

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

I. Knyaz’

 Modelling of Neural Networks

Lecture notes

In two parts

Part 1

Sumy

Sumy State University

2017

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

I. Knyaz’

Modeling of Neural Networks

Lecture notes

In two parts

Part 1

APPROVED

at the session of Applied

Mathematics and Complex

Systems Modelling Department

as as lecture notes on discipline

“Modelling of Neural

Networks”.

Minutes №4 of 04.02.2017

Sumy

Sumy State University

2017

Modelling of Neural Networks: lecture notes in two parts.

Part 1 / compiler I. Knyaz’. – Sumy : Sumy State University, 2017. –

– 62 p.

Department of Applied Mathematics and Complex Systems

Modelling

CONTENTS

P.

Introduction ... 4
1.1 The Brain as an Information Processing System 4

1.2 Artificial Neuron Models .. 6
1.3 Historical background ... 9
1.4 Neural networks versus conventional computers 10

Artificial Neuron Networks (ANNs) .. 12

2.1 Learning problem .. 12
2.2 Perceptrons ... 16

Multi-Layer Artificial Neural Networks ... 27
3.1 Multi-Layer Network Architectures 27

3.2 The Backpropagation Learning Routine 31
Competitive Networks – the Kohonen Self-organizing Map 42

4.1 Self-organizing maps .. 42

4.2 Learning in biological systems .. 43
4.3 Architecture of the Kohonen Network 44

4.4 The Kohonen Network in Operation 45

4.5 Training the Kohonen Network ... 47
Radial Basis Function Networks .. 52

5.1 Architecture .. 52
5.2 Training an RBF network ... 56

5.3 Advantages of an RBF .. 58

4

Lecture 1

Introduction

1.1 The Brain as an Information Processing

System

The human brain contains about 10 billion nerve cells, or

neurons. On average, each neuron is connected to other neurons

through about 10000 synapses. The brain’s network of neurons

forms a massively parallel information processing system. This

contrasts with conventional computers, in which a single processor

executes a single series of instructions.

Against this, consider the time taken for each elementary

operation: neurons typically operate at a maximum rate of about 100

Hz, while a conventional CPU carries out several hundred million

machine level operations per second. Despite of being built with very

slow hardware, the brain has quite remarkable capabilities:

 its performance tends to degrade gracefully under partial

damage. In contrast, most programs and engineered systems are

brittle: if you remove some arbitrary parts, very likely the whole will

cease to function;

 it can learn (reorganize itself) from experience;

 this means that partial recovery from damage is possible if

healthy units can learn to take over the functions previously carried

out by the damaged areas;

 it performs massively parallel computations extremely

efficiently. For example, complex visual perception occurs within

less than 100 ms, that is, 10 processing steps!
 it supports our intelligence and self-awareness.

The basic computational unit in the nervous system is the

nerve cell, or neuron (see Fig. 1).

http://www.willamette.edu/~gorr/classes/cs449/figs/brain2.jpg

5

Figure 1 – Structure of a Typical Neuron (from SEER Training Web Site)

A neuron has:

 Dendrites (inputs)

 Cell body

 Axon (output)

A neuron receives input from other neurons (typically many

thousands). Inputs sum (approximately). Once input exceeds a

critical level, the neuron discharges a spike – an electrical pulse that

travels from the body, down the axon, to the next neuron(s) (or other

receptors). This spiking event is also called depolarization, and is

followed by a refractory period, during which the neuron is unable

to fire.

The axon endings (Output Zone) almost touch the dendrites

or cell body of the next neuron. Transmission of an electrical signal

from one neuron to the next is effected by neurotransmittors,

chemicals which are released from the first neuron and which bind to

receptors in the second. This link is called a synapse. The extent to

which the signal from one neuron is passed on to the next depends on

many factors, e. g. the amount of neurotransmittor available, the

6

number and arrangement of receptors, amount of neurotransmittor

reabsorbed.

The efficacy of a synapse can change as a result of

experience, providing both memory and learning through long-term

potentiation (LTP). One way this happens is through release of

more neurotransmitters. Many other changes may also be involved.

Hebbs Postulate: “When an axon of cell A... excites[s] cell B

and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells so that

A’s efficiency as one of the cells firing B is increased”.

1.2 Artificial Neuron Models

To model the brain we need to model a neuron. Each neuron

performs a simple computation. It receives signals from its input

links and it uses these values to compute the activation level (or

output) for the neuron. This value is passed to other neurons via its

output links.

Figure 2 – Basic model of a single neuron

An artificial neuron is a simplistic representation that

emulates the signal integration and threshold firing behavior of

biological neurons by means of mathematical equations. Like their

biological counterpart, artificial neurons are bound together by

7

connections that determine the flow of information between peer

neurons. Stimuli are transmitted from one processing element to

another via synapses or interconnections, which can be excitatory or

inhibitory. If the input to a neuron is excitatory, it is more likely that

this neuron will transmit an excitatory signal to the other neurons

connected to it. Whereas an inhibitory input will most likely be

propagated as inhibitory.

The input value received of a neuron is calculated by

summing the weighted input values from its input links. An

activation function takes the neuron input value

1

n

i i
i

Sum x w




and produces a value y which becomes the output value of the neuron

0

n

i i
i

y f x w


 
  

 
 .

This value is passed to other neurons in the network.

The activation function defines the output of that node given

an input or set of inputs. A standard computer chip circuit can be

seen as a digital network of activation functions that can be "ON" (1)

or "OFF" (0), depending on input. This is similar to the behavior of

the linear perceptron in neural networks.

Some common activation functions are shown below.

Table 1 – Activation functions

Step function

1, 0

()
0, 0

if Sum
f x

if Sum


 



https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Linear_perceptron
https://en.wikipedia.org/wiki/Neural_networks

8

Continuation of the Table 1

Saturation function.

The activation value

corresponds to the value of the

weighted sum, where k is a

constant only if this sum does

not exceed a pre-defined

MAX value.

,
()

,

k Sum if Sum MAX
f x

MAX otherwise

 
 


Sigmoid function

The saturation levels range

from 0 to 1.

1
()

1 x
f x

e




Hyperbolic tangent function.

The saturation levels range

from –1 to 1.

()
x x

x x

e e
f x

e e










On occasions an identifying function is also used (i. e. where

the input to the neuron becomes the output). This function is

9

normally used in the input layer where the inputs to the neural

network are passed unchanged into the network.

1.3 Historical background

Neural network simulations appear to be a recent

development. However, this field was established before the advent

of computers, and has survived at least one major setback and several

eras.

In 1943, neurophysiologist Warren McCulloch and

mathematician Walter Pitts wrote a paper on how neurons might

work. In order to describe how neurons in the brain might work, they

modelled a simple neural network using electrical circuits.

In 1949, Donald Hebb wrote The Organization of Behaviour,

a work which pointed out the fact that neural pathways are

strengthened each time they are used, a concept fundamentally

essential to the ways in which humans learn. If two nerves fire at the

same time, he argued, the connection between them is enhanced.

As computers became more advanced in the 1950’s, it was

finally possible to simulate a hypothetical neural network. The first

step towards this was made by Nathanial Rochester from the IBM

research laboratories. Unfortunately for him, the first attempt to do

so failed.

In 1959, Bernard Widrow and Marcian Hoff of Stanford

developed models called “ADALINE” and “MADALINE”. In a

typical display of Stanford’s love for acronymns, the names come

from their use of Multiple ADAptive LINear Elements. ADALINE

was developed to recognize binary patterns so that if it was reading

streaming bits from a phone line, it could predict the next bit.

MADALINE was the first neural network applied to a real world

problem, using an adaptive filter that eliminates echoes on phone

lines. While the system is as ancient as air traffic control systems,

like air traffic control systems, it is still in commercial use.

In 1962, Widrow & Hoff developed a learning procedure that

examines the value before the weight adjusts it (i. e. 0 or 1)

10

according to the rule: Weight Change = (Pre-Weight line value)·

(Error / (Number of Inputs)). It is based on the idea that while one

active perceptron may have a big error, one can adjust the weight

values to distribute it across the network, or at least to adjacent

perceptrons. Applying this rule still results in an error if the line

before the weight is 0, although this will eventually correct itself. If

the error is conserved so that all of it is distributed to all of the

weights then the error is eliminated.

Many important advances have been boosted by the use of

inexpensive computer emulations. Following an initial period of

enthusiasm, the field survived a period of frustration and disrepute.

