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In this study, three-dimensional modified time-independent Schrédinger equation of modified Kratzer
potential was solved using Bopp’s shift method instead to apply star product, in the framework of both
noncommutativity three dimensional real space and phase (NC: 3D-RSP). We have obtained the explicit
energy eigenvalues for ground and first excited states for interactions in one-electron atoms. Furthermore,

the obtained corrections of energies are depended on infinitesimal parameters (@,;() and (5,;) which

are induced by position-position and momentum-momentum noncommutativity, respectively, in addition
to the discreet atomic quantum numbers (j =7+ 1/2, s = 1/2, [ and m). We have also shown that, the usual
states in ordinary three dimensional spaces for ordinary Kratzer potential are canceled and have been re-
placed by new degenerated 2(2/ + 1) sub-states in the extended new quantum mechanics.
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1. INTRODUCTION

During the last years the energy spectrum of atoms
have been studied by several analytic methods, for exam-
ple: Laplace integral transform, factorization method,
proper quantization rule, exact quantization rule, Nikifo-
rov—Uvarov method, supersymmetry quantum mechanics
for solving the non-relativistic Schrodinger with central
and non-central potentials for describing atoms, nuclei, etc
[1-9]. In particular the Kratzer potential (known also by
inverse power potential) has well accounted for some ob-
served phenomena in atomic, molecular and chemical
physics, in addition to study the Shannon entropy [10],
this potential studied in two dimensional spaces by the
author Shi-Hai Dong et al. [11] and by Siileyman Ozcelik
and Mehmet Simsek in three dimensional space [12]. The
main goal to this study is to extended our previously study
in ref. [13] to the noncommutative three dimensional
space-phase to possibility to obtain a new another applica-
tions to this potential, we have using the physical terms
contained in my previous relevant works, in the context of
two-dimensional physical potentials (see, for example,
[14, 15]) or in the context of three-dimensional physical
potentials (see, for example, [16, 17]. It is important to
notice that the author H. Snyder was firstly who introduce
this idea (see, for example, [27]). The study of Kratzer
potential has now become a very interest field due to their
applications in different fields [10], the bound state solu-
tions of the non-relativistic Schrodinger equation, with the
modified Kratzer potential has not been obtained yet. This
is the priority for this work. The modified Kratzer poten-
tial used in this framework takes the form:
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where V(r) denote to the ordinary Kratzer potential
(will be determine in the next section). The crucial pur-
pose of this paper is to determine the energy levels of
above potential in (NC: 3D-RSP) symmetries using the
generalization Bopp’s shift method which depend on
the concepts that we present now and in the third sec-
tion to discover the new symmetries and a possibility to
obtain another applications to this potential in differ-
ent fields. Furthermore, much considerable effort has
been expanded on the solutions of Schrédinger, Dirac
and Klein-Gordon equations to noncommutative quan-
tum mechanics, to search an a profound interpretation
in microscopic scales [16 — 18], which based to new
noncommutative canonical commutations relations
(NNCCRs) in both Schrodinger and Heisenberg pic-
tures ((SP) and (HP)), respectively, as follows:

[x,.p; ] =5, —{xi,pj}{aei(t),ﬁj(t)}:iaﬁ,

[xi’xj]:()_{’eij’%j}{fi (1).%; (t)}:igij &)
[pi’ij =0- {f’i tﬁj:| = {f’i (t)tf’j (t)} =i0;

the new operators (&i (t), D; (t)) in (HP) are related to
the corresponding new operators (&i, f)i) in (SP) from

the following projections relations:

x; (t) = expGH (t -ty ))x; exp(—iH (t —t,)) —
%;(t) = exp(iH,,_,, (t—t)) * £, * exp(=iH,,_,, (t—t,))
p;(t) =exp(iH (¢t 1, ))p; exp(—iH (t —t,)) >

P (t)=expGH,_;, (t—t, ) * p, * exp(=iH, _,, (t—t,))

3
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here H and Hnc-rp denote to the ordinary and new
quantum Hamiltonian operators in the quantum me-
chanics and it’s extension. The very small two parame-
ters 0“" and 6-"" (compared to the energy) are ele-
ments of two antisymmetric real matrixes and (¥) de-
note to the new star product, which is generalized be-

tween two arbitrary functions
f(x,p) — f( p)and g(x,p) —> &(%,p) to

( %,p)&(%,p)=(f*g)(x,p) instead of the usual prod-
uct (fg)(x,p) in ordinary three dimensional spaces
[13 —21]:

(f*g)(x,p)= eXp(i 0" 0%0; +éé‘”afl ") (fg)(x.p)

=(fg- 9’”6’“1’8 g—fﬂ ‘orf ok g)(x,p) +

(=t =)

