improve their 

toughness, by synthesizing multicomponent systems [13–15] and/or tailoring their architecture 

through interface control (e.g., in superlattices) [16–18]. 

TiN has been the most widely studied TMN protective coating and it’s still widely used since the 

late 1960s [19–21]. However, it has some limitations and hardly overcomes modern challenges. 

The weak point of such coatings is the thermal stability and oxidation resistance. Under high 

temperature, an oxide layer may be formed on the surface, which develops stress in the coating, 

high enough to damage or destroy the protective layers. For TiN it happens at a temperature 

above 500°C [22,23]. CrN also has similar properties, but has higher thermal stability (more than 

600°C [24–26]), extremely strong adhesion to metal substrate, higher corrosion and wear 

resistance. Compared to all other TMN, though MoN is the hardest superconducting metal 

nitride, it has been studied much less, despite exhibiting hardness of about 28-34 GPa. Various 

phases with a wide range of stoichiometry and lattice structure have been reported [27–32]: 

cubic γ-Mo2N1±x, tetragonal β-Mo2N1±x, hexagonal δ-MoN and metastable MoNx phase of NaCl-

B1-type cubic structure. 
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Improvement of mechanical properties and oxidation/wear resistance of TMN may be gained 

from multilayer design of TMN coatings, which benefit from the synergistic effect of individual 

layer properties, as well as Hall-Petch strengthening. Combined with TiN, it has been recently 

shown that TiN/MoN multi-layered coatings showed successful enhancement of mechanical 

properties [33–38]. The aim of the present paper is to investigate the structure, phase 

composition and mechanical properties of multilayer CrN/MoN coatings, for which reported 

work is limited [39–45]. Their dependence on bilayer thickness and grain size will be discussed, 

in anticipation of further significant improvement. 

 

2. Multilayer Deposition 

CrN/MoN multi-layered coatings were fabricated by cathodic arc physical vapour deposition 

(Arc-PVD) on steel substrates, using vacuum-arc unit “Bulat-6M”, designed for deposition of 

protective and decorative coatings (see schematic in Fig. 1). Films were deposited on the 

polished substrates of stainless steel 12X18H9T with dimensions of 20×20 mm2 and thickness of 

2 mm. Before the deposition process, the substrate surface was cleaned and activated by metal 

ion bombardment, by applying the negative potential of -1.3 kV to the substrates for 15 minutes. 

Cleaning process was performed under continuous rotation of substrate holder and arc current Iarc 

of 120 and 100 A for Cr (chromium X99 rod, purity of 99%) and Mo (pure vacuum melted 

molybdenum rod, purity 99.99%) cathodes respectively. Then the interlayers of pure metals were 

deposited during 1 minute and the main process of multilayer CrN/MoN films deposition was 

performed in Nitrogen atmosphere, up to 1 hour. Automatic control system of substrate holder 

rotation provides static position of substrates, when facing the targets (during alternate layer 

deposition), and then rotation to other evaporation source while cathodes are switched off until a 

new position of substrate holder is reached. 
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Figure 1. Vacuum-arc deposition system for multilayer films. 1 – vacuum chamber, 2 – vacuum 

pump system, 3 – nitrogen supply, 4 – substrate holder, 5 – substrates, 6 – chromium evaporator, 

7 – molybdenum evaporator, 8 – arc power supplies, 9 – substrate power supply, 10 – automatic 

rotation system for substrate holder. 

 

Table 1. Conditions of Arc-PVD deposition for studied CrN/MoN coatings. 

Sample 
number 

Iarc, A 
Ub, V 

p, 
Pa 

Dep. time 
per layer, s 

Number 
of layers MoN CrN 

1 

120 100 -20 0.4 

300 12 

2 150 25 

3 80 45 

4 40 88 

5 20 180 

6 10 354 

The deposition time per layer was varied from 300 to 10 s from sample 1 to sample 6 while other 

deposition conditions were maintained in similar states (see Table 1). Coatings have between 12 
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and 354 layers each, and the thickness of single layer varies from tens nanometres up to 

1.1 micron, corresponding to total film thickness in the range of 7.8 to 14.7 µm. 

