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Lecture 1  

Introduction 

1.1 The Brain as an Information Processing 

System 

The human brain contains about 10 billion nerve cells, or 

neurons. On average, each neuron is connected to other neurons 

through about 10000 synapses. The brain’s network of neurons 

forms a massively parallel information processing system. This 

contrasts with conventional computers, in which a single processor 

executes a single series of instructions. 

Against this, consider the time taken for each elementary 

operation: neurons typically operate at a maximum rate of about 100 

Hz, while a conventional CPU carries out several hundred million 

machine level operations per second. Despite of being built with very 

slow hardware, the brain has quite remarkable capabilities:  

 its performance tends to degrade gracefully under partial 

damage. In contrast, most programs and engineered systems are 

brittle: if you remove some arbitrary parts, very likely the whole will 

cease to function;  

 it can learn (reorganize itself) from experience;  

 this means that partial recovery from damage is possible if 

healthy units can learn to take over the functions previously carried 

out by the damaged areas;  

 it performs massively parallel computations extremely 

efficiently. For example, complex visual perception occurs within 

less than 100 ms, that is, 10 processing steps!  
 it supports our intelligence and self-awareness. 
 

The basic computational unit in the nervous system is the 

nerve cell, or neuron (see Fig. 1). 

http://www.willamette.edu/~gorr/classes/cs449/figs/brain2.jpg
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Figure 1 – Structure of a Typical Neuron (from SEER Training Web Site) 

 

A neuron has:  

 Dendrites (inputs)  

 Cell body  

 Axon (output)  

A neuron receives input from other neurons (typically many 

thousands). Inputs sum (approximately). Once input exceeds a 

critical level, the neuron discharges a spike – an electrical pulse that 

travels from the body, down the axon, to the next neuron(s) (or other 

receptors). This spiking event is also called depolarization, and is 

followed by a refractory period, during which the neuron is unable 

to fire.  

The axon endings (Output Zone) almost touch the dendrites 

or cell body of the next neuron. Transmission of an electrical signal 

from one neuron to the next is effected by neurotransmittors, 

chemicals which are released from the first neuron and which bind to 

receptors in the second. This link is called a synapse. The extent to 

which the signal from one neuron is passed on to the next depends on 

many factors, e. g. the amount of neurotransmittor available, the 
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number and arrangement of receptors, amount of neurotransmittor 

reabsorbed.  

The efficacy of a synapse can change as a result of 

experience, providing both memory and learning through long-term 

potentiation (LTP). One way this happens is through release of 

more neurotransmitters. Many other changes may also be involved.  

Hebbs Postulate:  “When an axon of cell A... excites[s] cell B 

and repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells so that 

A’s efficiency as one of the cells firing B is increased”.  

1.2 Artificial Neuron Models  

To model the brain we need to model a neuron. Each neuron 

performs a simple computation. It receives signals from its input 

links and it uses these values to compute the activation level (or 

output) for the neuron. This value is passed to other neurons via its 

output links. 

 

 
 

Figure 2 – Basic model of a single neuron  

 

An artificial neuron is a simplistic representation that 

emulates the signal integration and threshold firing behavior of 

biological neurons by means of mathematical equations. Like their 

biological counterpart, artificial neurons are bound together by 
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connections that determine the flow of information between peer 

neurons. Stimuli are transmitted from one processing element to 

another via synapses or interconnections, which can be excitatory or 

inhibitory. If the input to a neuron is excitatory, it is more likely that 

this neuron will transmit an excitatory signal to the other neurons 

connected to it. Whereas an inhibitory input will most likely be 

propagated as inhibitory. 

The input value received of a neuron is calculated by 

summing the weighted input values from its input links. An 

activation function takes the neuron input value  

1

n

i i
i

Sum x w


  

and produces a value y which becomes the output value of the neuron  

0

n

i i
i

y f x w


 
  

 
 . 

This value is passed to other neurons in the network. 

The activation function defines the output of that node given 

an input or set of inputs. A standard computer chip circuit can be 

seen as a digital network of activation functions that can be "ON" (1) 

or "OFF" (0), depending on input. This is similar to the behavior of 

the linear perceptron in neural networks.  

Some common activation functions are shown below. 
 

Table 1 – Activation functions 

Step function 

 
1, 0

( )
0, 0

if Sum
f x

if Sum


 


 

 

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Linear_perceptron
https://en.wikipedia.org/wiki/Neural_networks
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Continuation of the Table 1 

Saturation function.  

The activation value 

corresponds to the value of the 

weighted sum, where k is a 

constant only if this sum does 

not exceed a pre-defined 

MAX value. 

,  
( )

,

k Sum if Sum MAX
f x

MAX otherwise

 
 


 

 

Sigmoid function  

The saturation levels range 

from 0 to 1. 

1
( )

1 x
f x

e



 

 

Hyperbolic tangent function.  

The saturation levels range 

from –1 to 1. 

( )
x x

x x

e e
f x

e e









 

 

 

On occasions an identifying function is also used (i. e. where 

the input to the neuron becomes the output). This function is 
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normally used in the input layer where the inputs to the neural 

network are passed unchanged into the network. 

1.3 Historical background 

Neural network simulations appear to be a recent 

development. However, this field was established before the advent 

of computers, and has survived at least one major setback and several 

eras.  

In 1943, neurophysiologist Warren McCulloch and 

mathematician Walter Pitts wrote a paper on how neurons might 

work. In order to describe how neurons in the brain might work, they 

modelled a simple neural network using electrical circuits. 

In 1949, Donald Hebb wrote The Organization of Behaviour, 

a work which pointed out the fact that neural pathways are 

strengthened each time they are used, a concept fundamentally 

essential to the ways in which humans learn. If two nerves fire at the 

same time, he argued, the connection between them is enhanced. 

As computers became more advanced in the 1950’s, it was 

finally possible to simulate a hypothetical neural network. The first 

step towards this was made by Nathanial Rochester from the IBM 

research laboratories. Unfortunately for him, the first attempt to do 

so failed. 

In 1959, Bernard Widrow and Marcian Hoff of Stanford 

developed models called “ADALINE” and “MADALINE”. In a 

typical display of Stanford’s love for acronymns, the names come 

from their use of Multiple ADAptive LINear Elements. ADALINE 

was developed to recognize binary patterns so that if it was reading 

streaming bits from a phone line, it could predict the next bit. 

MADALINE was the first neural network applied to a real world 

problem, using an adaptive filter that eliminates echoes on phone 

lines. While the system is as ancient as air traffic control systems, 

like air traffic control systems, it is still in commercial use. 

In 1962, Widrow & Hoff developed a learning procedure that 

examines the value before the weight adjusts it (i. e. 0 or 1) 
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according to the rule: Weight Change = (Pre-Weight line value)· 

(Error / (Number of Inputs)). It is based on the idea that while one 

active perceptron may have a big error, one can adjust the weight 

values to distribute it across the network, or at least to adjacent 

perceptrons. Applying this rule still results in an error if the line 

before the weight is 0, although this will eventually correct itself. If 

the error is conserved so that all of it is distributed to all of the 

weights then the error is eliminated. 

Many important advances have been boosted by the use of 

inexpensive computer emulations. Following an initial period of 

enthusiasm, the field survived a period of frustration and disrepute. 

During this period when funding and professional support was 

minimal, important advances were made by relatively few 

researchers. These pioneers were able to develop convincing 

technology which surpassed the limitations identified by Minsky and 

Papert. Minsky and Papert, published a book (in 1969) in which they 

summed up a general feeling of frustration (against neural networks) 

among researchers, and was thus accepted by most of them without 

further analysis.  

In 1972, Kohonen and Anderson developed a similar network 

independently of one another, which we will discuss more about 

later. They both used matrix mathematics to describe their ideas but 

did not realize that what they were doing was creating an array of 

analog ADALINE circuits. The neurons are supposed to activate a 

set of outputs instead of just one. The first multilayered network was 

developed in 1975, an unsupervised network. Currently, the neural 

network field enjoys a resurgence of interest and a corresponding 

increase in funding.  

1.4 Neural networks versus conventional 

computers 

Neural networks take a different approach to problem solving 

than that of conventional computers. Conventional computers use an 

algorithmic approach, i. e. the computer follows a set of instructions 
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in order to solve a problem. Unless the specific steps that the 

computer needs to follow are known the computer cannot solve the 

problem. That restricts the problem solving capability of 

conventional computers to problems that we already understand and 

know how to solve. But computers would be so much more useful if 

they could do things that we don’t exactly know how to do.  