During this period when funding and professional support was

minimal, important advances were made by relatively few

researchers. These pioneers were able to develop convincing

technology which surpassed the limitations identified by Minsky and

Papert. Minsky and Papert, published a book (in 1969) in which they

summed up a general feeling of frustration (against neural networks)

among researchers, and was thus accepted by most of them without

further analysis.

In 1972, Kohonen and Anderson developed a similar network

independently of one another, which we will discuss more about

later. They both used matrix mathematics to describe their ideas but

did not realize that what they were doing was creating an array of

analog ADALINE circuits. The neurons are supposed to activate a

set of outputs instead of just one. The first multilayered network was

developed in 1975, an unsupervised network. Currently, the neural

network field enjoys a resurgence of interest and a corresponding

increase in funding.

1.4 Neural networks versus conventional

computers

Neural networks take a different approach to problem solving

than that of conventional computers. Conventional computers use an

algorithmic approach, i. e. the computer follows a set of instructions

11

in order to solve a problem. Unless the specific steps that the

computer needs to follow are known the computer cannot solve the

problem. That restricts the problem solving capability of

conventional computers to problems that we already understand and

know how to solve. But computers would be so much more useful if

they could do things that we don’t exactly know how to do.

Neural networks process information in a similar way the

human brain does. The network is composed of a large number of

highly interconnected processing elements (neurones) working in

parallel to solve a specific problem. Neural networks learn by

example. They cannot be programmed to perform a specific task.

The examples must be selected carefully otherwise useful time is

wasted or even worse the network might be functioning incorrectly.

The disadvantage is that because the network finds out how to solve

the problem by itself, its operation can be unpredictable.

On the other hand, conventional computers use a cognitive

approach to problem solving; the way the problem is solved must be

known and stated in small unambiguous instructions. These

instructions are then converted to a high level language program and

then into machine code that the computer can understand. These

machines are totally predictable; if anything goes wrong is due to a

software or hardware fault.

Neural networks and conventional algorithmic computers are

not in competition but complement each other. There are tasks more

suitable to an algorithmic approach like arithmetic operations and

tasks that are more suitable to neural networks. Even more, a large

number of tasks require systems that use a combination of both

approaches (normally a conventional computer is used to supervise

the neural network) in order to perform at maximum efficiency.

12

Lecture 2

Artificial Neuron Networks (ANNs)

2.1 Learning problem

Suppose you need to find the function which takes the

following inputs and produces their associated outputs:

Input Output

1 1

2 8

3 27

4 64

Presumably, the function you would learn would be f(x) = x3.

Imagine now that you had a set of values, rather than a single

instance as input to your function:

Input Output

[1, 2, 3] 1

[2, 3, 4] 5

[3, 4, 5] 11

[4, 5, 6] 19

Here, it is still possible to learn a function: for example,

multiply the first and last element and take the middle one from the

product. Note that the functions we are learning are getting more

complicated, but they are still mathematical. ANNs just take this

further: the functions they learn are generally so complicated that it’s

difficult to understand them on a global level. But they are still just

functions that play around with numbers.

13

Imagine, now, for example, that the inputs to our function

were arrays of pixels, actually taken from photographs of vehicles,

and that the output of the function is either 1, 2 or 3, where 1 stands

for a motorcycle, 2 stands for a bus and 3 stands for a tank:

Input Output Input Output

3

1

2

1

In this case, the function which takes an array of integers

representing pixel data and outputs either 1, 2 or 3 will be fairly

complicated, but it’s just doing the same kind of thing as two simpler

functions.

Because the functions learned to, for example, categorise

photos of vehicles into a category of motorcycle, bus or tank, are so

complicated, we say the ANN approach is a black box approach

because, while the function performs well at its job, we cannot look

inside it to gain a knowledge of how it works. This is a little unfair,

as there are some projects which have addressed the problem of

translating learned neural networks into human readable forms.

However, in general, ANNs are used in cases where the predictive

accuracy is of greater importance than understanding the learned

concept.

Artificial Neural Networks consist of a number of units which

are mini calculation devices. They take in real-valued input from

14

other multiple nodes and they produce a single real valued output.

By real-valued input and output we mean real numbers which are

able to take any decimal value. The architecture of ANNs is as

follows:

 A set of input units which take in information about the

example to be propagated through the network. By propagation, we

mean that the information from the input will be passed through the

network and an output produced. The set of input units forms what is

known as the input layer.

 A set of hidden units which take input from the input layer.

The hidden units collectively form the hidden layer. For simplicity,

we assume that each unit in the input layer is connected to each unit

of the hidden layer, but this isn’t necessarily the case. A weighted

sum of the output from the input units forms the input to every

hidden unit. Note that the number of hidden units is usually smaller

than the number of input units.

 A set of output units which, in learning tasks, dictate the

category assigned to an example propagated through the network.

The output units form the output layer. Again, for simplicity, we

assume that each unit in the hidden layer is connected to each unit in

the output layer. A weighted sum of the output from the hidden units

forms the input to every output unit.

Hence ANNs look like this in the general case:

Figure 3 – Structure of an ANN

15

Note that the x1, x2, … xn and Out1,…, Out2 represent real

values and that all the edges in this graph have weights associated

with them. Note also that more complicated ANNs are certainly

possible. In particular, many ANNs have multiple hidden layers, with

the output from one hidden layer forming the input to another hidden

layer. Also, ANNs with no hidden layer – where the input units are

connected directly to the output units – are possible. These tend to be

too simple to use for real world learning problems, but they are

useful to study for illustrative purposes, and we look at the simplest

kind of neural networks, perceptron’s, in the next section.

In our vehicle example, it is likely that all the images will be

normalised to having the same number of pixels. Then there may be

an input unit for each red, green and blue intensity for each pixel.

Alternatively, greyscale images may be used, in this case there needs

only to be an input node for each pixel, which takes in the brightness

of the pixel. The hidden layer is likely to contain far fewer units

(probably between 3 and 10) than the number of input units. The

output layer will contain three units, one for each of the possible

categories (motorcycle, bus, tank). Then, when the pixel data for an

image are given as the initial values for the input units, this

information will propagate through the network and all three output

units will produce a real value. The output unit which produces the

highest value is taken as the categorization for the input image.

So, for instance, when this image is used as input:

then, if output unit 1 [motorcycle] produces value 0.5, output unit 2

[bus] produces value 0.05 and output unit 3 [tank] produces value

0.1, then this image has been (correctly) classified as a motorcycle,

because the output from the corresponding motorcycle output unit is

16

higher than for the other two. Exactly as the function embedded

within a neural network computes the outputs given by the inputs is

best explained using example networks. In the next section, we’ll

consider the networks simplest of all, perceptrons, which consist of a

set of input units connected to a single output unit.

2.2 Perceptrons

The weights in any ANN are always just real numbers and the

learning problem boils down to choosing the best value for each

weight in the network. This means there are two important decisions

to make before we train an artificial neural network: (i) the overall

architecture of the system (how input nodes represent given

examples, how many hidden units/hidden layers to have and how the

output information will give us an answer) and (ii) how the units

calculate their real value output from the weighted sum of real valued

inputs.

The answer to (i) is usually found by experimentation with

respect to the learning problem at hand: different architectures are

tried and evaluated on the learning problem until the best one

emerges. In perceptrons, given that we have no hidden layer, the

architecture problem boils down to just specifying how the input

units represent the examples given to the network. The answer to (ii)

is discussed in the next subsection.

The input units simply output the value which was input to

them from the example to be propagated. Every other unit in a

network normally has the same internal calculation function, which

takes the weighted sum of inputs to it and calculates an output. There

are different possibilities for the unit function and this dictates to

some extent how learning over networks of that type is performed.

Firstly, there is a simple linear unit which does no calculation, it just

outputs the weighted sum which was input to it.

17

Secondly, there are other unit functions which are

called threshold functions, because they are set up to produce low

values up until the weighted sum reaches a particular threshold, then

they produce high values after this threshold. The simplest type of

the threshold function produces 1 if the weighted sum of the inputs is

over a threshold value T, and produces a –1 otherwise. We call such

functions step functions, due to the fact that, when drawn as a graph,

it looks like a step. Another type of the threshold function is called

a sigma function, which has similarities with the step function, but is

advantageous over it.

Example

As an example, consider an ANN which has been trained to

learn the following rule categorizing the brightness of 2 x 2 black

and white pixel images: if it contains 3 or 4 black pixels, it is dark; if

it contains 2, 3 or 4 white pixels, it is bright. We can model this with

a perceptron by saying that there are 4 input units, one for each pixel,

and they output +1 if the pixel is white and –1 if the pixel is black.