 

3. Characterisation Methods 

The surface morphology analysis and films cross-section observations were performed by 

scanning electron microscopy (SEM), using JEOL JSM-7001F Schottky Emission Scanning 

Electron Microscope and FEI Quanta 400 FEG Environmental SEM (ESEM). Cross-section 

samples were prepared by cutting of coatings and substrates with further hot mounting into 

conductive epoxy resin and, finally, by grinding and polishing. 

The elemental analysis was obtained by wavelength-dispersive X-Ray spectroscopy (WDS) 

using an Oxford Instruments INCA WAVE WDS spectrometer unit attached to the above 

mentioned JEOL JSM-7001F and by INCAEnegy+ software module. The WDS scanning was 

performed successively by Kα1 lines for Cr, N, O elements and by Lα1 line for Mo using 10 kV 

high accelerating voltage, probe current of 20 nA and magnification in range ×1000÷5000. This 

technique is complementary to the energy-dispersive spectroscopy (EDS), or can run 

independently. The WDS spectrometers have significantly higher spectral resolution and 

enhanced quantitative potential. 

The calculation of electron beam penetration depth in thin films was done using equation (1) 

[46]: 

� = �.����.	

 ,      (1) 

where E0 is the energy of incident electrons in keV; ρ – density of the material in g/cm3. 

The X-ray diffraction (XRD) analysis was performed in Bragg-Brentano geometry (θ/2θ), using 

Panalytical X’Pert Pro Multipurpose Diffractometer. The XRD patterns were acquired by 
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exposing samples to Cu Kα X-ray radiation, which has a characteristic wavelength λKα1 = 

1.5405980 Å (mainly) and λKα2 = 1.5444260 Å, ratio of intensities Kα1/Kα2 = 0.5. They were 

generated by PW3373/00 (Cu LFF DK292308) X-ray tube operated at Uacc = 40 kV and Iemis = 

30 mA in the line focus mode with 12.0 mm length and 0.4 mm width. The data were collected 

over the range 2θ = 10÷95° with the step size 2θ = 0.017° and the scan speed 2°/min, using the 

scanning X’Celerator detector. The fixed divergence slit of 0.5° was used together with the beam 

mask of 5 mm and all scans were carried out in continuous mode. Incident and receiving soller 

slits were 0.04 rad., receiving slit was 0.1°. 

Complementary (θ/2θ) scan and additional XRD analysis in low-angle range (GIXRD and in-

plane diffraction), as well as residual stresses measurements, were performed using high-

resolution X-ray diffractometer Rigaku SmartLab. Spectra were acquired by using various 

optics, scan speed and scan step, applying the parallel beam of Cu Kα X-ray radiation with 

λKα1 = 1.540593 Å and λKα1 = 1.544414 Å generated by rotating copper anode at Uac = 45 kV and 

Iemis = 200 mA in line focus mode with 8.0 mm length and 0.4 mm width. 

It should be noted that in contrast to the normal θ/2θ scanning, where the scattering vector is 

perpendicular to the surface, in X-ray analysis such as in-plane XRD, the scattering vector lies 

parallel to the film surface and the diffraction can be observed from the lattice planes normal to 

the samples surface. In asymmetric GIXRD, the scattering vector is inclined to the film’s surface 

and changes its position continuously with changing of 2θ value. Therefore, depending on the 

detector position, various planes normal to the current scattering vector in each point of time will 

contribute to the total diffraction pattern of the sample. 

The evaluation of crystallites sizes was carried out using Scherrer equation (2) [47]: 

� = �

� ����,      (2) 

where d is a mean size of the ordered (crystalline) domains, which may be smaller or equal to the 

grain size, in Å; λ is an X-ray wavelength, in Å; β is a line broadening at half the maximum 
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intensity (FWHM) in radians; θ is the Bragg angle, in radians; K≈0.89 is a dimensionless shape 

factor depending on (hkl) Miller indexes. 