Neural networks process information in a similar way the 

human brain does. The network is composed of a large number of 

highly interconnected processing elements (neurones) working in 

parallel to solve a specific problem. Neural networks learn by 

example. They cannot be programmed to perform a specific task. 

The examples must be selected carefully otherwise useful time is 

wasted or even worse the network might be functioning incorrectly. 

The disadvantage is that because the network finds out how to solve 

the problem by itself, its operation can be unpredictable. 

On the other hand, conventional computers use a cognitive 

approach to problem solving; the way the problem is solved must be 

known and stated in small unambiguous instructions. These 

instructions are then converted to a high level language program and 

then into machine code that the computer can understand. These 

machines are totally predictable; if anything goes wrong is due to a 

software or hardware fault. 

Neural networks and conventional algorithmic computers are 

not in competition but complement each other. There are tasks more 

suitable to an algorithmic approach like arithmetic operations and 

tasks that are more suitable to neural networks. Even more, a large 

number of tasks require systems that use a combination of both 

approaches (normally a conventional computer is used to supervise 

the neural network) in order to perform at maximum efficiency.  
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Lecture 2 

Artificial Neuron Networks (ANNs) 

2.1 Learning problem 

Suppose you need to find the function which takes the 

following inputs and produces their associated outputs: 

 

Input Output 

1 1 

2 8 

3 27 

4 64 

 

Presumably, the function you would learn would be f(x) = x3. 

Imagine now that you had a set of values, rather than a single 

instance as input to your function: 

 

Input Output 

[1, 2, 3] 1 

[2, 3, 4] 5 

[3, 4, 5] 11 

[4, 5, 6] 19 

 

Here, it is still possible to learn a function: for example, 

multiply the first and last element and take the middle one from the 

product. Note that the functions we are learning are getting more 

complicated, but they are still mathematical. ANNs just take this 

further: the functions they learn are generally so complicated that it’s 

difficult to understand them on a global level. But they are still just 

functions that play around with numbers. 
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Imagine, now, for example, that the inputs to our function 

were arrays of pixels, actually taken from photographs of vehicles, 

and that the output of the function is either 1, 2 or 3, where 1 stands 

for a motorcycle, 2 stands for a bus and 3 stands for a tank: 

 

Input Output Input Output 

 

3 

 

1 

 

2 

 

1 

 

In this case, the function which takes an array of integers 

representing pixel data and outputs either 1, 2 or 3 will be fairly 

complicated, but it’s just doing the same kind of thing as two simpler 

functions. 

Because the functions learned to, for example, categorise 

photos of vehicles into a category of motorcycle, bus or tank, are so 

complicated, we say the ANN approach is a black box approach 

because, while the function performs well at its job, we cannot look 

inside it to gain a knowledge of how it works. This is a little unfair, 

as there are some projects which have addressed the problem of 

translating learned neural networks into human readable forms. 

However, in general, ANNs are used in cases where the predictive 

accuracy is of greater importance than understanding the learned 

concept. 

Artificial Neural Networks consist of a number of units which 

are mini calculation devices. They take in real-valued input from 
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other multiple nodes and they produce a single real valued output. 

By real-valued input and output we mean real numbers which are 

able to take any decimal value. The architecture of ANNs is as 

follows: 

 A set of input units which take in information about the 

example to be propagated through the network. By propagation, we 

mean that the information from the input will be passed through the 

network and an output produced. The set of input units forms what is 

known as the input layer. 

 A set of hidden units which take input from the input layer. 

The hidden units collectively form the hidden layer. For simplicity, 

we assume that each unit in the input layer is connected to each unit 

of the hidden layer, but this isn’t necessarily the case. A weighted 

sum of the output from the input units forms the input to every 

hidden unit. Note that the number of hidden units is usually smaller 

than the number of input units. 

 A set of output units which, in learning tasks, dictate the 

category assigned to an example propagated through the network. 

The output units form the output layer. Again, for simplicity, we 

assume that each unit in the hidden layer is connected to each unit in 

the output layer. A weighted sum of the output from the hidden units 

forms the input to every output unit. 

Hence ANNs look like this in the general case: 

 
Figure 3 – Structure of an ANN 
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Note that the x1, x2, … xn and Out1,…, Out2 represent real 

values  and that all the edges in this graph have weights associated 

with them. Note also that more complicated ANNs are certainly 

possible. In particular, many ANNs have multiple hidden layers, with 

the output from one hidden layer forming the input to another hidden 

layer. Also, ANNs with no hidden layer – where the input units are 

connected directly to the output units – are possible. These tend to be 

too simple to use for real world learning problems, but they are 

useful to study for illustrative purposes, and we look at the simplest 

kind of neural networks, perceptron’s, in the next section. 

In our vehicle example, it is likely that all the images will be 

normalised to having the same number of pixels. Then there may be 

an input unit for each red, green and blue intensity for each pixel. 

Alternatively, greyscale images may be used, in this case there needs 

only to be an input node for each pixel, which takes in the brightness 

of the pixel. The hidden layer is likely to contain far fewer units 

(probably between 3 and 10) than the number of input units. The 

output layer will contain three units, one for each of the possible 

categories (motorcycle, bus, tank). Then, when the pixel data for an 

image are given as the initial values for the input units, this 

information will propagate through the network and all three output 

units will produce a real value. The output unit which produces the 

highest value is taken as the categorization for the input image. 

So, for instance, when this image is used as input: 

 

 
 

then, if output unit 1 [motorcycle] produces value 0.5, output unit 2 

[bus] produces value 0.05 and output unit 3 [tank] produces value 

0.1, then this image has been (correctly) classified as a motorcycle, 

because the output from the corresponding motorcycle output unit is 
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higher than for the other two. Exactly as the function embedded 

within a neural network computes the outputs given by the inputs is 

best explained using example networks. In the next section, we’ll 

consider the networks simplest of all, perceptrons, which consist of a 

set of input units connected to a single output unit. 

 

2.2 Perceptrons 

 

The weights in any ANN are always just real numbers and the 

learning problem boils down to choosing the best value for each 

weight in the network. This means there are two important decisions 

to make before we train an artificial neural network: (i) the overall 

architecture of the system (how input nodes represent given 

examples, how many hidden units/hidden layers to have and how the 

output information will give us an answer) and (ii) how the units 

calculate their real value output from the weighted sum of real valued 

inputs. 

The answer to (i) is usually found by experimentation with 

respect to the learning problem at hand: different architectures are 

tried and evaluated on the learning problem until the best one 

emerges. In perceptrons, given that we have no hidden layer, the 

architecture problem boils down to just specifying how the input 

units represent the examples given to the network. The answer to (ii) 

is discussed in the next subsection. 

The input units simply output the value which was input to 

them from the example to be propagated. Every other unit in a 

network normally has the same internal calculation function, which 

takes the weighted sum of inputs to it and calculates an output. There 

are different possibilities for the unit function and this dictates to 

some extent how learning over networks of that type is performed. 

Firstly, there is a simple linear unit which does no calculation, it just 

outputs the weighted sum which was input to it. 
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Secondly, there are other unit functions which are 

called threshold functions, because they are set up to produce low 

values up until the weighted sum reaches a particular threshold, then 

they produce high values after this threshold. The simplest type of 

the threshold function produces 1 if the weighted sum of the inputs is 

over a threshold value T, and produces a –1 otherwise. We call such 

functions step functions, due to the fact that, when drawn as a graph, 

it looks like a step. Another type of the threshold function is called 

a sigma function, which has similarities with the step function, but is 

advantageous over it.  

Example 

As an example, consider an ANN which has been trained to 

learn the following rule categorizing the brightness of 2 x 2 black 

and white pixel images: if it contains 3 or 4 black pixels, it is dark; if 

it contains 2, 3 or 4 white pixels, it is bright. We can model this with 

a perceptron by saying that there are 4 input units, one for each pixel, 

and they output +1 if the pixel is white and –1 if the pixel is black. 