Also, the output unit produces 1 if the input example is to be

categorized as bright and –1 if the example is dark. If we choose the

weights as in the following diagram, the perceptron will perfectly

categorize any image of four pixels into dark or light according to

our rule:

Figure 4 – The rule to categorize an image of four pixels

18

We see that, in this case, the output unit has a step function,

with the threshold set to –0.1. Note that the weights in this network

are all the same, which is not true in the general case. Also, it is

convenient to make the weights going in to a node add up to 1, so

that it is possible to compare them easily. The reason this network

perfectly captures our notion of darkness and lightness is because, if

three white pixels are input, then three of the input units produce +1

and one input unit produces –1. This goes into the weighted sum,

giving a value of

S = 0.25 · 1 + 0.25 · 1 + 0.25 · 1 + 0.25 · (–1) = 0.5.

As this is greater than the threshold of –0.1, the output node

produces +1, which relates to our notion of a bright image. Similarly,

four white pixels will produce a weighted sum of 1, which is greater

than the threshold, and two white pixels will produce a sum of 0, also

greater than the threshold. However, if there are three black pixels, S

will be –0.5, which is below the threshold, hence the output node will

output –1, and the image will be categorised as dark. Similarly, an

image with four black pixels will be categorised as dark. As an

exercise: keeping the weights the same, how low would the threshold

have to be in order to misclassify an example with three or four black

pixels?

Learning Weights in Perceptrons

We will look in detail at the learning method for weights in

multi-layer networks in the next lecture. The following description of

learning in perceptrons will help clarify what is going on in the

multi-layer case. We are in a machine learning setting, so we can

expect the task to learn a target function which categorises examples

into categories, given (at least) a set of training examples supplied

with their correct categorisations. A little thought will be needed in

order to choose the correct way of thinking about the examples as

input to a set of input units, but, due to the simple nature of a

perceptron, there isn’t much choice for the rest of the architecture.

19

In order to produce a perceptron able to perform our

categorisation task, we need to use the examples to train the weights

between the input units and the output unit, and to train the threshold.

To simplify the routine, we think of the threshold as a special weight,

which comes from a special input node that always outputs 1. So, we

think of our perceptron like this:

Figure 5 – Structure of perceptron

Then, we say that the output from the perceptron is +1 if the

weighted sum from all the input units (including the special one) is

greater than zero, and it outputs –1 otherwise. We see that weight w0

is simply the threshold value. However, thinking of the network like

this means we can train w0 in the same way as we train all the other

weights.

The weights are initially assigned randomly and training

examples are used one after another to tweak the weights in the

network. All the examples in the training set are used and the whole

process (using all the examples again) is iterated until all examples

are correctly categorised by the network. The tweaking is known as

the perceptron training rule, and is as follows: If the training

example, E, is correctly categorised by the network, then no

tweaking is carried out. If E is mis-classified, then each weight is

tweaked by adding on a small value, Δ. Suppose we are trying to

calculate weight wi, which is between the ith input unit, xi and the

20

output unit. Then, given that the network should have calculated the

target value t(E) for example E, but actually calculated the observed

value o(E), then Δ is calculated as:

Δ = η (t(E) – o(E))xi .

Note that η is a fixed positive constant called the learning

rate. Ignoring η briefly, we see that the value Δ that we add on to our

weight wi is calculated by multiplying the input value xi by t(E) – (E).

t(E) – o(E) will either be +2 or –2, because perceptrons output only

+1 or –1, and t(E) cannot be equal to o(E), otherwise we wouldn’t be

doing any tweaking. So, we can think of t(E) – o(E) as a movement

in a particular numerical direction, i. e., positive or negative. This

direction will be such that, if the overall sum, S, was too low to get

over the threshold and produce the correct categorisation, then the

contribution to S from wixi will be increased. Conversely, if S is too

high, the contribution from wixi is reduced. Because t(E) – o(E) is

multiplied by xi, then if xi is a big value (positive or negative), the

change to the weight will be greater. To get a better feel for why this

direction correction works, it’s a good idea to do some simple

calculations by hand.

The learning rate η simply controls how far the correction

should go at one time, and is usually set to be a fairly low value,

e. g., 0.1. The weight learning problem can be seen as finding the

global minimum error, calculated as the proportion of miscategorised

training examples, over a space where all the input values can vary.

Therefore, it is possible to move too far in a direction and improve

one particular weight to the detriment of the overall sum: while the

sum may work for the training example being looked at, it may no

longer be a good value for categorizing all the examples correctly.

For this reason, η restricts the amount of movement possible. If a

large movement is actually required for a weight, then this will

happen over a series of iterations through the example set.

Sometimes, η is set to decay as the number of such iterations through

the whole set of training examples increases, so that it can move

more slowly towards the global minimum in order not to overshoot

21

in one direction. This kind of gradient descent is at the heart of the

learning algorithm for multi-layered networks, as discussed in the

next lecture.

Perceptrons with step functions have limited abilities when it

comes to the range of concepts that can be learned. One way to

improve matters is to replace the threshold function with a linear

unit, so that the network outputs a real value, rather than a 1 or –1.

This enables us to use another rule, called the delta rule, which is

also based on gradient descent. We don’t look at this rule here,

because the backpropagation learning method for multi-layer

networks is similar.

Worked Example

Suppose we are trying to learn a perceptron to represent the

brightness rules above, in such a way that if it outputs 1, the image is

categorised as bright, and if it outputs –1, the image is categorised as

dark. Remember that we said a 2 x 2 black and white pixel image is

categorised as bright if it has two or more white pixels in it. We shall

call the pixels p1 to p4, with the numbers going from left to right, top

to bottom in the 2 x 2 image. A black pixel will produce an input of

–1 to the network, and a white pixel will give an input of +1.

Figure 6 – Initial state of perceptron

22

Given our new way of thinking about the threshold as a

weight from a special input node, our network will have five input

nodes and five weights. Suppose also that we have assigned the

weights randomly to values between –1 and 1, namely –0.5, 0.7, –

0.2, 0.1 and 0.9. Then our perceptron will initially look like in Figure

6.

We will now train the network with the first training example,

using a learning rate of η = 0.1. Suppose the first example image, E,

is this:

With two white squares, this is categorized as bright. Hence,

the target output for E is: t(E) = +1. Also, p1 (top left) is black, so the

input x1 is –1. Similarly, x2 is +1, x3 is +1 and x4 is –1. Hence, when

we propagate this through the network, we get the value:

S = (–0.5 · 1) + (0.7 · (–1)) + (–0.2 · 1) + (0.1 · 1) + (0.9 · (–1)) =

= –2.2

As this value is less than zero, the network outputs o(E) = –1,

which is not the correct value. This means that we should now tweak

the weights in light of the incorrectly categorized example. Using the

perception training rule, we need to calculate the value of Δ to add on

to each weight in the network. Plugging values into the formula for

each weight gives us:

Δ0 = η (t(E) – o(E))xi = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2

Δ1 = 0.1 · (1 – (–1)) · (–1) = 0.1 · (–2) = –0.2

Δ2 = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2

Δ3 = 0.1 · (1 – (–1)) · (1) = 0.1 · 2 = 0.2

Δ4 = 0.1 · (1 – (–1)) · (–1) = 0.1 · (–2) = –0.2

23

When we add these values on to our existing weights, we get

the new weights for the network as follows:

w'0 = –0.5 + Δ0 = –0.5 + 0.2 = –0.3

w'1 = 0.7 + Δ1 = 0.7 + (–0.2) = 0.5

w'2 = –0.2 + Δ2 = –0.2 + 0.2 = 0

w'3 = 0.1 + Δ3 = 0.1 + 0.2 = 0.3

w'4 = 0.9 + Δ4 = 0.9 – 0.2 = 0.7

Our newly trained network will now look like this:

Figure 7 – Updated state of the perceptron

To see how this has improved the situation with respect to the

training example, we can propagate it through the network again.

This time, we get the weighted sum to be:

S = (–0.3 · 1) + (0.5 · (–1)) + (0 · 1) + (0.3 · 1) + (0.7 · (–1)) = –1.2

This is still negative, and hence the network categorizes the

example as dark, when it should be light. However, it is less

negative. We can see that, by repeatedly training using this example,

24

the training rule would eventually bring the network to a state where

it would correctly categorise this example.

The Learning Abilities of Perceptrons

Computational learning theory is the study of what concepts

particular learning schemes (representation and method) can and

can’t learn. We don’t look at this in detail, but a famous example,

first highlighted in a very influential book by Minsky and Papert

involves perceptrons. It has been mathematically proven that the

above mentioned method for learning perceptron weights will

converge to a perfect classifier for learning tasks where the target

concept is linearly separable.