The EBSD analysis was performed using the unit of EDAX EBSD forward scatter detector 

system and high resolution DigiView III camera attached to the above mentioned FEI Quanta 

400 FEG ESEM. The grain tolerance angle of 5° was used for grains determination. Grains at 

edges of scans were not included in statistics. 

Calculation of residual stress was performed by sin2
ψ method, using asymmetric XRD 2θ scans 

for various fixed incident ω angles and assuming zero values of φ and χ angles [48–50]. The 

angle ψ was found by subtracting ω from θ. The scheme of the experiment is shown in Fig. 2. 

    

(a)       (b) 

Figure 2. X-ray diffraction analyses: (a) conventional symmetric θ/2θ scan, (b) asymmetric 2θ 

scan with fixed position of X-ray source. 

 

Out-of-plane lattice constants a⊥ were determined from d-spacing vs sin2
ψ plots, as well as from 

XRD θ/2θ patterns, while in-plane lattice constants a∥ were deduced from in-plane XRD data. 

The analysis of mechanical properties was realised by micro-indentation for hardness and 

Young’s modulus (elastic modulus) measurements. The NanoTest instrument from Micro 

Materials company was used. On each sample, up to 10 indentations oriented in one line with the 
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interval of 50 µm were made. The NanoTest instrument has Berkovich indenter and uses the 

method of depth sensing indentation with the collected data analysis performed by supplied 

software using Oliver-Pharr method. The measured data was collected in “Depth Vs Load 

Hysteresis” mode with an acquisition process controlled by penetration depth. The maximum 

penetration depth was in the range 0.6-1.3 µm, but not deeper than 10% of coating thickness and 

the maximum load reached values of 583 mN. 

 

4. Results and Discussion 

4.1 Multilayer Structures 

The multilayer structure of studied CrN/MoN coatings achieved by SEM from the polished 

cross-section samples is presented in Fig. 3. Images of samples 1 and 3 (Fig. 3 (a) and (b)) were 

taken in secondary electron imaging (SEI) mode, magnification ×5k and ×15k respectively. 

Image of sample 6 (Fig. 3(c)) was made using backscattered electron detector (BSED) in Z 

(atomic number) mode, magnification is ×400k. Summarised results of bilayer and total 

thickness of coatings are presented in Table 2. 

Since heavier atoms with higher atomic number Z give brighter shades of grey on SEM images, 

the MoN layers with greater average Z will result in brighter layers. CrN layers, on the other 

hand, have lower average atomic number, thus corresponding to darker layers. The cross-section 

SEM images confirm the periodic stacking of the MoN/CrN layers and the presence of relatively 

sharp interfaces, which approves high quality of Arc-PVD deposited films. Defects due to the 

substrate surface roughness or droplets in films were easily absorbed and smoothed by multilayer 

structure. 
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  (a)    (b)     (c) 

Figure 3. SEM-images of polished cross-section samples 1 (a), 3 (b) and 6 (c) of multilayer 

CrN/MoN coatings. 

Table 2. Total thickness and thickness of layer period measured by SEM on cross-sections. 

Sample Dep. time per layer, s Bilayer thickness Λ, µm Total thick., µm Dep. rate, nm/s 