Also, the output unit produces 1 if the input example is to be 

categorized as bright and –1 if the example is dark. If we choose the 

weights as in the following diagram, the perceptron will perfectly 

categorize any image of four pixels into dark or light according to 

our rule: 

 
Figure 4 – The rule to categorize an image of four pixels  
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We see that, in this case, the output unit has a step function, 

with the threshold set to –0.1. Note that the weights in this network 

are all the same, which is not true in the general case. Also, it is 

convenient to make the weights going in to a node add up to 1, so 

that it is possible to compare them easily. The reason this network 

perfectly captures our notion of darkness and lightness is because, if 

three white pixels are input, then three of the input units produce +1 

and one input unit produces –1. This goes into the weighted sum, 

giving a value of  

 

S = 0.25 · 1 + 0.25 · 1 + 0.25 · 1 + 0.25 · (–1) = 0.5. 

 

As this is greater than the threshold of –0.1, the output node 

produces +1, which relates to our notion of a bright image. Similarly, 

four white pixels will produce a weighted sum of 1, which is greater 

than the threshold, and two white pixels will produce a sum of 0, also 

greater than the threshold. However, if there are three black pixels, S 

will be –0.5, which is below the threshold, hence the output node will 

output –1, and the image will be categorised as dark. Similarly, an 

image with four black pixels will be categorised as dark. As an 

exercise: keeping the weights the same, how low would the threshold 

have to be in order to misclassify an example with three or four black 

pixels? 

 

Learning Weights in Perceptrons 

 

We will look in detail at the learning method for weights in 

multi-layer networks in the next lecture. The following description of 

learning in perceptrons will help clarify what is going on in the 

multi-layer case. We are in a machine learning setting, so we can 

expect the task to learn a target function which categorises examples 

into categories, given (at least) a set of training examples supplied 

with their correct categorisations. A little thought will be needed in 

order to choose the correct way of thinking about the examples as 

input to a set of input units, but, due to the simple nature of a 

perceptron, there isn’t much choice for the rest of the architecture. 
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In order to produce a perceptron able to perform our 

categorisation task, we need to use the examples to train the weights 

between the input units and the output unit, and to train the threshold. 

To simplify the routine, we think of the threshold as a special weight, 

which comes from a special input node that always outputs 1. So, we 

think of our perceptron like this: 

 

 
Figure 5 – Structure of perceptron 

 

Then, we say that the output from the perceptron is +1 if the 

weighted sum from all the input units (including the special one) is 

greater than zero, and it outputs –1 otherwise. We see that weight w0 

is simply the threshold value. However, thinking of the network like 

this means we can train w0 in the same way as we train all the other 

weights. 

The weights are initially assigned randomly and training 

examples are used one after another to tweak the weights in the 

network. All the examples in the training set are used and the whole 

process (using all the examples again) is iterated until all examples 

are correctly categorised by the network. The tweaking is known as 

the perceptron training rule, and is as follows: If the training 

example, E, is correctly categorised by the network, then no 

tweaking is carried out. If E is mis-classified, then each weight is 

tweaked by adding on a small value, Δ. Suppose we are trying to 

calculate weight wi, which is between the ith input unit, xi and the 
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output unit. Then, given that the network should have calculated the 

target value t(E) for example E, but actually calculated the observed 

value o(E), then Δ is calculated as: 

 

Δ = η (t(E) – o(E))xi . 

 

Note that η is a fixed positive constant called the learning 

rate. Ignoring η briefly, we see that the value Δ that we add on to our 

weight wi is calculated by multiplying the input value xi by t(E) – (E). 

t(E) – o(E) will either be +2 or –2, because perceptrons output only 

+1 or –1, and t(E) cannot be equal to o(E), otherwise we wouldn’t be 

doing any tweaking. So, we can think of t(E) – o(E) as a movement 

in a particular numerical direction, i. e., positive or negative. This 

direction will be such that, if the overall sum, S, was too low to get 

over the threshold and produce the correct categorisation, then the 

contribution to S from wixi will be increased. Conversely, if S is too 

high, the contribution from wixi is reduced. Because t(E) – o(E) is 

multiplied by xi, then if xi is a big value (positive or negative), the 

change to the weight will be greater. To get a better feel for why this 

direction correction works, it’s a good idea to do some simple 

calculations by hand. 

The learning rate η simply controls how far the correction 

should go at one time, and is usually set to be a fairly low value, 

e. g., 0.1. The weight learning problem can be seen as finding the 

global minimum error, calculated as the proportion of miscategorised 

training examples, over a space where all the input values can vary. 

Therefore, it is possible to move too far in a direction and improve 

one particular weight to the detriment of the overall sum: while the 

sum may work for the training example being looked at, it may no 

longer be a good value for categorizing all the examples correctly. 

For this reason, η restricts the amount of movement possible. If a 

large movement is actually required for a weight, then this will 

happen over a series of iterations through the example set. 

Sometimes, η is set to decay as the number of such iterations through 

the whole set of training examples increases, so that it can move 

more slowly towards the global minimum in order not to overshoot 
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in one direction. This kind of gradient descent is at the heart of the 

learning algorithm for multi-layered networks, as discussed in the 

next lecture. 

Perceptrons with step functions have limited abilities when it 

comes to the range of concepts that can be learned. One way to 

improve matters is to replace the threshold function with a linear 

unit, so that the network outputs a real value, rather than a 1 or –1. 

This enables us to use another rule, called the delta rule, which is 

also based on gradient descent. We don’t look at this rule here, 

because the backpropagation learning method for multi-layer 

networks is similar. 

 

Worked Example 

Suppose we are trying to learn a perceptron to represent the 

brightness rules above, in such a way that if it outputs 1, the image is 

categorised as bright, and if it outputs –1, the image is categorised as 

dark. Remember that we said a 2 x 2 black and white pixel image is 

categorised as bright if it has two or more white pixels in it. We shall 

call the pixels p1 to p4, with the numbers going from left to right, top 

to bottom in the 2 x 2 image. A black pixel will produce an input of  

–1 to the network, and a white pixel will give an input of +1. 

 
Figure 6 – Initial state of perceptron 
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Given our new way of thinking about the threshold as a 

weight from a special input node, our network will have five input 

nodes and five weights. Suppose also that we have assigned the 

weights randomly to values between –1 and 1, namely –0.5, 0.7, –

0.2, 0.1 and 0.9. Then our perceptron will initially look like in Figure 

6. 

We will now train the network with the first training example, 

using a learning rate of η = 0.1. Suppose the first example image, E, 

is this: 

 

 
 

With two white squares, this is categorized as bright. Hence, 

the target output for E is: t(E) = +1. Also, p1 (top left) is black, so the 

input x1 is –1. Similarly, x2 is +1, x3 is +1 and x4 is –1. Hence, when 

we propagate this through the network, we get the value: 

 

S = (–0.5 · 1) + (0.7 · (–1)) + (–0.2 · 1) + (0.1 · 1) + (0.9 · (–1)) = 

= –2.2 

 

As this value is less than zero, the network outputs o(E) = –1, 

which is not the correct value. This means that we should now tweak 

the weights in light of the incorrectly categorized example. Using the 

perception training rule, we need to calculate the value of Δ to add on 

to each weight in the network. Plugging values into the formula for 

each weight gives us: 

 

Δ0 = η (t(E) – o(E))xi = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2 

Δ1 = 0.1 · (1 – (–1)) · (–1) = 0.1 · (–2) = –0.2 

Δ2 = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2 

Δ3 = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2 

Δ4 = 0.1 · (1 – (–1)) · (–1) = 0.1 · (–2) = –0.2 
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When we add these values on to our existing weights, we get 

the new weights for the network as follows: 

 

w'0 = –0.5 + Δ0 = –0.5 + 0.2 = –0.3 

w'1 = 0.7 + Δ1 = 0.7 + (–0.2) = 0.5 

w'2 = –0.2 + Δ2 = –0.2 + 0.2 = 0 

w'3 = 0.1 + Δ3 = 0.1 + 0.2 = 0.3 

w'4 = 0.9 + Δ4 = 0.9 – 0.2 = 0.7 

 

Our newly trained network will now look like this: 

 

 
Figure 7 – Updated state of the perceptron 

 

To see how this has improved the situation with respect to the 

training example, we can propagate it through the network again. 

This time, we get the weighted sum to be: 

 

S = (–0.3 · 1) + (0.5 · (–1)) + (0 · 1) + (0.3 · 1) + (0.7 · (–1)) = –1.2 

 

This is still negative, and hence the network categorizes the 

example as dark, when it should be light. However, it is less 

negative. We can see that, by repeatedly training using this example, 
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the training rule would eventually bring the network to a state where 

it would correctly categorise this example. 