To understand what is and what isn’t a linearly separable

target function, we look at the simplest functions of all, boolean

functions. These take two inputs, which are either 1 or –1 and output

either 1 or –1. Note that, in other contexts, the values 0 and 1 are

used instead of –1 and 1. As an example function, the AND boolean

function outputs a 1 only if both inputs are 1, whereas the OR

function only outputs a 1 if either inputs are 1. Obviously, these

relate to the connectives we studied in the first logic order. The

following two perceptrons can represent the AND and OR boolean

functions respectively:

Figure 8 – Representation of AND and OR boolean functions

25

One of the major impacts of Minsky and Papert’s book was to

highlight the fact that perceptrons cannot learn a particular boolean

function called XOR. This function outputs 1 if the two inputs are

not the same. To see why XOR cannot be learned, try and write

down a perceptron to do the job.

We’ve plotted the values taken by the boolean function when

the inputs are particular values: (–1, –1); (1, –1); (–1, 1) and (1, 1).

For the AND function, there is only one place where a 1 is plotted,

namely when both inputs are 1. This meant that we could draw the

dotted line to separate the output –1s from the 1s. We were able to

draw a similar line in the OR case. Because we can draw these lines,

we say that these functions are linearly separable. Note that it is not

possible to draw such a line for the XOR plot: wherever you try, you

never get a clean split into 1s and –1s.

The following diagram highlights the notion of linear

separability in boolean functions, which explains why they can’t be

learned by perceptrons:

Figure 9 – Linear separability in boolean functions

The dotted lines can be seen as the threshold in perceptrons: if

the weighted sum, S, falls below it, then the perceptron outputs one

value, and if S falls above it, the alternative output is produced. It

doesn’t matter how the weights are organised, the threshold will still

26

be a line on the graph. Therefore, functions which are not linearly

separable cannot be represented by perceptrons.

Note that this result extends to functions over any number of

variables, which can take in any input, but which produce a boolean

output (and hence could, in principle be learned by a perceptron).

Unfortunately, the disclosure in Minsky and Papert’s book

that perceptrons cannot learn even such a simple function was taken

the wrong way: people believed it represented a fundamental flaw in

the use of ANNs to perform learning tasks. This led to a winter of

ANN research within AI, which lasted over a decade. In reality,

perceptrons were being studied in order to gain insights into more

complicated architectures with hidden layers, which do not have the

limitations that perceptrons have. No one ever suggested that

perceptrons would be eventually used to solve real world learning

problems. Fortunately, people studying ANNs within other sciences

(notably neuro-science) revived interest in the study of ANNs. For

more details of computational learning theory, see chapter 7 of Tom

Mitchell’s machine learning book.

27

Lecture 3

Multi-Layer Artificial Neural Networks

We can now look at more sophisticated ANNs, which are

known as multi-layer artificial neural networks because they have

hidden layers. These will naturally be used to undertake more

complicated tasks than perceptrons. We first look at the network

structure for multi-layer ANNs, and then in detail at the way in

which the weights in such structures can be determined to solve

machine learning problems. There are many considerations involved

with learning such ANNs, and we consider some of them here. First

and foremost, the algorithm can get stuck in local minima, and there

are some ways to try to get around this. As with any learning

technique, we will also consider the problem of overfitting, and

discuss which types of problems an ANN approach is suitable for.

3.1 Multi-Layer Network Architectures

We saw in the previous lecture that perceptrons have limited

scope in the type of concepts they can learn – they can only learn

linearly separable functions. However, we can think of constructing

larger networks by building them out of perceptrons. In such larger

networks, we call the step function units the perceptron

units in multi-layer networks.

As with individual perceptrons, multi-layer networks can be

used for learning tasks. However, the learning algorithm that we look

at (the backpropagation routine) is derived mathematically, using

differential calculus. The derivation relies on having

a differentiable threshold function, which effectively rules out using

perceptron units if we want to be sure that backpropagation works

correctly. The step function in perceptrons is not continuous, hence

non-differentiable. An alternative unit was therefore chosen which

28

had similar properties to the step function in perceptron units, but

which was differentiable. There are many possibilities, one of which

is sigmoid units, as described below.

Sigmoid units

Remember that the function inside units takes as input the

weighted sum, S, of the values coming from the units connected to it.

The function inside sigmoid units calculates the following value,

given a real-valued input S:

1
()

1 Sum
Sum

e






.

When we plot the output from sigmoid units given various

weighted sums as input, it looks remarkably like a step function:

Figure 10 – Sigmoid step function

Of course, getting a differentiable function which looks like

the step function was the whole point of the exercise. In fact, not

only is this function differentiable, but the derivative is fairly simply

expressed in terms of the function itself:

()
()(1 ())

d S
S S

dS


   .

29

Note that the output values for the σ function range between

but never make it to 0 and 1. This is because e–S is never negative,

and the denominator of the fraction tends to 0 as S gets very big in

the negative direction, and tends to 1 as it gets very big in the

positive direction. This tendency happens fairly quickly: the middle

ground between 0 and 1 is rarely seen because of the sharp (near)

step in the function. Because of it looking like a step function, we

can think of it firing and not-firing as in a perceptron: if a positive

real is input, the output will generally be close to +1 and if a negative

real is input the output will generally be close to –1.

Example of Multi-layer ANN with Sigmoid Units

We will concern ourselves here with ANNs containing only

one hidden layer, as this makes describing the backpropagation

routine easier. Note that networks where you can feed in the input on

the left and propagate it forward to get an output are called feed

forward networks. Below is such an ANN, with two sigmoid units in

the hidden layer. The weights have been set arbitrarily between all

the units.

Figure 11 – Multi-layer ANN

Note that the sigma units have been identified with sigma

signs in the node on the graph. As we did with perceptrons, we can

give this network an input and determine the output. We can also

look to see which units “fired”, i. e., had a value closer to 1 than to 0.

30

Suppose we input the values 10, 30, 20 into the three input

units, from top to bottom. Then the weighted sum coming into H1

will be:

SH1 = (0.2 · 10) + (–0.1 · 30) + (0.4 · 20) = 7.

Then the σ function is applied to SH1 to give:

σ(SH1) = 1/(1 + e–7) = 1/(1 + 0.000912) = 0.999.

Similarly, the weighted sum coming into H2 will be:

SH2 = (0.7 · 10) + (–1.2 · 30) + (1.2 · 20) = –5,

and σ applied to SH2 gives:

σ(SH2) = 1/(1 + e5) = 1/(1 + 148.4) = 0.0067.

From this, we can see that H1 has fired, but H2 has not. We

can now calculate that the weighted sum going in to output unit O1

will be:

SO1 = (1.1 · 0.999) + (0.1 · 0.0067) = 1.0996,

and the weighted sum going in to output unit O2 will be:

SO2 = (3.1 · 0.999) + (1.17 · 0.0067) = 3.1047.

The output sigmoid unit in O1 will now calculate the output

values from the network for O1:

σ(SO1) = 1/(1 + e–1.0996) = 1/(1+0.333) = 0.750,

and the output from the network for O2:

σ(SO2) = 1/(1 + e–3.1047)= 0.957.

31

Therefore, if this network represented the learned rules for a

categorization problem, the input triple (10, 30, 20) would be

categorized into the category associated with O2, because this has the

larger output.

3.2 The Backpropagation Learning Routine

As with perceptrons, the information in the network is stored

in the weights, so the learning problem comes down to the question:

how do we train the weights to best categorize the training examples.

We then hope that this representation provides a good way to

categorize unseen examples.

In outline, the backpropagation method is the same as for

perceptrons:

 We choose and fix our architecture for the network, which

will contain input, hidden and output units, all of which will contain

sigmoid functions.

 We randomly assign the weights between all the nodes.

The assignments should be to small numbers, usually between –0.5

and 0.5.

 Each training example is used, one after another, to re-

train the weights in the network. The way this is done is given in

detail below.

 After each epoch (run through all the training examples), a

termination condition is checked (also detailed below). Note that, for

this method, we are not guaranteed to find weights which give the

network the global minimum error, i. e., perfectly correct

categorization of the training examples. Hence the termination

condition may have to be in terms of a (possibly small) number of

mis-categorizations. We see later that this might not be such a good

idea, though.

