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The Kinetic Effects, Caused by Thickness Fluctuations of Quantum Semiconductor Wire

M.A. Ruvinskii®, B.M. Ruvinskii, O.B. Kostyuk

Vasyl Stefanyk Precarpathian National University,
57, Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

(Revised 19.03.2017, revised manuscript received 26 April 2017; published online 28 April 2017)

The electrical conductivity, thermopower and thermal conductivity of semiconductor quantum wire
conditioned by a random field of Gaussian fluctuations of wire thickness are theoretically determined. We
present the results for cases nondegenerate and generate statistics of carriers. The considered mechanism
of relaxation of the carriers is essential for sufficiently thin and clean wire from the A3B5 and A4B6 type of
semiconductors at low temperatures. The quantum size effects that are typical of quasi-one-dimensional

systems were revealed.
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1. INTRODUCTION

In thin semiconductor wire quantization of electron
energy spectrum leads to quantum size effects, which
are found in the Kkinetic parameters of quasi-
onedimensional system, which are also depended on
the mechanism of carriers scattering. In modern
nanoelectronics technologies the influence of random
field associated with fluctuations in the thickness of
semiconductor quantum wires, generally speaking,
cannot be ignore [1]. The aim of this work is to general-
ize and refine previous studies [2] the proliferation im-
pact of such fluctuations on the basic kinetic character-
istics of semiconductor quantum wire.

2. THEORETICAL MODEL

In [4] the model of semiconductor quantum wires
with cross sizes, limited by thickness d (in the direction
of coordinate axis z) by one-dimensional a potential pit
V(z) with infinitely high walls and for the width
(towards y) parabolic potential pgy2 (8>0) are
considered. The constant magnetic field H is directed
along the wire (axis x); components of the vector
potential of magnetic field: Ax=Ay =0, A- = H,.

In the mean field theory (one-electron approxima-
tions) [5] Hamiltonian system has the form

2 2
H:—LAL+L[—ih£+EAZJ +V(2)+
2m, 2m, oz ¢ (eY)
+By* +U(x)),
¢ &
where AL:?+F, my =m . =m,=m i m: — effec-
x Yy

tive mass of the electron along appropriate directions, e
- the absolute value of the electron charge,

0,-d/2<z<d/2,
V(z) = 2
w,z<-d/2,z>d/2,
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U(Il) = a[é(rl) _§Q(Il)] (3)
— potential energy of an electron in a random field,
caused by fluctuations in the thickness of the
wire,a =0E,/ 6d , Ec — the bottom of the conduction

band, & ,(r ) —a random functions that determine the

amplitude of fluctuations on different surfaces of the
wire perpendicular to the axis z. Interaction (3) of car-
riers with a random field is considered a disturbance
which causes the quantum transitions in the transla-
tional movement along the wire (in the direction of the
axis x). We confined by contribution of lower quantum
size energy levels of the electron cross motions. In ap-
proximation of account of electron states with a certain
parity in the z-axis wave function of unperturbed prob-
lem is

y 2 . >
Vi, (r) = W exp[zkxx - Zyszcos(Z 2), (4)
0 0

where L — wire length (L >> d),

-1/4
2H2
y, = h''? |:2m(ﬂ+ Zem = H . (5)

The energy of an electron in a state (4):

1/2

W2 r'h? 1 e?H?

Ek)= x4+ +h|—| B+ . 6
(k.) 2m  2md* {2m ('B 2m, c* H ©

3. THE RELAXATION TIME

The inverse relaxation time of the electron along
the wire length at the scattering of fluctuation field (3)

has the form
1 2z , 2 ke,
7, (k,) :7§<<‘<kx >>[1_k] NG

xS E(k,)~E(k}) ]

Ulk)
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where double brackets <<>> determine averaging over

the random field. Fluctuations on different surfaces of
wire are considered independent and on one surface -
Gauss fluctuations:

2
(sl -aeten] 222,
((e@)))=0,ij=12.