 

The Learning Abilities of Perceptrons 

 

Computational learning theory is the study of what concepts 

particular learning schemes (representation and method) can and 

can’t learn. We don’t look at this in detail, but a famous example, 

first highlighted in a very influential book by Minsky and Papert 

involves perceptrons. It has been mathematically proven that the 

above mentioned method for learning perceptron weights will 

converge to a perfect classifier for learning tasks where the target 

concept is linearly separable. 

To understand what is and what isn’t a linearly separable 

target function, we look at the simplest functions of all, boolean 

functions. These take two inputs, which are either 1 or –1 and output 

either 1 or –1. Note that, in other contexts, the values 0 and 1 are 

used instead of –1 and 1. As an example function, the AND boolean 

function outputs a 1 only if both inputs are 1, whereas the OR 

function only outputs a 1 if either inputs are 1. Obviously, these 

relate to the connectives we studied in the first logic order. The 

following two perceptrons can represent the AND and OR boolean 

functions respectively: 

 

 
 

Figure 8 – Representation of AND and OR boolean functions 
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One of the major impacts of Minsky and Papert’s book was to 

highlight the fact that perceptrons cannot learn a particular boolean 

function called XOR. This function outputs 1 if the two inputs are 

not the same. To see why XOR cannot be learned, try and write 

down a perceptron to do the job.  

We’ve plotted the values taken by the boolean function when 

the inputs are particular values: (–1, –1); (1, –1); (–1, 1) and (1, 1). 

For the AND function, there is only one place where a 1 is plotted, 

namely when both inputs are 1. This meant that we could draw the 

dotted line to separate the output –1s from the 1s. We were able to 

draw a similar line in the OR case. Because we can draw these lines, 

we say that these functions are linearly separable. Note that it is not 

possible to draw such a line for the XOR plot: wherever you try, you 

never get a clean split into 1s and –1s. 

The following diagram highlights the notion of linear 

separability in boolean functions, which explains why they can’t be 

learned by perceptrons: 

 
Figure 9 – Linear separability in boolean functions 

 

The dotted lines can be seen as the threshold in perceptrons: if 

the weighted sum, S, falls below it, then the perceptron outputs one 

value, and if S falls above it, the alternative output is produced. It 

doesn’t matter how the weights are organised, the threshold will still 
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be a line on the graph. Therefore, functions which are not linearly 

separable cannot be represented by perceptrons. 

Note that this result extends to functions over any number of 

variables, which can take in any input, but which produce a boolean 

output (and hence could, in principle be learned by a perceptron).  

Unfortunately, the disclosure in Minsky and Papert’s book 

that perceptrons cannot learn even such a simple function was taken 

the wrong way: people believed it represented a fundamental flaw in 

the use of ANNs to perform learning tasks. This led to a winter of 

ANN research within AI, which lasted over a decade. In reality, 

perceptrons were being studied in order to gain insights into more 

complicated architectures with hidden layers, which do not have the 

limitations that perceptrons have. No one ever suggested that 

perceptrons would be eventually used to solve real world learning 

problems. Fortunately, people studying ANNs within other sciences 

(notably neuro-science) revived interest in the study of ANNs. For 

more details of computational learning theory, see chapter 7 of Tom 

Mitchell’s machine learning book. 
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Lecture 3 

Multi-Layer Artificial Neural Networks 
 

We can now look at more sophisticated ANNs, which are 

known as multi-layer artificial neural networks because they have 

hidden layers. These will naturally be used to undertake more 

complicated tasks than perceptrons. We first look at the network 

structure for multi-layer ANNs, and then in detail at the way in 

which the weights in such structures can be determined to solve 

machine learning problems. There are many considerations involved 

with learning such ANNs, and we consider some of them here. First 

and foremost, the algorithm can get stuck in local minima, and there 

are some ways to try to get around this. As with any learning 

technique, we will also consider the problem of overfitting, and 

discuss which types of problems an ANN approach is suitable for. 

 

3.1 Multi-Layer Network Architectures 

We saw in the previous lecture that perceptrons have limited 

scope in the type of concepts they can learn – they can only learn 

linearly separable functions. However, we can think of constructing 

larger networks by building them out of perceptrons. In such larger 

networks, we call the step function units the perceptron 

units in multi-layer networks. 

As with individual perceptrons, multi-layer networks can be 

used for learning tasks. However, the learning algorithm that we look 

at (the backpropagation routine) is derived mathematically, using 

differential calculus. The derivation relies on having 

a differentiable threshold function, which effectively rules out using 

perceptron units if we want to be sure that backpropagation works 

correctly. The step function in perceptrons is not continuous, hence 

non-differentiable. An alternative unit was therefore chosen which 
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had similar properties to the step function in perceptron units, but 

which was differentiable. There are many possibilities, one of which 

is sigmoid units, as described below. 

 

Sigmoid units 

Remember that the function inside units takes as input the 

weighted sum, S, of the values coming from the units connected to it. 

The function inside sigmoid units calculates the following value, 

given a real-valued input S: 

1
( )

1 Sum
Sum

e






. 

 

When we plot the output from sigmoid units given various 

weighted sums as input, it looks remarkably like a step function: 

 

 
 

Figure 10 – Sigmoid step function 

 

Of course, getting a differentiable function which looks like 

the step function was the whole point of the exercise. In fact, not 

only is this function differentiable, but the derivative is fairly simply 

expressed in terms of the function itself: 

 

( )
( )(1 ( ))

d S
S S

dS


   . 
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Note that the output values for the σ function range between 

but never make it to 0 and 1. This is because e–S is never negative, 

and the denominator of the fraction tends to 0 as S gets very big in 

the negative direction, and tends to 1 as it gets very big in the 

positive direction. This tendency happens fairly quickly: the middle 

ground between 0 and 1 is rarely seen because of the sharp (near) 

step in the function. Because of it looking like a step function, we 

can think of it firing and not-firing as in a perceptron: if a positive 

real is input, the output will generally be close to +1 and if a negative 

real is input the output will generally be close to –1. 

 

Example of Multi-layer ANN with Sigmoid Units 

 

We will concern ourselves here with ANNs containing only 

one hidden layer, as this makes describing the backpropagation 

routine easier. Note that networks where you can feed in the input on 

the left and propagate it forward to get an output are called feed 

forward networks. Below is such an ANN, with two sigmoid units in 

the hidden layer. The weights have been set arbitrarily between all 

the units. 

 
Figure 11 – Multi-layer ANN 

 

Note that the sigma units have been identified with sigma 

signs in the node on the graph. As we did with perceptrons, we can 

give this network an input and determine the output. We can also 

look to see which units “fired”, i. e., had a value closer to 1 than to 0. 
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Suppose we input the values 10, 30, 20 into the three input 

units, from top to bottom. Then the weighted sum coming into H1 

will be: 

 

SH1 = (0.2 · 10) + (–0.1 · 30) + (0.4 · 20) = 7. 

 

Then the σ function is applied to SH1 to give: 

 

σ(SH1) = 1/(1 + e–7) = 1/(1 + 0.000912) = 0.999. 

 

Similarly, the weighted sum coming into H2 will be: 

 

SH2 = (0.7 · 10) + (–1.2 · 30) + (1.2 · 20) = –5, 

 

and σ applied to SH2 gives: 

 

σ(SH2) = 1/(1 + e5) = 1/(1 + 148.4) = 0.0067. 

 

From this, we can see that H1 has fired, but H2 has not. We 

can now calculate that the weighted sum going in to output unit O1 

will be: 

SO1 = (1.1 ·  0.999) + (0.1 · 0.0067) = 1.0996, 

 

and the weighted sum going in to output unit O2 will be: 

 

SO2 = (3.1 ·  0.999) + (1.17  ·  0.0067) = 3.1047. 

 

The output sigmoid unit in O1 will now calculate the output 

values from the network for O1: 

 

σ(SO1) = 1/(1 + e–1.0996) = 1/(1+0.333) = 0.750, 

 

and the output from the network for O2: 

 

σ(SO2) = 1/(1 + e–3.1047)= 0.957. 
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Therefore, if this network represented the learned rules for a 

categorization problem, the input triple (10, 30, 20) would be 

categorized into the category associated with O2, because this has the 

larger output. 

 

3.2 The Backpropagation Learning Routine 

 

As with perceptrons, the information in the network is stored 

in the weights, so the learning problem comes down to the question: 

how do we train the weights to best categorize the training examples. 

We then hope that this representation provides a good way to 

categorize unseen examples. 