1 300 2.26 13.5 3.8 

2 150 1.18 14.7 3.9 

3 80 0.60 13.6 3.8 

4 40 0.25 11.1 3.2 

5 20 0.12 10.8 2.9 

6 10 0.044 7.8 2.2 

The evolution of deposition rate, calculated by dividing the value of bilayer thickness by the 

corresponding deposition time (see Table 2), is shown in Fig. 4. It is seen that for coatings with 

shorter layer deposition time, the real bilayer thickness starts to be lower than predicted by 

deposition time control. This can be explained by specific features of the deposition system with 

automatic controller of substrate holder rotation and evaporators power supplies. The shorter the 

deposition time per layer, the more often does the substrate holder rotate and evaporators are 

disabled by the controller. Meanwhile, nitrogen flows to the chamber, the excess reactive gas 

causes increase of pressure and the poisoning of the cathodes and, hence, the decreasing of the 

evaporation rates. In turn, it also influences the increase of reactive gas again, even at the 

beginning of the new layer deposition process. 
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Figure 4. Dependence of deposition rate on layer deposition time. 

4.2 Elemental Composition 

The analysis of elemental composition (see results in Table 3) was performed by WDS 

technique, which uses characteristic X-rays of interaction volume of studied films with electron 

beam. The process of data acquisition and analysis for elemental content and structures of 

considered films has the features described below. 

The elemental composition of coatings was measured by scanning the presence of four of the 

most possible elements, assuming the contribution of chromium, molybdenum, nitrogen and 

oxygen. 

Table 3. Elemental concentration in CrN/MoN multilayer films taken by WDS. 

Sample Elements, WDS, top surface 

Cr, at.% Mo, at.% N, at.% O, at.% 

1 48.1 0.1 50.1 1.8 

2 1.1 53.0 41.0 5.0 

3 1.8 50.3 43.1 4.8 

4 10.2 41.6 43.5 4.7 

5 25.5 16.0 56.7 1.8 

6 27.6 25.1 44.8 2.5 
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The Kα1 line of oxygen, which was used for the analysis (EKα1(O) = 0.525 keV), lies very close 

to the Lα1 line of chromium (ELα1(Cr) = 0.572 keV). Because of this, chromium may contribute 

to the value of oxygen content in the film’s composition. To avoid this, the determining of 

background for oxygen peak acquisition was made by shoulder on the side opposite to the 

chromium Lα1 line. 

Sample 1 demonstrates the presence of only Cr and N, which indicates that only the first top 

surface layer of CrN was exposed to interaction with the electron beam. It means that the 

thickness of the layers in sample 1 is much higher than the penetration depth of the electron 

beam used. Based on equation (1), it is possible to evaluate how deep into the film the electron 

beam goes. The electron beam used in this experiment may reach the depth of up to 0.34 or 

0.54 µm for MoN or CrN films respectively. For coatings with thin enough layers, the average 

value of penetration depth was used. See the schematic illustration in Fig. 5. 

 

Figure 5. Estimated penetration depth of electron beam (accelerated voltage Uac = 10 kV) into 

multilayer CrN/MoN coatings with various bilayer thickness. 
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In result, it was identified that in sample 1 with Λ = 2.26 µm, only the first layer of CrN was 

evaluated. The elemental composition was almost 50% both of chromium and nitrogen, ratio 

Cr/N = 1, which means that stoichiometric CrN film was deposited. The elemental composition 

of MoN in deposited samples was evaluated on the top layer of sample 2: Mo/N = 1.33. Also, 

assuming the same elemental ratios as for MoN in sample 1 and CrN in sample 2, it was 

estimated that integral elemental composition of sample 6 is as follows: Cr - 24.3 at.%, Mo - 

26.8 at.%, N - 45.5 at.% and O - 3.4 at.%, which also gives the ratio Mo/Cr = 1.1. When 

compared with the measured values in Table 3 for sample 6 (with the thinnest layers, where the 

electron beam exposed about 22 layers), they are found to be similar, but slight decreasing of Mo 

fraction and (or) increasing of Cr content (ratio Mo/Cr = 0.9) are observed. Due to the unbalance 

of interaction volumes of CrN and MoN layers in samples 3, 4 and 5 (see Fig. 5), the results of 

performed WDS elemental analysis for mentioned films couldn’t be considered as completely 

reliable. 