32

Weight Training Calculations

Because we have more weights in our network than in

perceptrons, we firstly need to introduce the notation: wij to specify

the weight between unit i and unit j. As with perceptrons, we will

calculate a value Δij to add on to each weight in the network after an

example has been tried. To calculate the weight changes for a

particular example, E, we first start with the information about how

the network should perform for E. That is, we write down the target

values ti(E) that each output unit Oi should produce for E. Note that,

for categorization problems, ti(E) will be zero for all the output units

except one, which is the unit associated with the correct

categorization for E. For that unit, ti(E) will be 1.

Next, example E is propagated through the network so that

we can record all the observed values oi(E) for the output nodes Oi.

At the same time, we record all the observed values hi(E) for the

hidden nodes. Then, for each output unit Ok, we calculate its error

term as follows:

()(1 ())(() ())
kO k k k ko E o E t E o E    .

The error terms from the output units are used to calculate

error terms for the hidden units. In fact, this method gets its name

because we propagate this information backwards through the

network. For each hidden unit Hk, we calculate the error term as

follows:

()(1 ())
k iH k k ki O

i outputs

h E h E  


   .

This means that we take the error term for every output unit

and multiply it by the weight from hidden unit Hk to the output unit.

We then add all these together and multiply the sum by factor

hk(E)(1 – hk(E)).

33

Having calculated all the error values associated with each

unit (hidden and output), we can now transfer this information into

the weight changes Δij between units i and j. The calculation is as

follows: for weights wij between input unit Ii and hidden unit Hj, we

add on:

jij H ix  .

Remembering that xi is the input to the ith input node for

example E; that η is a small value known as the learning rate and that

δHj is the error value we calculated for hidden node Hj using the

formula above.

For weights wij between hidden unit Hi and output unit Oj, we

add on:

()
jij O ih E  .

Remembering that hi(E) is the output from hidden node

Hi when example E is propagated through the network, and that δOj is

the error value we calculated for output node Oj using the formula

above.

Each alteration Δ is added to the weights and this concludes

the calculation for example E. The next example is then used to

tweak the weights further. As with perceptrons, the learning rate is

used to ensure that the weights are only moved a short distance for

each example, so that the training for previous examples is not lost.

Note that the mathematical derivation for the above mentioned

calculations is based on the derivative of σ that we saw above.

Worked Example

We will re-use the example from the previous section, where

our network originally looked like this:

34

Figure 12 – Initial state of ANN

and we propagated the values (10, 30, 20) through the network.

When we did so, we observed the following values:

Table 2 – The state of ANN in the first step

Input units Hidden units Output units

U
n

it

O
u

tp
u

t

U
n

it

W
ei

g
h

te
d

S
u

m

In
p

u
t

O
u

tp
u

t

U
n

it

W
ei

g
h

te
d

S
u

m
 I

n
p

u
t

O
u

tp
u

t
I1 10 H1 7 0.999 O1 1.0996 0.750

I2 20 H2 –5 0.0067 O2 3.1047 0.957

I3 30

Suppose now that the target categorization for the example

was the one associated with O1. This means that the network mis-

categorizes the example and gives us an opportunity to demonstrate

the backpropagation algorithm: we will update the weights in the

network according to the weight training calculations provided

above, using a learning rate of η = 0.1.

If the target categorization was associated with O1, this

means that the target output for O1 was 1, and the target output for

O2 was 0. Hence, using the above notation,

35

t1(E) = 1; t2(E) = 0; o1(E) = 0.750; o2(E) = 0.957.

That means we can calculate the error values for the output

units O1 and O2 as follows:

δO1 = o1(E)(1 – o1(E))(t1(E) – o1(E)) =

= 0.750(1 – 0.750)(1 – 0.750) = 0.0469;

δO2 = o2(E)(1 – o2(E))(t2(E) – o2(E)) =

= 0.957(1 – 0.957)(0 – 0.957) = –0.0394.

We can now propagate this information backwards to

calculate the error terms for the hidden nodes H1 and H2. To do this

for H1, we multiply the error term for O1 by the weight from H1 to

O1, then add this to the multiplication of the error term for O2 and

the weight between H1 and O2. This gives us:

(1.1 · 0.0469) + (3.1 · (–0.0394)) = –0.0706.

To turn this into the error value for H1, we multiply by

h1(E) · (1– h1(E)), where h1(E) is the output from H1 for example E,

as recorded in the table above. This gives us:

δH1 = –0.0706 · (0.999 · (1 – 0.999)) = –0.0000705.

A similar calculation for H2 gives the first part to be:

(0.1 · 0.0469) + (1.17 · (–0.0394)) = –0.0414, and the overall error

value to be:

δH2 = –0.0414 · (0.067 · (1–0.067)) = –0.00259.

We now have all the information required to calculate the

weight changes for the network. We will deal with the 6 weights

between the input units and the hidden units first:

36

Table 3 – New weight of ANN between the input units and the hidden
In

p
u
t

u
n

it

H
id

d
en

u
n
it

η

δ
H

x
i

Δ
 =

η
 ·

 δ
H
 ·

 x
i

O
ld

w
ei

g
h

t

N
ew

w
ei

g
h

t

I1 H1 0.1 –0.0000705 10 –0.0000705 0.2 0.1999295

I1 H2 0.1 –0.00259 10 –0.00259 0.7 0.69741

I2 H1 0.1 –0.0000705 30 –0.0002115 –0.1 –0.100211

I2 H2 0.1 –0.00259 30 –0.00777 –1.2 –1.20777

I3 H1 0.1 –0.0000705 20 –0.000141 1.4 0.39999

I3 H2 0.1 –0.00259 20 –0.00518 1.2 1.1948

We now turn to the problem of altering the weights between

the hidden layer and the output layer. The calculations are similar,

but instead of relying on the input values from E, they use the values

calculated by the sigmoid functions in the hidden nodes: hi(E). The

following table calculates the relevant values:

Table 4 – New weight of ANN between the hidden and the output layer

H
id

d
en

u
n
it

O
u
tp

u
t

u
n
it

η

δ
O

h
i(

E
)

Δ
 =

η
 ·

 δ
O
 ·

 h
i

O
ld

w
ei

g
h
t

N
ew

w
ei

g
h
t

H1 O1 0.1 0.0469 0.999 0.000469 1.1 1.100469

H1 O2 0.1 –0.0394 0.999 –0.00394 3.1 3.0961

H2 O1 0.1 0.0469 0.0067 0.00314 0.1 0.10314

H2 O2 0.1 –0.0394 0.0067 –0.0000264 1.17 1.16998

We note that the weights haven’t altered all that much, so it

might be a good idea in this situation to use a bigger learning rate.

However, remember that, with sigmoid units, small changes in the

weighted sum can produce big changes in the output from the unit.

37

As an exercise, check whether the re–trained network

performs better with respect to the example than the original

network.

Avoiding Local Minima

The error rate of multi-layered networks over a training set

could be calculated as the number of mis-classified examples.

Remembering, however, that there are many output nodes, all of

which could potentially misfire (e. g., giving a value close to 1 when

it should have output 0, and vice-versa), we can be more

sophisticated in our error evaluation. In practice the overall network

error is calculated as:

 
21

() ()
2

k k
E examples k outputs

t E o E
 

 
 

 
  .

This is not as complicated as it first appears. The calculation

simply involves working out the difference between the observed

output for each output unit and the target output and squaring this to

make sure it is positive, then adding up all these squared differences

for each output unit and for each example.

Backpropagation can be seen as using a searching space of

network configurations (weights) in order to find a configuration

with the least error, measured in the above fashion. The more

complicated network structure means that the error surface which is

searched can have local minima, and this is a problem for multi-layer

networks, and we look at ways around it below. Having said that,

even if a learned network is in a local minima, it may still perform

adequately, and multi-layer networks have been used to great effect

in real world situations.

One way around the problem of local minima is to use

random re-start as described in the lecture on search techniques.

Different initial random weightings for the network may mean that it

converges to different local minima, and the best of these can be

38

taken for the learned ANN. Alternatively, a “committee” of networks

could be learned, with the (possibly weighted) average of their

decisions taken as an overall decision for a given test example.

Another alternative is to try and skip over some of the smaller local

minima, as described below.

Adding Momentum

Imagine a ball rolling down a hill. As it does so, it gains

momentum, so that its speed increases and it becomes more difficult

to stop. As it rolls down the hill towards the valley floor (the global

minimum), it might occasionally wander into local hollows.

However, it may be that the momentum it has obtained keeps it

rolling up and out of the hollow and back on track to the valley floor.

The crude analogy describes one heuristic technique for

avoiding local minima, called adding momentum, funnily enough.