In outline, the backpropagation method is the same as for 

perceptrons:  

 We choose and fix our architecture for the network, which 

will contain input, hidden and output units, all of which will contain 

sigmoid functions.  

 We randomly assign the weights between all the nodes. 

The assignments should be to small numbers, usually between –0.5 

and 0.5. 

 Each training example is used, one after another, to re-

train the weights in the network. The way this is done is given in 

detail below. 

 After each epoch (run through all the training examples), a 

termination condition is checked (also detailed below). Note that, for 

this method, we are not guaranteed to find weights which give the 

network the global minimum error, i. e., perfectly correct 

categorization of the training examples. Hence the termination 

condition may have to be in terms of a (possibly small) number of 

mis-categorizations. We see later that this might not be such a good 

idea, though. 
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Weight Training Calculations 

 

Because we have more weights in our network than in 

perceptrons, we firstly need to introduce the notation: wij to specify 

the weight between unit i and unit j. As with perceptrons, we will 

calculate a value Δij to add on to each weight in the network after an 

example has been tried. To calculate the weight changes for a 

particular example, E, we first start with the information about how 

the network should perform for E. That is, we write down the target 

values ti(E) that each output unit Oi should produce for E. Note that, 

for categorization problems, ti(E) will be zero for all the output units 

except one, which is the unit associated with the correct 

categorization for E. For that unit, ti(E) will be 1. 

Next, example E is propagated through the network so that 

we can record all the observed values oi(E) for the output nodes Oi. 

At the same time, we record all the observed values hi(E) for the 

hidden nodes. Then, for each output unit Ok, we calculate its error 

term as follows: 

 

( )(1 ( ))( ( ) ( ))
kO k k k ko E o E t E o E    . 

 

The error terms from the output units are used to calculate 

error terms for the hidden units. In fact, this method gets its name 

because we propagate this information backwards through the 

network. For each hidden unit Hk, we calculate the error term as 

follows: 

 

( )(1 ( ))
k iH k k ki O

i outputs

h E h E  


   . 

 

This means that we take the error term for every output unit 

and multiply it by the weight from hidden unit Hk to the output unit. 

We then add all these together and multiply the sum by factor 

hk(E)(1 – hk(E)). 
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Having calculated all the error values associated with each 

unit (hidden and output), we can now transfer this information into 

the weight changes Δij between units i and j. The calculation is as 

follows: for weights wij between input unit Ii and hidden unit Hj, we 

add on: 

 

jij H ix  . 

 

Remembering that xi is the input to the ith input node for 

example E; that η is a small value known as the learning rate and that 

δHj is the error value we calculated for hidden node Hj using the 

formula above. 

For weights wij between hidden unit Hi and output unit Oj, we 

add on: 

 

( )
jij O ih E  . 

 

Remembering that hi(E) is the output from hidden node 

Hi when example E is propagated through the network, and that δOj is 

the error value we calculated for output node Oj using the formula 

above. 

Each alteration Δ is added to the weights and this concludes 

the calculation for example E. The next example is then used to 

tweak the weights further. As with perceptrons, the learning rate is 

used to ensure that the weights are only moved a short distance for 

each example, so that the training for previous examples is not lost. 

Note that the mathematical derivation for the above mentioned 

calculations is based on the derivative of σ that we saw above.  

 

Worked Example 

 

We will re-use the example from the previous section, where 

our network originally looked like this: 
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Figure 12 – Initial state of ANN 

 

and we propagated the values (10, 30, 20) through the network. 

When we did so, we observed the following values: 

 
Table 2 – The state of ANN in the first step 

Input units Hidden units Output units 
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I1 10 H1 7 0.999 O1 1.0996 0.750 

I2 20 H2 –5 0.0067 O2 3.1047 0.957 

I3 30  
     

 

Suppose now that the target categorization for the example 

was the one associated with O1. This means that the network mis-

categorizes the example and gives us an opportunity to demonstrate 

the backpropagation algorithm: we will update the weights in the 

network according to the weight training calculations provided 

above, using a learning rate of η = 0.1. 

If the target categorization was associated with O1, this 

means that the target output for O1 was 1, and the target output for 

O2 was 0. Hence, using the above notation, 
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t1(E) = 1;       t2(E) = 0;       o1(E) = 0.750;       o2(E) = 0.957. 

 

That means we can calculate the error values for the output 

units O1 and O2 as follows: 

 

δO1 = o1(E)(1 – o1(E))(t1(E) – o1(E)) = 

= 0.750(1 – 0.750)(1 – 0.750) = 0.0469; 

 

δO2 = o2(E)(1 – o2(E))(t2(E) – o2(E)) = 

= 0.957(1 – 0.957)(0 – 0.957) = –0.0394. 

 

We can now propagate this information backwards to 

calculate the error terms for the hidden nodes H1 and H2. To do this 

for H1, we multiply the error term for O1 by the weight from H1 to 

O1, then add this to the multiplication of the error term for O2 and 

the weight between H1 and O2. This gives us:  

 

(1.1 · 0.0469) + (3.1 · (–0.0394)) = –0.0706. 

 

To turn this into the error value for H1, we multiply by 

h1(E) · (1– h1(E)), where h1(E) is the output from H1 for example E, 

as recorded in the table above. This gives us: 

 

δH1 = –0.0706 · (0.999 · (1 – 0.999)) = –0.0000705. 

 

A similar calculation for H2 gives the first part to be: 

(0.1 · 0.0469) + (1.17 · (–0.0394)) = –0.0414, and the overall error 

value to be: 

 

δH2 = –0.0414  ·  (0.067  ·  (1–0.067)) = –0.00259. 

 

We now have all the information required to calculate the 

weight changes for the network. We will deal with the 6 weights 

between the input units and the hidden units first: 
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Table 3 – New weight of ANN between the input units and the hidden 
In
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I1 H1 0.1 –0.0000705 10 –0.0000705 0.2 0.1999295 

I1 H2 0.1 –0.00259 10 –0.00259 0.7 0.69741 

I2 H1 0.1 –0.0000705 30 –0.0002115 –0.1 –0.100211 

I2 H2 0.1 –0.00259 30 –0.00777 –1.2 –1.20777 

I3 H1 0.1 –0.0000705 20 –0.000141 1.4 0.39999 

I3 H2 0.1 –0.00259 20 –0.00518 1.2 1.1948 

 

We now turn to the problem of altering the weights between 

the hidden layer and the output layer. The calculations are similar, 

but instead of relying on the input values from E, they use the values 

calculated by the sigmoid functions in the hidden nodes: hi(E). The 

following table calculates the relevant values: 
 

Table 4 – New weight of ANN between the hidden and the output layer 
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H1 O1 0.1 0.0469 0.999 0.000469 1.1 1.100469 

H1 O2 0.1 –0.0394 0.999 –0.00394 3.1 3.0961 

H2 O1 0.1 0.0469 0.0067 0.00314 0.1 0.10314 

H2 O2 0.1 –0.0394 0.0067 –0.0000264 1.17 1.16998 

 

We note that the weights haven’t altered all that much, so it 

might be a good idea in this situation to use a bigger learning rate. 

However, remember that, with sigmoid units, small changes in the 

weighted sum can produce big changes in the output from the unit. 
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As an exercise, check whether the re–trained network 

performs better with respect to the example than the original 

network. 

 

Avoiding Local Minima 

 

The error rate of multi-layered networks over a training set 

could be calculated as the number of mis-classified examples. 

Remembering, however, that there are many output nodes, all of 

which could potentially misfire (e. g., giving a value close to 1 when 

it should have output 0, and vice-versa), we can be more 

sophisticated in our error evaluation. In practice the overall network 

error is calculated as: 

 

 
21
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This is not as complicated as it first appears. The calculation 

simply involves working out the difference between the observed 

output for each output unit and the target output and squaring this to 

make sure it is positive, then adding up all these squared differences 

for each output unit and for each example. 

Backpropagation can be seen as using a searching space of 

network configurations (weights) in order to find a configuration 

with the least error, measured in the above fashion. The more 

complicated network structure means that the error surface which is 

searched can have local minima, and this is a problem for multi-layer 

networks, and we look at ways around it below. Having said that, 

even if a learned network is in a local minima, it may still perform 

adequately, and multi-layer networks have been used to great effect 

in real world situations.  

One way around the problem of local minima is to use 

random re-start as described in the lecture on search techniques. 