4.3 Morphology and Microstructure 

The surface morphology of CrN/MoN coatings with different period thickness is presented in 

Fig. 6. From cross-section study and WDS analysis, it is proved that in Fig. 6(a) the thick top 

CrN layer of sample 1 corresponds to CrN. The morphology is typical for chromium nitrides and 

it is characterised by high structuring, rocky and rough surface. The surface of sample 3 in 

Fig. 6(b) has contribution almost only from MoN layer and more flat surface was observed. 

Sample 6 shown in Fig. 6(c) with the thinner layers includes combined morphology of CrN and 

MoN films deposited by Arc-PVD. 

   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

(a)    (b)     (c) 

Figure 6. SEM-images of multilayer CrN/MoN coatings surface for samples 1 (a), 3 (b) and 6 

(c). 

 

Fig. 7 shows the set of XRD patterns recorded on all samples in θ/2θ geometry. Four main 

reflections, in the range of 35 to 82° are observed. The XRD lines positions of reference 

powders, including cubic phases γ-Mo2N and CrN, tetragonal β-Mo2N and hexagonal β-Cr2N, 

are reported on the top bar. Some of them are characterised by similar crystal structure and (or) 

close peak positions, which leads to the overlapping and broadening of the experimental 

resulting peaks, which renders the phase determination not evident. However, the XRD patterns 

show that CrN/MoN coatings are polycrystalline. 
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Figure 7. XRD patterns for CrN/MoN multilayer coatings in the range 2θ from 35 to 85 degrees 

with specified possible phases and planes orientation indicated on the top bar. The range of 50-

60 deg. has been cut due to the absence of diffraction peaks and for a better view of the patterns. 

To distinguish between the different possible phases, additional GIXRD and in-plane diffraction 

analysis were performed on the thickest samples, sample 1 (top layer – CrN) and sample 2 (top 

layer – MoN), for which only the top layer of the coating will contribute to the XRD signal under 

this configuration. 

  

(a)       (b) 

Figure 8. Experimental diffraction patterns: (a) - sample 1 taken in asymmetrical grazing 

incidence mode (1), in-plane (2) and symmetrical θ/2θ scan (3); (b) – samples 1 and 2, in-plane 

mode, ω = 0.6°. Cut ranges of diffraction angle don’t contain any diffraction peaks. 

Fig. 8(a) shows the comparison of GIXRD pattern, in-plane pattern and conventional θ/2θ scans 

for sample 1. Clear reflections from cubic CrN phase are observed. Comparing the in-plane and 

conventional θ/2θ XRD patterns, one can infer from the change in Bragg peak positions that the 

top CrN layer is under compressive stress. 

Fig. 8(b) shows the comparison of in-plane diffraction patterns (ω = 0.6°) for samples 1 (top 

layer is CrN) and 2 (top layer is MoN). They clearly demonstrate similar positions of peaks, 

which explains the overlapping of XRD lines on the integral pattern (Fig. 7) and confirm the 
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presence of cubic (NaCl type) high temperature phase of γ-Mo2N and CrN. The diffraction peaks 

inherent to β-Mo2N or β-Cr2N were not detected. 

Summarising all the diffraction data mentioned above, the presence of two main phases in 

multilayer coatings can be inferred in Fig. 8: γ-Mo2N and CrN with cubic (structural type NaCl) 

crystal lattices. They don’t show any preferential crystal orientation: crystallites with [111], 

[100] and [311] orientations are detected, with a minor contribution from [220] ones. With 

decreasing bilayer period, the peaks get broadened, which could be related to reduction of 

crystallite size in presented polycrystalline samples. The results of crystallite size calculation are 

presented in Table 4. 

Table 4. Calculation of crystallite and grain size for multilayer CrN/MoN coatings. 