After calculating (7) with (3) and (8) we find a gen-
eral expression for the relaxation time [2]

1 :azmﬁi (AiAi)Z
nk) W] A

4. STATIC CONDUCTIVITY

exp(—QA?kf) .09

For electronic conductivity from the Kkinetic
Boltzmann equation in the relaxation time
approximation, we get next:

on%e® = of, ), s
== i_a*,g 27, (k) dk, . (10

where f; = {exp[(gf,u)/kBT]+1}'1 — distribution func-

tion of the Fermi-Dirac, g:h2k3/2m, 4 — chemical

potential, measured from the quantum-dimensional

level of movement of electrons across the wire,
2y fo(k,) = N — the total number of electrons in a wire.
I,

In [2], taking into account the general expression
for the relaxation time (9), a bit bulky final expressions
for conductivity on, found from (10) were obtained and
analyzed for arbitrary values of A;, A;, magnetic field
H and temperature 7.

Dependencies of on on longitudinal magnetic field H
are associated with compression of wave function of
electrons across the wire (along the axis y) and are de-

. -1/2
termined by factor [yg (H)+ Aﬂ (See. (5)). At
yg (H) >> Ai2 and extremely strong magnetic field

esz/ Zch2 >> 3, this leads to the appearance in on
the factor H-1/2.

For simplicity in (9) the case H=0 A1=A2=A was
considered. Then for relaxation time z(¢e) of an electron
with energy ¢, we have:

7,(e) = Be"* exp(ye) , (11)
where
B=#/[ a*(zm)"*(4, + A) ], 12)
2
4= (A;A) - 4m2/\2 _ (13)
\/yg +A2 h

According to (10) o conductivity can be written in
the form [3]:
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o, =e’K,, (14)

n

23/2 © o
m g T, (€)£—£}1/2d€ . (15)

For nondegenerate case of semiconductor wire in-
cluding (11) — (13) we obtain:

where

K, =

B o2h%e’n (kBT)l/2
" aa®m®? (- ykpT)?

1

(Al +A2)_ ) (16)

where n=N/L — the number of electrons per unit
length. Equation (16) fair when 1- BT >0 and
h?(1—ykpT)n* | 2mk,TI* >>1, where [ — is the lattice
constant along the axis of the wire. The first condition
associated with that the relaxation time ((9), (11) — (13)
inreases exponentially with the energy of the electron,
and Maxwell distribution decreases exponentially.
Therefore, for the efficiency of scattering by Gauss fluc-
tuations is significantly that the de Broglie "heat"
wavelength of the charge carrier exceeded the value of
the correlation radius A.

The second condition is associated with a choice of
infinite upper limit of the integral (10), (15) and is usu-
ally performed. In the case of low temperatures and
ykBT << 1 the electron mobility along the axis of the

wire is unoc(kBT)l/2 which for the temperature de-

pendence resembles a dipole scattering [4] for three-
dimensional semiconductor materials.

For degenerate case and kT << u conductivity
along the axis of wire including the general expression
for the relaxation time (9) is

4e*h s
almal2r 17)
-1
X[Al exp(-2k2A2) + A, exp@ZkiA%)J ,

o, =~

where kf, =(@2m/h*)u. Temperature dependence o is

determined of chemical potential of one-dimensional
electron gas

22 (kT Y
= 1+=—| =B s 18
H = Hy 12\ 4 (18)
h? 2
= . 19
Ho Sm(”n) (19)

According to calculations for wires A3B5 materials
(eg, GaAs [2]) and A4B6 mechanism of relaxation of
charge carriers at random roughness of boundaries is
essential at low temperatures kT < h%/4mA2 for clean
enough samples and nanometer thicknesses.