Different initial random weightings for the network may mean that it 

converges to different local minima, and the best of these can be 
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taken for the learned ANN. Alternatively, a “committee” of networks 

could be learned, with the (possibly weighted) average of their 

decisions taken as an overall decision for a given test example. 

Another alternative is to try and skip over some of the smaller local 

minima, as described below. 

 

Adding Momentum 

 

Imagine a ball rolling down a hill. As it does so, it gains 

momentum, so that its speed increases and it becomes more difficult 

to stop. As it rolls down the hill towards the valley floor (the global 

minimum), it might occasionally wander into local hollows. 

However, it may be that the momentum it has obtained keeps it 

rolling up and out of the hollow and back on track to the valley floor. 

The crude analogy describes one heuristic technique for 

avoiding local minima, called adding momentum, funnily enough. 

The method is simple: for each weight remember the previous value 

of Δ which was added on to the weight in the last epoch. Then, when 

updating that weight for the current epoch, add on a little of the 

previous Δ. How small to make the additional extra is controlled by a 

parameter α called the momentum, which is set to a value between 0 

and 1. 

To see why this might help bypass local minima, note that if 

the weight change carries on in the direction it was going in the 

previous epoch, then the movement will be a little more pronounced 

in the current epoch. This effect will be compounded as the search 

continues in the same direction. When the trend finally reverses, then 

the search may be at the global minimum, in which case it is hoped 

that the momentum won’t be enough to take it anywhere else than 

where it is. Alternatively, the search may be at a fairly narrow local 

minimum. In this case, even though the backpropagation algorithm 

dictates that Δ will change direction, it may be that the additional 

extra from the previous epoch (the momentum) may be enough to 

counteract this effect for a few steps. These few steps may be all that 

is needed to bypass the local minimum. 
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In addition to getting over some local minima, when the 

gradient is constant in one direction, adding momentum will increase 

the size of the weight change after each epoch, and the network may 

converge quicker. Note that it is possible to have cases where (a) the 

momentum is not enough to carry the search out of a local minima or 

(b) the momentum carries the search out of the global minima into a 

local minima. This is why this technique is a heuristic method and 

should be used somewhat carefully (it is used in practice a great 

deal). 

 

Overfitting Considerations 

Left unchecked, backpropagation in multi-layer networks can 

be highly susceptible to overfitting itself to the training examples. 

The following graph plots the error on the training and test set as the 

number of weight updates increases. It is typical of networks left to 

train unchecked. 

 

 
Figure 13 – The error versus number of  weight updates 

 

Alarmingly, even though the error on the training set 

continues to gradually decrease, the error on the test set actually 

begins to increase towards the end. This is clearly overfitting, and it 

relates to the network beginning to find and fine-tune to 
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idiosyncrasies in the data, rather than to general properties. Given 

this phenomenon, it would be unwise to use some kind of threshold 

for the error as the termination condition for backpropagation. 

In cases where the number of training examples is high, one 

antidote to overfitting is to split the training examples into a set to 

train the weight and a set to hold back as an internal validation set. 

This is a mini-test set, which can be used to keep the network in 

check: if the error on the validation set reaches a minimum and then 

begins to increase, then it could be that overfitting is beginning to 

occur. 

Note that (time permitting) it is worth giving the training 

algorithm the benefit of the doubt as much as possible. That is, the 

error in the validation set can also go through local minima, and it is 

not wise to stop training as soon as the validation set error starts to 

increase, as a better minima may be achieved later on. Of course, if 

the minimum is never bettered, then the network which is finally 

presented by the learning algorithm should be re-wound to be the one 

which produced the minimum on the validation set. 

Another way around overfitting is to decrease each weight by 

a small weight decay factor during each epoch. Learned networks 

with large (positive or negative) weights tend to have overfitted the 

data, because larger weights are needed to accommodate outliers in 

the data. Hence, keeping the weights low with a weight decay factor 

may help to steer the network from overfitting. 

 

Appropriate Problems for ANN learning 

 

As we did for decision trees, it’s important to know when 

ANNs are the right representation scheme for the job. The following 

are some characteristics of learning tasks for which artificial neural 

networks are an appropriate representation: 

The concept (target function) to be learned can be 

characterized in terms of a real-valued function. That is, there is 

some translation from the training examples to a set of real numbers, 

and the output from the function is either real-valued or (if a 

categorization) can be mapped to a set of real values. It’s important 
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to remember that ANNs are just giant mathematical functions, so are 

the data they play around with are numbers, rather than logical 

expressions, etc. This may sound restrictive, but many learning 

problems can be expressed in a way that ANNs can tackle them, 

especially as real numbers contain booleans (true and false mapped 

to +1 and -1), integers, and vectors of these data types can also be 

used. 

Long training time is acceptable. Neural networks generally 

take a longer time to train than, for example, decision trees. Many 

factors, including the number of training examples, the value chosen 

for the learning rate and the architecture of the network, have an 

affect on the time required to train a network. Training time can vary 

from a few minutes to many hours. 

It is not vitally important that humans should be able to 

understand exactly how the learned network carries out 

categorizations. As we discussed above, ANNs are black boxes and it 

is difficult for us to get a handle on what its calculations are doing. 

When in use for the actual purpose it was learned for, the 

evaluation of the target function needs to be quick. While it may take 

a long time to learn a network to decide, for instance, whether a 

vehicle is a tank, bus or car, once the ANN has been learned, using it 

for the categorization task is typically very fast. This may be very 

important: if the network was to be used in a battle situation, then a 

quick decision about whether the object moving hurriedly towards it 

is a tank, bus, car or old lady could be vital. 

In addition, neural network learning is quite robust to errors 

in the training data, because it is not trying to learn exact rules for the 

task, but rather to minimize an error function. 
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Lecture 4 

Competitive Networks – the Kohonen Self-
organizing Map 

 

4.1 Self-organizing maps 

The inspiration for many of these networks came from 

biology. They have been developed either to model some biological 

function (particularly in cognitive modelling) or in response to the 

demand for biological plausibility in neural networks. One important 

organizing principle of sensory pathways in the brain is that the 

placement of neurons is orderly and often reflects some physical 

characteristic of the external stimulus being sensed. For example, at 

each level of the auditory pathway, nerve cells and fibres are 

arranged anatomically in relation to the frequency which elicits the 

greatest response from each neuron. This topologic organization in 

the auditory pathway also extends up to the auditory cortex. 

Although much of this low-level organization is genetically pre-

determined, it is likely that some of the organization at higher levels 

is created during learning by algorithms which promote self-

organization. Kohonen took inspiration from this physical structure 

of the brain to produce self-organizing feature maps (topology 

preserving maps). In a self-organizing map, units located physically 

next to one another will respond to input vectors that are in some 

way ‘next to one another’. Although it is easy to visualize units being 

next to one another in a two-dimensional array, it is not so easy to 

determine which classes of vectors are next to each other in a high-

dimensional space. Large dimensional input vectors are in a sense 

‘projected down’ onto the two-dimensional map in a way that 

maintains the natural order of the input vectors. This dimensional 

reduction can allow us to easily visualize important relationships 

among the data that otherwise may not have been noticed. 
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4.2 Learning in biological systems – the self-

organizing paradigm 

The type of learning utilized in multilayer perceptrons 

requires the correct response to be provided during training 

(supervised training).  

Biological systems display this type of learning, but they are 

also capable of learning by themselves – without a supervisor 

showing the correct response (unsupervised learning). 

A neural network with a similar capability is called a self-

organizing system because during training, the network changes its 

weights to learn appropriate associations, without any right answers 

being provided. 

The propagation of biological neural activation via axons can 

be modelled using a Mexican hat function: 

 

 

  
 

Figure 14 – Mexican hat function 

 

Cells close to the active cell have excitatory links. The 

strengths of the links drop off with distance and then turn inhibitory. 

The Kohonen neural network also uses only locally connected 

neurons and restricts the adjustment of weight values to localized 

“neighbourhoods”.  
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4.3 Architecture of the Kohonen Network 

Teuvo Kohonen was the originator of this type of self-

organizing network. The aim of a Kohonen network is to produce a 

pattern classifier, which is self-organizing and uses a form of 

unsupervised learning to adjust the weights. Typically, a Kohonen 

network consists of a two-dimensional array of neurons with all of 

the inputs arriving at all of the neurons. Each neuron has its own set 

of weights which can be regarded as an exemplar pattern. When an 

input pattern arrives at the network, the neuron with the exemplar 

pattern that is most similar to the input pattern will give the largest 

response. One difference from other self-organizing systems, 

however, is that the exemplar patterns are stored in such a way that 

similar exemplars are to be found in neurons that are physically close 

to one another and exemplars that are very different are situated far 

apart. Self-Organizing Maps (SOMs) aim to produce a network 

where the weights represent the coordinates of some kind of 

topological system or map and the individual elements in the 

network are arranged in an ordered way. 