The method is simple: for each weight remember the previous value

of Δ which was added on to the weight in the last epoch. Then, when

updating that weight for the current epoch, add on a little of the

previous Δ. How small to make the additional extra is controlled by a

parameter α called the momentum, which is set to a value between 0

and 1.

To see why this might help bypass local minima, note that if

the weight change carries on in the direction it was going in the

previous epoch, then the movement will be a little more pronounced

in the current epoch. This effect will be compounded as the search

continues in the same direction. When the trend finally reverses, then

the search may be at the global minimum, in which case it is hoped

that the momentum won’t be enough to take it anywhere else than

where it is. Alternatively, the search may be at a fairly narrow local

minimum. In this case, even though the backpropagation algorithm

dictates that Δ will change direction, it may be that the additional

extra from the previous epoch (the momentum) may be enough to

counteract this effect for a few steps. These few steps may be all that

is needed to bypass the local minimum.

39

In addition to getting over some local minima, when the

gradient is constant in one direction, adding momentum will increase

the size of the weight change after each epoch, and the network may

converge quicker. Note that it is possible to have cases where (a) the

momentum is not enough to carry the search out of a local minima or

(b) the momentum carries the search out of the global minima into a

local minima. This is why this technique is a heuristic method and

should be used somewhat carefully (it is used in practice a great

deal).

Overfitting Considerations

Left unchecked, backpropagation in multi-layer networks can

be highly susceptible to overfitting itself to the training examples.

The following graph plots the error on the training and test set as the

number of weight updates increases. It is typical of networks left to

train unchecked.

Figure 13 – The error versus number of weight updates

Alarmingly, even though the error on the training set

continues to gradually decrease, the error on the test set actually

begins to increase towards the end. This is clearly overfitting, and it

relates to the network beginning to find and fine-tune to

40

idiosyncrasies in the data, rather than to general properties. Given

this phenomenon, it would be unwise to use some kind of threshold

for the error as the termination condition for backpropagation.

In cases where the number of training examples is high, one

antidote to overfitting is to split the training examples into a set to

train the weight and a set to hold back as an internal validation set.

This is a mini-test set, which can be used to keep the network in

check: if the error on the validation set reaches a minimum and then

begins to increase, then it could be that overfitting is beginning to

occur.

Note that (time permitting) it is worth giving the training

algorithm the benefit of the doubt as much as possible. That is, the

error in the validation set can also go through local minima, and it is

not wise to stop training as soon as the validation set error starts to

increase, as a better minima may be achieved later on. Of course, if

the minimum is never bettered, then the network which is finally

presented by the learning algorithm should be re-wound to be the one

which produced the minimum on the validation set.

Another way around overfitting is to decrease each weight by

a small weight decay factor during each epoch. Learned networks

with large (positive or negative) weights tend to have overfitted the

data, because larger weights are needed to accommodate outliers in

the data. Hence, keeping the weights low with a weight decay factor

may help to steer the network from overfitting.

Appropriate Problems for ANN learning

As we did for decision trees, it’s important to know when

ANNs are the right representation scheme for the job. The following

are some characteristics of learning tasks for which artificial neural

networks are an appropriate representation:

The concept (target function) to be learned can be

characterized in terms of a real-valued function. That is, there is

some translation from the training examples to a set of real numbers,

and the output from the function is either real-valued or (if a

categorization) can be mapped to a set of real values. It’s important

41

to remember that ANNs are just giant mathematical functions, so are

the data they play around with are numbers, rather than logical

expressions, etc. This may sound restrictive, but many learning

problems can be expressed in a way that ANNs can tackle them,

especially as real numbers contain booleans (true and false mapped

to +1 and -1), integers, and vectors of these data types can also be

used.

Long training time is acceptable. Neural networks generally

take a longer time to train than, for example, decision trees. Many

factors, including the number of training examples, the value chosen

for the learning rate and the architecture of the network, have an

affect on the time required to train a network. Training time can vary

from a few minutes to many hours.

It is not vitally important that humans should be able to

understand exactly how the learned network carries out

categorizations. As we discussed above, ANNs are black boxes and it

is difficult for us to get a handle on what its calculations are doing.

When in use for the actual purpose it was learned for, the

evaluation of the target function needs to be quick. While it may take

a long time to learn a network to decide, for instance, whether a

vehicle is a tank, bus or car, once the ANN has been learned, using it

for the categorization task is typically very fast. This may be very

important: if the network was to be used in a battle situation, then a

quick decision about whether the object moving hurriedly towards it

is a tank, bus, car or old lady could be vital.

In addition, neural network learning is quite robust to errors

in the training data, because it is not trying to learn exact rules for the

task, but rather to minimize an error function.

42

Lecture 4

Competitive Networks – the Kohonen Self-
organizing Map

4.1 Self-organizing maps

The inspiration for many of these networks came from

biology. They have been developed either to model some biological

function (particularly in cognitive modelling) or in response to the

demand for biological plausibility in neural networks. One important

organizing principle of sensory pathways in the brain is that the

placement of neurons is orderly and often reflects some physical

characteristic of the external stimulus being sensed. For example, at

each level of the auditory pathway, nerve cells and fibres are

arranged anatomically in relation to the frequency which elicits the

greatest response from each neuron. This topologic organization in

the auditory pathway also extends up to the auditory cortex.

Although much of this low-level organization is genetically pre-

determined, it is likely that some of the organization at higher levels

is created during learning by algorithms which promote self-

organization. Kohonen took inspiration from this physical structure

of the brain to produce self-organizing feature maps (topology

preserving maps). In a self-organizing map, units located physically

next to one another will respond to input vectors that are in some

way ‘next to one another’. Although it is easy to visualize units being

next to one another in a two-dimensional array, it is not so easy to

determine which classes of vectors are next to each other in a high-

dimensional space. Large dimensional input vectors are in a sense

‘projected down’ onto the two-dimensional map in a way that

maintains the natural order of the input vectors. This dimensional

reduction can allow us to easily visualize important relationships

among the data that otherwise may not have been noticed.

43

4.2 Learning in biological systems – the self-

organizing paradigm

The type of learning utilized in multilayer perceptrons

requires the correct response to be provided during training

(supervised training).

Biological systems display this type of learning, but they are

also capable of learning by themselves – without a supervisor

showing the correct response (unsupervised learning).

A neural network with a similar capability is called a self-

organizing system because during training, the network changes its

weights to learn appropriate associations, without any right answers

being provided.

The propagation of biological neural activation via axons can

be modelled using a Mexican hat function:

Figure 14 – Mexican hat function

Cells close to the active cell have excitatory links. The

strengths of the links drop off with distance and then turn inhibitory.

The Kohonen neural network also uses only locally connected

neurons and restricts the adjustment of weight values to localized

“neighbourhoods”.

44

4.3 Architecture of the Kohonen Network

Teuvo Kohonen was the originator of this type of self-

organizing network. The aim of a Kohonen network is to produce a

pattern classifier, which is self-organizing and uses a form of

unsupervised learning to adjust the weights. Typically, a Kohonen

network consists of a two-dimensional array of neurons with all of

the inputs arriving at all of the neurons. Each neuron has its own set

of weights which can be regarded as an exemplar pattern. When an

input pattern arrives at the network, the neuron with the exemplar

pattern that is most similar to the input pattern will give the largest

response. One difference from other self-organizing systems,

however, is that the exemplar patterns are stored in such a way that

similar exemplars are to be found in neurons that are physically close

to one another and exemplars that are very different are situated far

apart. Self-Organizing Maps (SOMs) aim to produce a network

where the weights represent the coordinates of some kind of

topological system or map and the individual elements in the

network are arranged in an ordered way.

The Kohonen network consists of an input layer, which

distributes the inputs to each node in a second layer, the so-called

competitive layer (feature map).

Each of the nodes on this layer acts as an output node.

Each neuron in the competitive layer is connected to other

neurons in its neighbourhood and feedback is restricted to neighbors

through these lateral connections.

Neurons in the competitive layer have excitatory connections

to immediate neighbours and inhibitory connections to more distant

neurons.

All neurons in the competitive layer receive a mixture of

excitatory and inhibitory signals from the input layer neurons and

from other competitive layer neurons.

45

Figure 15 – Structure of Kohonen network

4.4 The Kohonen Network in Operation

As an input pattern is presented, some of the neurons are

sufficiently activated to produce outputs which are fed back to other

neurons in their neighbourhoods.

The node with the weight vector closest to the input pattern

vector (the so-called “winning node”) produces the largest output.

During training, input weights of the winning neuron and its

neighbors are adjusted to make them resemble the input pattern even

more closely.

At the completion of training, the winning node ends up with

its weight vector aligned with the input pattern and produces the

strongest output whenever that particular pattern is presented.