The effects of localization type [5], which arising in
quasi-one-dimensional systems in heavy clutter (or at
very high concentrations of impurities) which can not
be explained within the theory of weak scattering in
our work are not considered. So we obtained tempera-
ture dependence of conductivity significantly different
from the consequences of the theory of localization [5].
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5. THERMOPOWER

According to kinetic Boltzmann equation thermoe-
lectric power Sxx can be written [3, 6] in view

S, - -QLTK;KI : (20)

where Ko is determined by formula (15),

Thm 0

Klzﬁ;zrn(e)( foJ( u)ede. (@21)

After the reshuffle in the (20) formulas (15) and (21)
with (11) we obtain [4] at y&8T < 1:

F,
S = - at, 22)
eT F17
where
27—?52( afo)ey‘“d Ojo ( afOJe”ds (23)
0 0

For  nondegenerate  statistics of  carriers
o :exp[(s—,u)/kBT} from (22) and (23) we find at

1- kBT >0
S, =_kB[2_”J, (24)

where the chemical potential of one-dimensional elec-

tron gas
1/2
=k, TIn|h il . 25
H=Rp n{ n(kaBTj } (25)

Due to summand 2(1 — y&sT) — 1 there is the possi-
bility of increasing thermoelectric power for one-
dimensional quantum wire.

For the case of highly degenerate one-dimensional
electron gas at kBT << g, using the standard for this
limiting case approach [5], we get

kT
Sxx—gekB[ P ](1+7y) (26)

where the chemical potential @(7T) determined by ques-
tion (18), (19). Due to summand yu in (26) we have a
theoretical possibility to increase the value of thermoe-
lectric power for considered one-dimensional case.

6. THERMOPOWER

According to [3, 6] coefficient of thermal conductivi-
ty is determined by the formula:

2
= 1(K2 —K1], @7
T K,

where
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Kz=1,2([rn(e)( aéj( —u) e . (28)

Thm

For nondegenerate system of charge carriers for
1 — kBT > 0 we have:

on’n  (kyT)"”
7ra2m3/2 (1 _ }/kBT)z

K, - (A +4)", (29

K, -| 22 K,,
17 Fiiﬂ (30)

1y
F»,and F1, we find from (23).

9n?n (kBT)I/Z

Ky =—53 7%
mm= a” (1-ykyT
, (1=7ksT) (31)
y G(kBT) - duk,T 9 (A1+A2)71
(1 - ;/kBT) (1 - 7kBT)

According to formulas (29) — (31) and (27) we obtain
the final result for the thermal conductivity of semi-
conductor quantum wire caused by fluctuations in the
thickness:

1 912 (kBT)1/2
w =—
") retm? (lfkaT)Z

R Y L3
(1-ykgTY (1-rkpT) 4

X

(32)

(4, +A2)_1},

where u — chemical potential one-dimensional electron
gas (see. (25)).
Using (16) and (32), we find the relation

2
I :2[123] X
o, e
1, (33)
y 1_ﬂ1+3(#]
(1—7kyT) kT (1-7kyT) 8\ kT

which shows that Wiedemann-Franz law holds only at
kBT << 1 and u << ksT.
For case of strongly degenerate electron gas at

kBT << prand A1 = Az = A we have:
992 1 o
KO :m(Al +A2) e”‘,o-n :eZKO, (34)
# ()
K, = 5 P (1 + ]/y)KO , (35)

3212 3,,( b T ~
= ﬂizfn) (A+dy) e, 36

From (27) and (34) — (36) obtain

K, =
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7. SUMMARY

22/371_1/2

sy =2 HM T (A 4 A) e x
3T ma Based on the expressions of the relaxation time of

28 kT 2 ) (37) charge carriers, conductivity, thermoelectric power and

X1 _3[j @+p0” | thermal conductivity of quantum semiconductor wire it
# is shown that the mechanism of relaxation is caused by
a random field Gauss fluctuations in the thickness of

Relation wire may be effective for sufficiently thin and clean

9 5 9 wire from the material A3B5 and A4B6 in thicknesses

7 _”(kBj 1_”[]33Tj (1+7ﬂ)2 (39) of nanometric size. The possibility of increasing some

oT 3\ e 3 ’ kinetic parameters of quasi-one-dimensional systems is
revealed.

characterizes the accuracy with which performed
Wiedemann-Franz law to degenerate semiconductor
quantum wire.