The Kohonen network consists of an input layer, which 

distributes the inputs to each node in a second layer, the so-called 

competitive layer (feature map). 

Each of the nodes on this layer acts as an output node. 

Each neuron in the competitive layer is connected to other 

neurons in its  neighbourhood and feedback is restricted to neighbors 

through these lateral connections. 

Neurons in the competitive layer have excitatory connections 

to immediate neighbours and inhibitory connections to more distant 

neurons.   

All neurons in the competitive layer receive a mixture of 

excitatory and inhibitory signals from the input layer neurons and 

from other competitive layer neurons. 
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Figure 15 – Structure of Kohonen network 

 

 

4.4 The Kohonen  Network in Operation 

As an input pattern is presented, some of the neurons are 

sufficiently activated to produce outputs which are fed back to other 

neurons in their neighbourhoods. 

The node with the weight vector closest to the input pattern 

vector  (the so-called “winning node”) produces the largest output. 

During training, input weights of the winning neuron and its 

neighbors are adjusted to make them resemble the input pattern even 

more closely. 

At the completion of training, the winning node ends up with 

its weight vector aligned with the input pattern and produces the 

strongest output whenever that particular pattern is presented. 

The nodes in the winning node’s neighbourhood also have 

their weights modified to settle down to an average representation of 

that pattern class. As a result, unseen patterns belonging to that class 

are also classified correctly (generalization).  
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The m neighbourhoods, corresponding to the m possible 

pattern classes are said to form a topological map representing the 

patterns. 

The initial size of the neighbourhood mentioned above and 

the fixed values of excitatory (positive) and inhibitory (negative) 

weights to neurons in the neighbourhood are among the design 

decisions to be made. 

 

Derivation of the learning rule for the Kohonen net 

 

The sum squared error for pattern p for all output layer 

neurons can be written as 

 

,)(
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where xjp is the ith component of pattern p for neuron j. The 

summation is done over all j neurons. 

Any change wij in the weight is expected to cause a 

reduction in error Ep.  

Now Ep is a function of all the weights, so its rate of change 

with respect to any one weight value wij has to be measured by 

calculating its partial derivative with respect to wij.  
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where  is a constant of proportionality. 

Now we have to calculate the partial derivative of Ep: 
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Combining two last expressions, we get 
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4.5 Training the Kohonen  Network 

The Kohonen Algorithm. 

 

1. Initialize weights. Initialize weights from N inputs to the 

nodes to small random values. Set the initial radius of the 

neighbourhood. 

2. Present new input x0(t), x1(t), x2(t), ... xn–1(t), where xi(t) is 

the input to node i at time t. 

3. Compute distances to all nodes 

Compute distances dj between the input and each output node 

j using 

    
21N

j i ij
i

d x t w t


  , 

where xi(t) is the input to node i at time t and wij(t) is the weight from 

input node i to output node j at time t. 

4. Select output node with minimum distance.  Select 

output node j* as the output node with minimum dj. 

5. Update weights to node j* and neighbors. Weights updated 

for node j* and all nodes in the neighbourhood defined by Nj*(t). 

New weights are 

 

wij(t + 1)  =  wij(t)  + (t)(xi(t) – wij(t)), for j in Nj*,  0  i  N–1. 

 

The term (t) is a gain term 0    1. Both  and Nj*(t) 

decrease with time. 

6. Repeat by going to the step 2. 
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Training issues in Kohonen Neural  Nets 

Vector normalization. To make vector comparison 

independent of magnitudes and dependent on orientation only, the 

vectors are normalized by dividing them by their magnitudes. This 

also helps to reduce training time. 

Weight initialization. A random distribution of initial 

weights may not be optimal, resulting in sparsely populated trainable 

nodes and poor classification performance. 

Possible remedies: 

a. Initialization of weights to the same value and lumping of 

input vectors to similar orientation. This increases likelihood of all 

nodes being closer to a pattern vector. Inputs slowly return to 

original orientation with training. 

b. Addition of random noise to inputs to distribute vectors 

over a larger pattern space. 

c. Using a large initial neighbourhood, changing slowly. 

Reducing neighbourhood size. Should be decreasing linearly 

with time (iterations). Neighbourhood shape may vary to suit 

application – e. g., circular or hexagonal instead of rectangular. 

The decisions about the size of Nj* and the value of  are 

important. The sideways ‘spread’ of the Mexican hat function must 

change over time, hence changing the size of the neighbourhood of 

the units. Both Nj* and the value of  must decrease with time, and 

there are several ways of doing this. The value of  and the size of 

Nj*  could decrease linearly with time, however, it has been pointed 

out that there are two distinct phases – an initial ordering phase, in 

which the elements find their correct topological order, and a final 

convergence phase in which the accuracy of the weights improves. 

For example, the initial ordering phase might take 1000 iterations 

where  decreases linearly from 0.9 to 0.01 say, and Nj* decreases 

linearly from half the diameter of the network to one spacing. During 

the final convergence phase  may decrease from 0.01 to 0 while Nj*  

stays at one spacing. This final stage could take form between 10 to 

100 times longer than the initial stage depending on the desired 

accuracy.  
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An example is shown below where a two-dimensional array 

of elements is arranged in a square to map a rectangular two-

dimensional coordinate space onto this array (which is the simplest 

case to imagine). Figure 16 shows the network for the example 

where units are trained to recognize their relative positions in two-

dimensional space. This figure illustrates the dynamics of the 

learning process. Instead of plotting the position of the processing 

elements according to their physical location, they are plotted 

according to their location in weight space. As training proceeds, the 

map evolves. In the initial map, weight vectors have random values 

near the centre of the map coordinates (i. e., if these values are 

plotted on a two-dimensional image, they would be shown as a set of 

randomly distributed points). We want to indicate that some elements 

are next to other elements. This is done by drawing a line between 

adjacent elements so that the image ends up as a set of lines, the 

elements being situated at the points where the lines intersect. These 

lines are not physical, in the sense that the elements are not joined 

together, but show units that are neighbors in physical space. 

The system is presented with a set of randomly chosen 

coordinates. As the map begins to evolve, weights spread out from 

the centre. Eventually the final structure of the map begins to appear. 

Finally the relationship between the weight vectors mimics the 

relationship between the physical coordinates of the processing 

elements (i. e., as time elapses, the weights order themselves so that 

they correspond to the positions in the coordinate system). Another 

way of thinking about this is that the weights distribute themselves in 

an even manner across the coordinate space so that, in effect, they 

learn to ‘fill the space’.  

Although the above example uses input points that are 

uniformly distributed within the region, they can in fact be 

distributed according to any distribution function. Once the SOM has 

been trained, the weight vectors will be organized into an 

approximation of the distribution function of the input vectors. 

Kohonen has shown  that (more formally) “the point density function 

of the weight vectors tends to approximate the probability density 
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function p(x) of the input vectors x, and the weight vectors tend to be 

ordered according to their mutual similarity”. 

 

 
 

Figure 16 – Weight vectors during the ordering phase. 

 

The network output doesn’t need to be two-dimensional, even 

though the layout of the physical devices might be two-dimensional. 

If there are n weights, then each weight corresponds to a coordinate. 

So although a two-dimensional image, the elements of which are 

active, is produced when patterns are presented to the input, the 

interpretation of that map might have more dimensions. For example, 

a system where each element has three weights would organize itself 

so that the different pattern classes occupy different parts of a three-

dimensional space. If the network is observed, only individual 

elements firing would be seen, so it is misleading to think in terms of 

the physical layout.  

This (and other examples) shows how two-dimensional arrays 

which map on to a coordinate system can arrange the weights so that 

the ‘nodes’ in that system are distributed evenly. One thing that has 

not been mentioned yet is the output. What is the output of a 

Kohonen network? Training involves grouping similar patterns in 

close proximity in this pattern space, so that clusters of similar 
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patterns cause neurons to fire that are physically located close 

together in the network. Clearly, the outputs need to be interpreted, 

but it should be possible to identify which regions belong to which 

class by showing the network known patterns and seeing which areas 

are active. 
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Lecture 5 

Radial Basis Function Networks 
 
Statistics can be used in feedforward networks, and one of the 

most important of uses is in the radial basis function (RBF) network. 