The nodes in the winning node’s neighbourhood also have

their weights modified to settle down to an average representation of

that pattern class. As a result, unseen patterns belonging to that class

are also classified correctly (generalization).

46

The m neighbourhoods, corresponding to the m possible

pattern classes are said to form a topological map representing the

patterns.

The initial size of the neighbourhood mentioned above and

the fixed values of excitatory (positive) and inhibitory (negative)

weights to neurons in the neighbourhood are among the design

decisions to be made.

Derivation of the learning rule for the Kohonen net

The sum squared error for pattern p for all output layer

neurons can be written as

,)(
2

1 2p
j

j
ijp xwE  

where xjp is the ith component of pattern p for neuron j. The

summation is done over all j neurons.

Any change wij in the weight is expected to cause a

reduction in error Ep.

Now Ep is a function of all the weights, so its rate of change

with respect to any one weight value wij has to be measured by

calculating its partial derivative with respect to wij.

.
ij

p

ijp
w

E
w







where  is a constant of proportionality.

Now we have to calculate the partial derivative of Ep:

.p
jij

ij

p
xw

w

E






Combining two last expressions, we get

47

).()(ij
p
j

p
jij

ij

p

ijp wxxw
w

E
w 


 




4.5 Training the Kohonen Network

The Kohonen Algorithm.

1. Initialize weights. Initialize weights from N inputs to the

nodes to small random values. Set the initial radius of the

neighbourhood.

2. Present new input x0(t), x1(t), x2(t), ... xn–1(t), where xi(t) is

the input to node i at time t.

3. Compute distances to all nodes

Compute distances dj between the input and each output node

j using

    
21N

j i ij
i

d x t w t


  ,

where xi(t) is the input to node i at time t and wij(t) is the weight from

input node i to output node j at time t.

4. Select output node with minimum distance. Select

output node j* as the output node with minimum dj.

5. Update weights to node j* and neighbors. Weights updated

for node j* and all nodes in the neighbourhood defined by Nj*(t).

New weights are

wij(t + 1) = wij(t) + (t)(xi(t) – wij(t)), for j in Nj*, 0  i  N–1.

The term (t) is a gain term 0    1. Both  and Nj*(t)

decrease with time.

6. Repeat by going to the step 2.

48

Training issues in Kohonen Neural Nets

Vector normalization. To make vector comparison

independent of magnitudes and dependent on orientation only, the

vectors are normalized by dividing them by their magnitudes. This

also helps to reduce training time.

Weight initialization. A random distribution of initial

weights may not be optimal, resulting in sparsely populated trainable

nodes and poor classification performance.

Possible remedies:

a. Initialization of weights to the same value and lumping of

input vectors to similar orientation. This increases likelihood of all

nodes being closer to a pattern vector. Inputs slowly return to

original orientation with training.

b. Addition of random noise to inputs to distribute vectors

over a larger pattern space.

c. Using a large initial neighbourhood, changing slowly.

Reducing neighbourhood size. Should be decreasing linearly

with time (iterations). Neighbourhood shape may vary to suit

application – e. g., circular or hexagonal instead of rectangular.

The decisions about the size of Nj* and the value of  are

important. The sideways ‘spread’ of the Mexican hat function must

change over time, hence changing the size of the neighbourhood of

the units. Both Nj* and the value of  must decrease with time, and

there are several ways of doing this. The value of  and the size of

Nj* could decrease linearly with time, however, it has been pointed

out that there are two distinct phases – an initial ordering phase, in

which the elements find their correct topological order, and a final

convergence phase in which the accuracy of the weights improves.

For example, the initial ordering phase might take 1000 iterations

where  decreases linearly from 0.9 to 0.01 say, and Nj* decreases

linearly from half the diameter of the network to one spacing. During

the final convergence phase  may decrease from 0.01 to 0 while Nj*

stays at one spacing. This final stage could take form between 10 to

100 times longer than the initial stage depending on the desired

accuracy.

49

An example is shown below where a two-dimensional array

of elements is arranged in a square to map a rectangular two-

dimensional coordinate space onto this array (which is the simplest

case to imagine). Figure 16 shows the network for the example

where units are trained to recognize their relative positions in two-

dimensional space. This figure illustrates the dynamics of the

learning process. Instead of plotting the position of the processing

elements according to their physical location, they are plotted

according to their location in weight space. As training proceeds, the

map evolves. In the initial map, weight vectors have random values

near the centre of the map coordinates (i. e., if these values are

plotted on a two-dimensional image, they would be shown as a set of

randomly distributed points). We want to indicate that some elements

are next to other elements. This is done by drawing a line between

adjacent elements so that the image ends up as a set of lines, the

elements being situated at the points where the lines intersect. These

lines are not physical, in the sense that the elements are not joined

together, but show units that are neighbors in physical space.

The system is presented with a set of randomly chosen

coordinates. As the map begins to evolve, weights spread out from

the centre. Eventually the final structure of the map begins to appear.

Finally the relationship between the weight vectors mimics the

relationship between the physical coordinates of the processing

elements (i. e., as time elapses, the weights order themselves so that

they correspond to the positions in the coordinate system). Another

way of thinking about this is that the weights distribute themselves in

an even manner across the coordinate space so that, in effect, they

learn to ‘fill the space’.

Although the above example uses input points that are

uniformly distributed within the region, they can in fact be

distributed according to any distribution function. Once the SOM has

been trained, the weight vectors will be organized into an

approximation of the distribution function of the input vectors.

Kohonen has shown that (more formally) “the point density function

of the weight vectors tends to approximate the probability density

50

function p(x) of the input vectors x, and the weight vectors tend to be

ordered according to their mutual similarity”.

Figure 16 – Weight vectors during the ordering phase.

The network output doesn’t need to be two-dimensional, even

though the layout of the physical devices might be two-dimensional.

If there are n weights, then each weight corresponds to a coordinate.

So although a two-dimensional image, the elements of which are

active, is produced when patterns are presented to the input, the

interpretation of that map might have more dimensions. For example,

a system where each element has three weights would organize itself

so that the different pattern classes occupy different parts of a three-

dimensional space. If the network is observed, only individual

elements firing would be seen, so it is misleading to think in terms of

the physical layout.

This (and other examples) shows how two-dimensional arrays

which map on to a coordinate system can arrange the weights so that

the ‘nodes’ in that system are distributed evenly. One thing that has

not been mentioned yet is the output. What is the output of a

Kohonen network? Training involves grouping similar patterns in

close proximity in this pattern space, so that clusters of similar

51

patterns cause neurons to fire that are physically located close

together in the network. Clearly, the outputs need to be interpreted,

but it should be possible to identify which regions belong to which

class by showing the network known patterns and seeing which areas

are active.

52

Lecture 5

Radial Basis Function Networks

Statistics can be used in feedforward networks, and one of the

most important of uses is in the radial basis function (RBF) network.

This is becoming an increasingly popular neural network with

diverse applications and is probably the main rival to the multi-

layered perceptron. Much of the inspiration for RBF networks has

come from traditional statistical pattern classification techniques,

which are essentially getting a new lease of life as a form of neural

network. However, by including RBFs in the general category of

neural networks these techniques, which would only have been

known to the few, have become widely used.

5.1 Architecture

The basic architecture for an RBF is a 3-layer network, as

shown in Figure 17. The input layer is simply a fan-out layer and

does no processing. The second or hidden layer performs a non-

linear mapping from the input space into a (usually) higher

dimensional space in which the patterns become linearly separable.

The final layer therefore performs a simple weighted sum with a

linear output. If the RBF network is used for function approximation

(matching a real number) then this output is fine. However, if pattern

classification is required, then a hard-limiter or sigmoid function

could be placed on the output neurons to give 0 or 1 output values.

The unique feature of the RBF network is the process

performed in the hidden layer. The idea is that the patterns in the

input space form clusters. If the centres of these clusters are known,

then the distance from the cluster centre can be measured.

Furthermore, this distance measure is made non-linear, so that if a

pattern is in an area that is close to a cluster centre it gives a value

53

close to 1. Beyond this area, the value drops dramatically. The notion

is that this area is radially symmetrical around the cluster centre, so

that the non-linear function becomes known as the radial-basis

function.

x1

x2

x3

input layer

(fan-out)

hidden layer

(weights correspond to cluster centre,

output function usually Gaussian)

output layer

(linear weighted sum)

y1

y2

Figure 17 – Radial Basis Function Network

The most commonly used radial-basis function is:

2

2
() exp

2

r
r



 
  

  .