Sample 
number 

Crystallite size for selected phase and lattices orientation, nm 
Average grain size 

by EBSD, µm 
CrN γ-Mo2N 

(111) (200) (311) (220) (111) (200) (311) (220) 
1 17.2 14.3 8.9 - 6.4 11.5 8.1 - 0.16 
2 14.0 13.9 8.7 - 5.6 10.4 8.0 - 0.15 
3 14.5 13.5 8.4 - 5.6 9.9 8.0 - 0.14 
4 14.2 12.1 8.2 - 7.4 9.3 7.4 - 0.11 
5 13.7 9.9 7.7 - 9.4 9.0 7.2 - - 
6 9.3 8.3 7.6 - 5.8 8.0 7.0 - - 

1 (in-plane) 7.7 14.7 9.7 5.5 - - - - - 
2 (in-plane) - - - - 10.4 9.0 6.5 6.3 - 

The average crystallite size was calculated using Scherrer equation (2). To extract information 

about separate peaks and to know the full width at half maximum (FWHM) the fittings of the 

XRD peaks were performed using the Crystal Impact's phase identification software “Match!”. 

Any other factors which can contribute to the width of a diffraction peak besides crystallite size, 

such as instrumental effects, microstrain, solid solution inhomogeneity etc. have not been taken 

into account. With the reduction of layer thickness in studied CrN/MoN multilayer films the 

crystallite size also decreases. 
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Additional information on the crystal orientation, grain size, and their dependence on the layer 

thickness was gained from EBSD analysis (see Fig. 9). Note that the colours used in Fig. 9 (a) 

don’t denote any crystal orientation, and grains are simply coloured to distinguish them from 

neighbouring grains. Fig. 9(a) shows an example of a unique grain colour map for part of the 

CrN layer for sample 1. Reconstructed ellipse shaped grains demonstrate columnar structure and 

films growth. To supplement the information about the films structure, the inverse pole figure 

map was used. The inverse pole figure map is a colour coded map, where the colour gives an 

indication of the crystal direction aligned with sample normal. Fig. 9(b) demonstrates exactly the 

same part of the coating as Fig. 9(a), but in inverse pole figure mode, and it is seen that some 

small mis-orientation is present in grains. Neighbour grains may have similar crystal orientations 

or completely different ones. 

(a) 

  

(b) 

Figure 9. EBSD mapping for CrN layer of sample 1: unique grain colour map with shape ellipses 

boundaries (a), inverse pole figure [311] (b). 
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Figure 10. One of the pole figures and texture calculations for sample 1. 

 

The EBSD analysis shows the columnar growth of the deposited multilayer CrN/MoN films, as 

well as the prevailing texture formation. Fig. 10 presents one of the pole figures for sample 1 

with the highest fibre texture in the orientation (311). These results are also agreed with the XRD 

patterns analysis, where the high intensity of (311) texture was detected for sample 1 (see Fig. 7 

and 8). 

The discussed method also allows evaluation of a grain size in coatings and to build graphs of 

their distribution. From Fig. 11, it is clear that coatings with smaller layer thickness have smaller 

grain size. It is seen that sample 4 (with the lowest layer thickness of all four analysed) has the 

lowest fraction of the largest grains, as well as higher values for the smallest grains size. The 

opposite is observed for sample 1 with the thicker layers. Samples 2 and 3 demonstrate gradient 

transition between the two described states. The detailed information about grain size for studied 

samples is shown in the last column of Table 4. The statistics were taken from the same cross-

section areas sizes with height of the total films thickness and width of 5.3 µm. It should also be 

noted that the Y-axis is presented in arbitrary units of fraction, which are not absolute values, to 

avoid some deviations due to possible small differences in size or range of studied zone of cross-

section samples. 
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Figure 11. Grain size distribution and average grain size values in CrN/MoN multilayer coatings 

with different bilayer thickness. 