This is becoming an increasingly popular neural network with 

diverse applications and is probably the main rival to the multi-

layered perceptron. Much of the inspiration for RBF networks has 

come from traditional statistical pattern classification techniques, 

which are essentially getting a new lease of life as a form of neural 

network. However, by including RBFs in the general category of 

neural networks these techniques, which would only have been 

known to the few, have become widely used. 

  

5.1 Architecture 

The basic architecture for an RBF is a 3-layer network, as 

shown in Figure 17. The input layer is simply a fan-out layer and 

does no processing. The second or hidden layer performs a non-

linear mapping from the input space into a (usually) higher 

dimensional space in which the patterns become linearly separable. 

The final layer therefore performs a simple weighted sum with a 

linear output. If the RBF network is used for function approximation 

(matching a real number) then this output is fine. However, if pattern 

classification is required, then a hard-limiter or sigmoid function 

could be placed on the output neurons to give 0 or 1 output values. 

The unique feature of the RBF network is the process 

performed in the hidden layer. The idea is that the patterns in the 

input space form clusters. If the centres of these clusters are known, 

then the distance from the cluster centre can be measured. 

Furthermore, this distance measure is made non-linear, so that if a 

pattern is in an area that is close to a cluster centre it gives a value 
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close to 1. Beyond this area, the value drops dramatically. The notion 

is that this area is radially symmetrical around the cluster centre, so 

that the non-linear function becomes known as the radial-basis 

function. 

 

x1

x2

x3

input layer 

(fan-out)

hidden layer 

(weights correspond to cluster centre, 

output function usually Gaussian)

output layer 

(linear weighted sum)

y1

y2

 
 

Figure 17 – Radial Basis Function Network 

 

The most commonly used radial-basis function is: 
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In an RBF network, r is the distance from the cluster centre. 

The equation represents a Gaussian bell-shaped curve, as shown in 

Figure 18.  The distance measured from the cluster centre is usually 

the Euclidean distance. For each neuron in the hidden layer, the 

weights represent the coordinates of the centre of the cluster. 

Therefore, when that neuron receives an input pattern, X, the distance 

is found using the following equation: 
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Figure 18 – A Gaussian centred at 0 with  = 0.5 

 

The variable  defines the width or radius of the bell-shape 

and is something that has to be determined empirically. When the 

distance from the centre of the Gaussian reaches , the output drops 

from 1 to 0.6. 

An often quoted example which shows how the RBF network 

can handle a non-linearly separable function is the exclusive-OR 

problem. One solution has 2 inputs, 2 hidden units and 1 output. The 

centres for the two hidden units are set at c1 = 0.0 and c2 = 1.1, and 

the value of radius  is chosen such that 22 = 1. When all four 

examples of input patterns are shown to the network, the outputs of 

the two hidden units are shown in the following table. The inputs are 

x, the distances from the centres squared are r, and the outputs from 

the hidden units are . 
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Table  5 – The outputs of the hidden units 

x1 x2 r1 r2 1 2 

0 0 0 2 1 0.1 

0 1 1 1 0.4 0.4 

1 0 1 1 0.4 0.4 

1 1 2 0 0.1 1 

 

 

Figure 19 shows the position of the four input patterns using 

the output of the two hidden units as the axes on the graph. It can be 

seen that the patterns are now linearly separable.  

 
Figure 19 – The input patterns after being transformed  

by the hidden layer 

 

This demonstrates the power of transforming from one 

domain to another using an RBF network. However, the centres were 

chosen carefully to show this result. The methods generally adopted 
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for learning in an RBF network would find it impossible to arrive at 

those centre values. The learning methods that are usually adopted 

will be described in the next section. 

5.2 Training an RBF network 

Hidden layer 

The hidden layer in an RBF network has units which have 

weights that correspond to the vector representation of the centre of a 

cluster. These weights are found either using a traditional clustering 

algorithm such as the k-means algorithm, or adaptively using 

essentially the Kohonen algorithm. In either case, the training is 

unsupervised but the number of clusters that you expect, k, is set in 

advance. The algorithms then find the best fit to these clusters. The 

k-means algorithm will be briefly outlined. Initially k points in the 

pattern space are randomly set. Then for each item of data in the 

training set, the distances are found from all of the k centres. The 

closest centre is chosen for each item of data. This is the initial 

classification, so all items of data will be assigned a class from 1 to k. 

Then, for all data which has been found to be class 1, the average or 

mean values are found for each of co-ordinates. These become the 

new values for the centre corresponding to class 1. This is repeated 

for all data found to be in class 2, then class 3 and so on until class k 

is dealt with. We now have k new centres. The process of measuring 

the distance between the centres and each item of data and re-

classifying the data is repeated until there is no further change. The 

sum of the distances can be monitored and the process halts when the 

total distance no longer falls. 

The alternative is to use an adaptive k-means algorithm 

similar to Kohonen learning. Input patterns are presented to all of the 

cluster centres one at a time, and the cluster centres adjusted after 

each one. The cluster centre that is nearest to the input data wins, and 

is shifted slightly towards the new data. This has the advantage that 

you don’t have to store all of the training data so can be done on-line. 
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Having found the cluster centres using one or other of these 

methods, the next step is determining the radius of the Gaussian 

curves. This is usually done using the P-nearest neighbor algorithm. 

A number P is chosen, and for each centre, the P nearest centres are 

found. The root-mean squared distance between the current cluster 

centre and its P nearest neighbors is calculated, and this is the value 

chosen for . So, if the current cluster centre is cj, the value is: 

A typical value for P is 2, in which case  is set to be the 

average distance from the two nearest neighboring cluster centres: 

 

 

Using this method for training the hidden layer, exclusive-OR 

function can be implemented using a minimum of 4 hidden units. If 

more than four units are used, the additional units duplicate the 

centres and therefore do not contribute any further discrimination to 

the network. So, assuming four neurons in the hidden layer, each unit 

is centred on one of the four input patterns, namely 00, 01, 10 and 

11. The P-nearest neighbor algorithm with P set to 2 is used to find 

the size of the radii. In each of the neurons, the distances to the other 

three neurons is 1, 1 and 1.414, so the two nearest cluster centres are 

at a distance of 1. Using the mean squared distance as the radii gives 

each neuron a radius of 1. Using these values for the centres and 

radius, if each of the four input patterns is presented to the network, 

the output of the hidden layer would be: 

 
   Table 5 – The output of the hidden layer 

input neuron 1 neuron 2 neuron 3 neuron 4 

00 0.6 0.4 1.0 0.6 

01 0.4 0.6 0.6 1.0 

10 1.0 0.6 0.6 0.4 

11 0.6 1.0 0.4 0.6 
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Output layer 

Having trained the hidden layer with some unsupervised 

learning, the final step is to train the output layer using a standard 

gradient descent technique such as the Least Mean Squares 

algorithm. In the example of the exclusive-OR function given above 

a suitable set of weights would be +1, –1, –1 and +1. With these 

weights the value of net and the output is: 
 

   Table 6 – The output of the output layer 

input neuron 1 neuron 2 neuron 3 neuron 4 net output 

00 0.6 0.4 1.0 0.6 –0.2 0 

01 0.4 0.6 0.6 1.0 0.2 1 

10 1.0 0.6 0.6 0.4 0.2 1 

11 0.6 1.0 0.4 0.6 –0.2 0 

 

5.3 Advantages of an RBF 

Many advantages are claimed for RBF networks over multi-

layer perceptrons (MLPs). It is said that an RBF trains faster than an 

MLP and that it produces better decision boundaries. Another 

advantage that is claimed is that the hidden layer is easier to interpret 

than the hidden layer in an MLP. Some of the disadvantages that are 

claimed for an RBF are that an MLP gives better distributed 

representation. Although the RBF is quick to train, when training is 

finished and it is being used it is slower than an MLP, so where 

speed is a factor an MLP may be more appropriate. 

Statistical feed-forward networks such as the radial basis 

function network have become very popular, and are serious rivals to 

the multi-layered perceptron. Their success is likely to be due to the 

fact they are essentially well tried statistical techniques being 

presented as neural networks. The learning mechanisms in statistical 

neural networks are not biologically plausible, with the result that 

these networks have not been taken up by those researchers who 

insist on biological analogies.  
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