In an RBF network, r is the distance from the cluster centre.

The equation represents a Gaussian bell-shaped curve, as shown in

Figure 18. The distance measured from the cluster centre is usually

the Euclidean distance. For each neuron in the hidden layer, the

weights represent the coordinates of the centre of the cluster.

Therefore, when that neuron receives an input pattern, X, the distance

is found using the following equation:

54

2

1

()
n

j i ij
i

r x w


  .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0
.8

-0
.6

-0
.4

-0
.2

0

0
.2

0
.4

0
.6

0
.8 1

x



Figure 18 – A Gaussian centred at 0 with  = 0.5

The variable  defines the width or radius of the bell-shape

and is something that has to be determined empirically. When the

distance from the centre of the Gaussian reaches , the output drops

from 1 to 0.6.

An often quoted example which shows how the RBF network

can handle a non-linearly separable function is the exclusive-OR

problem. One solution has 2 inputs, 2 hidden units and 1 output. The

centres for the two hidden units are set at c1 = 0.0 and c2 = 1.1, and

the value of radius  is chosen such that 22 = 1. When all four

examples of input patterns are shown to the network, the outputs of

the two hidden units are shown in the following table. The inputs are

x, the distances from the centres squared are r, and the outputs from

the hidden units are .

55

XX

1

10 0.5

0.5

X

1

2

Table 5 – The outputs of the hidden units

x1 x2 r1 r2 1 2

0 0 0 2 1 0.1

0 1 1 1 0.4 0.4

1 0 1 1 0.4 0.4

1 1 2 0 0.1 1

Figure 19 shows the position of the four input patterns using

the output of the two hidden units as the axes on the graph. It can be

seen that the patterns are now linearly separable.

Figure 19 – The input patterns after being transformed

by the hidden layer

This demonstrates the power of transforming from one

domain to another using an RBF network. However, the centres were

chosen carefully to show this result. The methods generally adopted

2

1

2

()

(_) exp
2

n

i ij
i

j

x w

hidden unit 




 
 

  
 
 
 



56

for learning in an RBF network would find it impossible to arrive at

those centre values. The learning methods that are usually adopted

will be described in the next section.

5.2 Training an RBF network

Hidden layer

The hidden layer in an RBF network has units which have

weights that correspond to the vector representation of the centre of a

cluster. These weights are found either using a traditional clustering

algorithm such as the k-means algorithm, or adaptively using

essentially the Kohonen algorithm. In either case, the training is

unsupervised but the number of clusters that you expect, k, is set in

advance. The algorithms then find the best fit to these clusters. The

k-means algorithm will be briefly outlined. Initially k points in the

pattern space are randomly set. Then for each item of data in the

training set, the distances are found from all of the k centres. The

closest centre is chosen for each item of data. This is the initial

classification, so all items of data will be assigned a class from 1 to k.

Then, for all data which has been found to be class 1, the average or

mean values are found for each of co-ordinates. These become the

new values for the centre corresponding to class 1. This is repeated

for all data found to be in class 2, then class 3 and so on until class k

is dealt with. We now have k new centres. The process of measuring

the distance between the centres and each item of data and re-

classifying the data is repeated until there is no further change. The

sum of the distances can be monitored and the process halts when the

total distance no longer falls.

The alternative is to use an adaptive k-means algorithm

similar to Kohonen learning. Input patterns are presented to all of the

cluster centres one at a time, and the cluster centres adjusted after

each one. The cluster centre that is nearest to the input data wins, and

is shifted slightly towards the new data. This has the advantage that

you don’t have to store all of the training data so can be done on-line.

57

Having found the cluster centres using one or other of these

methods, the next step is determining the radius of the Gaussian

curves. This is usually done using the P-nearest neighbor algorithm.

A number P is chosen, and for each centre, the P nearest centres are

found. The root-mean squared distance between the current cluster

centre and its P nearest neighbors is calculated, and this is the value

chosen for . So, if the current cluster centre is cj, the value is:

A typical value for P is 2, in which case  is set to be the

average distance from the two nearest neighboring cluster centres:

Using this method for training the hidden layer, exclusive-OR

function can be implemented using a minimum of 4 hidden units. If

more than four units are used, the additional units duplicate the

centres and therefore do not contribute any further discrimination to

the network. So, assuming four neurons in the hidden layer, each unit

is centred on one of the four input patterns, namely 00, 01, 10 and

11. The P-nearest neighbor algorithm with P set to 2 is used to find

the size of the radii. In each of the neurons, the distances to the other

three neurons is 1, 1 and 1.414, so the two nearest cluster centres are

at a distance of 1. Using the mean squared distance as the radii gives

each neuron a radius of 1. Using these values for the centres and

radius, if each of the four input patterns is presented to the network,

the output of the hidden layer would be:

 Table 5 – The output of the hidden layer

input neuron 1 neuron 2 neuron 3 neuron 4

00 0.6 0.4 1.0 0.6

01 0.4 0.6 0.6 1.0

10 1.0 0.6 0.6 0.4

11 0.6 1.0 0.4 0.6

.)(
1

1

2



P

i
ikj cc

P


58

Output layer

Having trained the hidden layer with some unsupervised

learning, the final step is to train the output layer using a standard

gradient descent technique such as the Least Mean Squares

algorithm. In the example of the exclusive-OR function given above

a suitable set of weights would be +1, –1, –1 and +1. With these

weights the value of net and the output is:

 Table 6 – The output of the output layer

input neuron 1 neuron 2 neuron 3 neuron 4 net output

00 0.6 0.4 1.0 0.6 –0.2 0

01 0.4 0.6 0.6 1.0 0.2 1

10 1.0 0.6 0.6 0.4 0.2 1

11 0.6 1.0 0.4 0.6 –0.2 0

5.3 Advantages of an RBF

Many advantages are claimed for RBF networks over multi-

layer perceptrons (MLPs). It is said that an RBF trains faster than an

MLP and that it produces better decision boundaries. Another

advantage that is claimed is that the hidden layer is easier to interpret

than the hidden layer in an MLP. Some of the disadvantages that are

claimed for an RBF are that an MLP gives better distributed

representation. Although the RBF is quick to train, when training is

finished and it is being used it is slower than an MLP, so where

speed is a factor an MLP may be more appropriate.

Statistical feed-forward networks such as the radial basis

function network have become very popular, and are serious rivals to

the multi-layered perceptron. Their success is likely to be due to the

fact they are essentially well tried statistical techniques being

presented as neural networks. The learning mechanisms in statistical

neural networks are not biologically plausible, with the result that

these networks have not been taken up by those researchers who

insist on biological analogies.

59

 REFERENCES

1. Wells Ian. Intelligent Information Systems / Ian Wells, Tony

Browne [Електронний ресурс]. – Режим доступу :

http://www.computing.surrey.ac.uk/courses/csm10/.

2. Simon Colton. Artificial Intelligence / Colton Simon

[Електронний ресурс]. – Режим доступу :

http://www.doc.ic.ac.uk/~sgc/teaching/v231/.

3. Beale R. Neural Computing: An Introduction / R. Beale, T.

Jackson. – Bristol, Philadelphia and New York : IOP Publishing

Ltd, 1990. – 227 p.

4. Raul Rojas. Neural Networks / Rojas Raul. – Springer–Verlag,

Berlin, 1996. – 509 p.

5. Haykin Simon. Neural Networks and Learning Machines. Third

Edition / Simon Haykin. – the USA, New Jersey : Pearson

Education Inc., 1999. – 906 p.

mailto:ian.wells@royalsurrey.nhs.uk
mailto:ian.wells@royalsurrey.nhs.uk
mailto:a.browne@surrey.ac.uk
mailto:a.browne@surrey.ac.uk
http://www.computing.surrey.ac.uk/courses/csm10/
http://www.doc.ic.ac.uk/~sgc
http://www.doc.ic.ac.uk/~sgc
http://www.doc.ic.ac.uk/~sgc/teaching/v231/

Навчальне видання

Князь Ігор Олександрович

Конспект лекцій

із курсу «Моделювання нейронних мереж»

У двох частинах

Частина 1

(Англійською мовою)

 Відповідальний за випуск О. В. Лисенко
 Редактор Л. В. Штихно

 Комп’ютерне верстання І. О. Князя

Формат 60х84/16. Ум. друк. арк. 3,49. Обл.-вид. арк. 4,25.

Видавець і виготовлювач

Сумський державний університет,
вул. Римського-Корсакова, 2, м. Суми, 40007

Свідоцтво суб’єкта видавничої справи ДК № 3062 від 17.12.2007.