 

4.4 Evaluation of Residual Stresses 

The residual stress was determined on samples 1 and 2, giving access to the stress state of the 

topmost layers, MoN and CrN, respectively. For each sample, several hkl reflections were 

recorded using asymmetric XRD 2θ scans and the stress was derived using the sin2
ψ method. As 

seen from Fig. 12, both layers are under compressive stress, as manifested from the negative 

slopes of sin2ψ plots. Detailed results of stress and lattice parameters evaluation are reported in 

Table 5. For both CrN and γ-Mo2N phases the in-plane a∥ (resp. out-of-plane a⊥) lattice 

parameters are lower (resp. larger) than reference values from the literature, which is consistent 

with the existence of biaxial compressive stress. The stress-free lattice parameter, a0, was 

calculated from equation (3) [48]: 

�� = �� �������� + �∥ �
��
����,     (3) 

where ν is the Poisson ratio, taken 0.29 both for CrN and MoN [42,51,52]. Larger compressive 

stress was found for the MoN layer compared to CrN one (see Table 5), which may be due to 
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higher incorporation of nitrogen atoms in the crystal lattice and correlates with results of 

elemental composition analysis. For the same reason the increasing of stress-free lattice 

parameters a0 in comparison to reference values aref is observed. 

  

Figure 12. Sin2ψ plots recorded for 311 reflections of CrN (a) and γ-Mo2N (b) layers. 

Table 5. Results of residual stresses calculation for multilayer CrN/MoN thin films. 

Phase 
Residual Stress σ, GPa Lattice parameters, Å 

ε, % Plane orientations Average a⊥ a∥ a0 aref [53] 
111 200 220 311 222 400 

CrN 7.1 4.6 5.7 5.0 6.3 3.1 5.3 4.196 4.134 4.168 4.149 1.5 

γ-Mo2N 8.8 4.6 8.2 5.8 - - 6.9 4.248 4.153 4.205 4.163 2.3 

The stress and strain calculated for MoN layer have relatively higher values in comparison to 

CrN; further, calculated lattice parameter a0 is significantly higher than that of reference γ-Mo2N, 

which could be also explained by the presence of the cubic, off-stoichiometric MoNx metastable 

phase. This metastable cubic MoNx phase has a higher lattice constant than γ-Mo2N, as a result 

of filling of unoccupied nitrogen sites [54]. As already reported by Linker et al. [55] and Perry et 

al. [56], this increase of the lattice parameter (0.419-0.427 nm) happens with increasing nitrogen 

contents (MoNx, 0.9 < x < 1.3). Nitrogen atoms in excess may occupy the 50 % vacant 

octahedral sites of γ-Mo2N phase and additionally they can also occupy interstitial sites, resulting 

in lattice expansion [57]. This conclusion is also supported by the N content (and oxygen 

content), which may together justify the presence of that phase [58]. 
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4.5 Mechanical Properties 

Results of measurements of mechanical properties are presented in Fig. 13. Values of hardness 

and elastic modulus (see Fig. 13(a)) are shown, vis-a-vis values of bilayer thickness in samples. 

It was observed that with decrease in bilayer thickness, the hardness and Young’s Modulus 

increase. The lowest values of hardness and Young’s Modulus, typical for pure chromium 

nitrides, correspond to the film with the thicker layers (H = 25 GPa, E = 295 GPa when Λ = 

2.26 µm) and the highest – for the films with the thinner layers (H = 38 GPa, E = 357 GPa when 

Λ = 44 nm). It should be noted that values of measured hardness higher than 40 GPa were 

observed in some zones of three samples 4, 5 and 6 with the lowest values of bilayer thickness – 

up to 42.3 GPa, so the deposited films may belong to group of super-hard coatings. 

To evaluate mechanical properties of films and to predict protective features of coatings, the 

ratios of hardness to elastic modulus could be used. In the past decade, it was shown that values 

of ratios H/E and H3/E2 are very important parameters [10,59,60]. 

The ratio H/E (or H/E*, where E* = E/(1 - ν2)) plays a significant role in the so-called “plasticity 

index”, widely recognised as a reliable parameter of elastic behaviour of surface in contact with 

external forces. It could characterise protective properties of coatings in terms of cracking, 

abrasive wear and serve as a ranking parameter for toughness of the deposited films. 