Kuneruueckue adpdpextsi, 00ycioBiIeHHbIE QUIYKTYaUUAMEA TOJIIIUHBI
KBAHTOBOM MOJIyIIPOBOJTHUKOBOM MPOBOJIOKU

M.A. Pysunckwuit, .M. Pysunckuii, O.b. Koctior

IpurkapnamcKuli HQUUOHAILHBLIL YHUBepcumem umenu Bacunus Cmegparuka,
ya. Hlesuenko, 57, 76000 Heano-Dpankosck, Yrpaurna

TeopeTuuecku oOIpesiesIeHbl 3JIEKTPOIIPOBOHOCTD, TEPMOJ/IC U TEILJIOIPOBOAHOCTh KBAHTOBOM IIOJIYIIPO-
BOJHUKOBOM IIPOBOJIOKY BCJIEJICTBUE I'ayCCOBCHKUX (PIIYKTYAIIMil TOJIIIUHEI IIPOBOJIOKU. Pe3ysbTarThl mpuse-
JIeHBI JJIsI CJIyYaeB HEBBIPOKIEHHOM ¥ BBIPOKIEHHOM CTATHUCTUKU HOCHUTeJed 3apsna. PaccmMorpen mexa-
HU3M peJIaKCAITUN HOCHUTeJIeH 3apsa SIBJISIETCS CYIIECTBEHHBIM IS JOCTATOYHO TOHKOTO ¥ YMCTOTO IIPOBO-
JIOKM u3 moJynpoBomuukoB Tuna A3B5 m A4B6 mpu Hmskmx Temmeparypax. OmpejesieHbl KBAHTOBO-
pasmepHbIe 3pdeKThI, XapaKTePHBIe JJIsI KBA3UOJHOMEPHBIX CHCTEM.

Kimouessie cioBa: KeanToBas mosynmpoBOIHMKOBAS IIPOBOJIOKA, l'ayccoBCkue (IIyKTYaI[uy TOJIIIHAHEL,
OnekrporpoBogaocTs, TepmodIC, TemmonposogHOCTS.

Kineruuni edpextr, 00ymoBieni piryKkTyaniasMmu TOBUIHHUA
KBAHTOBOI'O HAIIiBIIPOBiJHUKOBOIO JPOTY

M.A. Pysiuckwuit, B.M. Pysiuckuii, O.5. Koctior

Ipurkapnamcvruil HaylonabHUL yHieepcumem imerl Bacunsa Cmeganuka,
eya. Illesuenka, 57, 76018 Isano-Oparkiscok, Yrpaina

TeopeTyHO BU3HAYEHO €JIEKTPOIPOBIIHICT, TEPMOEPC 1 TEILIONPOBIAHICTE KBAHTOBOIO HAINBIIPOBIIHMU-
KOBOTO JIPOTY BHACJIJIOK TayCIBCHbKUX (DJIYKTYAI[lil TOBITUHY JPOTY. Pe3dyibraTy HaBeJeHO JJIs BUMAIKIB He-
BUPOJFKEHOI 1 BHPOYKEHOT CTATUCTUKHA HOCIIB 3apsiily. PO3rJISHYTHM MeXaHI3M peJiakcallii HOCIIB 3apsty €
CYTTEBUM JUJISI TOCTATHBO TOHKOT'O 1 YKUCTOTO JPOTY 3 HammiBHpoBLAHUKIB Ty A3Bs 1 Ay4Bs mpy HU3BKKX TEM-
mepaTtypax. BusHaueHo KBaHTOBO-PO3MIpHI epeKTH, XapaKTEePHI IS KBA310JHOBUMIPHUX CHCTEM.

Knrouori ciosa: Keaunrosuit HamiBupoBiguukoBuii apirt, ['ayccosi duryrryari Towau, Enexrponposin-
Hictb, TepmoEPC, TemompoBigHicTs.
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