In Fig. 13(b) the area can be divided into two zones by line H/E = 0.1. Three samples are placed 

in zone with higher ratio of H/E > 0.1 (plastic area), which characterise them as coatings with 

enhanced wear resistance. Fig. 13(b, left Y-axis) demonstrates the dependence of ratio H/E to 

bilayer thickness. The thinner the layers in coating, the higher was the ratio H/E achieved. 

The ratio H3/E2 is another important parameter of mechanical properties characterisation, which 

allows determination and rank coatings in relation to plastic deformation resistance. The 

behaviour of ratio H3/E2 in terms of films bilayer thickness is described in Fig. 13(b, right Y-

axis). The observed improvement of the mechanical parameters, such as hardness and following 
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H/E or H3/E2 ratios in studied multilayer films, may most likely be related to the decrease of 

bilayer thickness and subsequently lower values of crystalline/grain sizes. This leads to an 

increase in interface volume and role of boundaries as pinning points in material. The Hall-Petch 

strengthening with decrease of layer thickness leads to prevention of dislocation movements and 

will enhance yield strength of material and increase the hardness. 

As the bilayer thickness becomes thinner, a higher number of layers were produced. It leads also 

to the increasing of interlayer interfaces, which block the propagation of cracks and dislocations, 

avoid the continuity of pinholes and pores [61]. Recent work by Daniel et al. [62] on the 

beneficial impact of interface design on crack deflections have been reported in TiN coatings. 

   

(a)       (b) 

Figure 13. Results of mechanical tests: hardness and Young’s modulus measurements (a), 

dependence of H/E and H3/E2 ratios on the bilayer thickness of CrN/MoN films (b). 

 

5. Conclusions 

The multilayer coatings of CrN and MoN films deposited by Arc-PVD have been studied. The 

focus of study was on the methods of elemental composition and structural characterisation, 

mechanical properties and their comparison. It was observed that CrN/MoN coatings deposited 

by Arc-PVD are characterised by a relatively sharp interface between layers; they have typical 

columnar structure growth, and prevailing crystal orientations with textures (111), (200) and 
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(311) of cubic γ-Mo2N and CrN phases. When most of the deposition conditions are maintained 

fixed and only the deposition time per sample is changing, the coatings keep stable similar 

phases and elemental composition (at least in range of the bilayer thickness considered in the 

present paper), but the structure is changing through decreasing of grains size in coatings with 

lower values of layer thickness. On one hand, it leads to the increase of the interfaces volume in 

CrN/MoN coatings. On the other hand, the number of interlayer interfaces increases due to the 

decrease of individual layer thickness. The mentioned changes lead to Hall-Petch strengthening 

of films, and to the blocking of cracks and dislocations propagation in multilayer CrN/MoN 

coatings. The measured hardness has reached values of 42.3 GPa. 

It is an important property of the studied material, which may cause future enhancement of 

mechanical properties and result in application of multilayer films as super-hard protective 

coatings. Future studies will focus on the thermal stability, oxidation and chemical resistance to 

expand the range of possible applications. The observed properties and obtained results show 

potential of their use for physical and mechanical property control and prediction in coatings and 

thin films. 
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• Multilayer CrN/MoN films were obtained by using cathodic arc vapour deposition. 
• Structure, elemental and phase composition, mechanical properties were studied. 
• Presence of cubic CrN, γ-Mo2N and metastable MoNx phase was detected. 
• Crystallite/grain size decreases at lower values of individual layer thickness. 
• Enhancement of hardness and toughness was observed; wear resistance was improved. 

Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness [
Текст] / B.O. Postolnyi, V.M. Beresnev, G. Abadias [та ін.] 
// Journal of Alloys and Compounds. — 2017. — №725. — С. 1188-1198.