+O(62,52)

where f (%,p) and g(%,p) are the new function in
(NC: 3D-RSP), the two
(&3f (x.p),0%f (x.p))

the[éf(x,p) ’ of (x,p)
ox* op”

covariant derivatives

denotes to

J, respectively while the two fol-

lowing terms —é 0 oL f (x,p)2;g(x,p) and

_ééﬂvaﬁf (x,p)2g(x,p) are induced by (space-space)

and (phase-phase) noncommutativity properties, re-
spectively. A Bopp’s shift method can be used, instead
of solving any quantum systems by using directly star
product procedure [18 — 21]:

[£,%;|=i6;and [ p,p;|=i0y (5)
The new generalized positions and momentum co-

ordinates (32,5/,5) and (ﬁx,ﬁy,ﬁz)in (NC: 3D-RSP) are

depended with corresponding usual generalized posi-
tions and momentum coordinates (x, v, z)

and ( Dy»>Pys pz) in ordinary quantum mechanics by the

following, respectively [16, 17]:

- G5 65
X=x—-—2p —-23p_,
g Py P
0. 0. [
. .21 23
X, =X ij3 y=y o Px "9 b, (6)
0, 0,
S 1 32
Z=z-2+p ——24
g Px7 g Py
and
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A Gz O3
Dy =Py 9 9 7
A él] A 521 523
e e L R
6 0
b o= p ——Bly_ 32
P, =D, 9 9 Yy

which allow us to getting the two operators (#* and p?)
in (NC-3D: RSP), respectively [16, 17]:

P2 =r’-LO andf)2 = p2 + I:B (©)]

where the two couplings LO® and L6 are given by, re-

spectlvely( =6/ 2)

LO=L,0,,+L Oy +L0O,, and L0=L 0w2+L, 0 +L 0

where Ly, Ly and L. are the three components of angu-

lar momentum operator L . The organization scheme of
the study is given as follows: In next section, we briefly
review the Schrodinger equation with Kratzer potential
on based to ref. [10]. The Section 3, devoted to studying
the three deformed Schrodinger equation by applying
both Bopp's shift method to the Kratzer potential. In
the fourth section and by applying standard perturba-
tion theory we find the quantum spectrum of the excit-
ed states in (NC-3D: RSP) for spin-orbital interaction
corresponding the ground states and first excited
states. In the next section, we derive the magnetic
spectrum for studied potential. In the sixth section, we
resume the global spectrum and corresponding non-
commutative Hamiltonian for Kratzer potential. Con-
clusions are drawn in Sect 6.

2. REVIEW OF THE EIGNENFUNCTIONS AND
THE ENERGY EIGENVALUES FOR
KRATZER POTENTIAL IN ORDINARY
THREE DIMENSIONAL SPACES

Let’s present a brief review of time independent
Schrodinger equation for a fermionic particle like elec-
tron of rest mass x and its energy E moving in Kratzer
potential [10]:

V(r):—+%+—3+i4 (10)

where a, b, ¢ and d are constant coefficients. If we in-
sert this potential into the Schrodinger equation:

(_A+a+g+g+‘ﬁjxp(;):m(?) (11)
r

In spherical coordinates, the complete wave func-

tlon‘{’nlﬂ( ):%(r)Yl’y (€,¢), thus the radial func-

tion ®,,(r) satisfied the following equation, in three

dimensional spaces space [10]:

(dﬁ _A_B_C_D_Ui+1

dr? rorr oot r?

Jq)n,z(r)— 0 (12)
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Here (¢,A,B,C,D) =2u(E,a,b,c,d) , the complete or-
thonormalization eignenfunctions and the energy ei-
genvalues respectively in three dimensional spaces for
Kratzer potential for ground state and first excited
state, respectively [10]:

¥, (r,0,4) =Ny’ exp [Z + ar} Y, (6.4)
r
__ 4D
2(24D - C)2

and

(13)
EO

¥, (r,0,6) = Nyy (r—al’ ) exp(—~=er —\D /7)Y,.,,(0,9),

A
where a=—-¢, y=—D, p=-——"2—,
7 B PN
I'=-1/2+ (l+1/2)2+Band 2= (2dD+C) /24D -1,

while N, and N, are two normalizations constants.

3. THREE DIMENSIONAL NONCOMMUTATIVE
REAL SPACE-PHASE FOR KRATZER PO-
TENTIAL

In this section, we shall study the Kratzer potential
in (NC: 3D-RSP), to perform this task the physical form
of Schrédinger equation should be written as [16, 17]:

Ordinary two dimensional Hamiltonian operators

A

H

o ( pi,xi) will be replaced by new two Hamiltonian

operators ﬁncfkp (Pis%;),
— ordinary complex wave function ¥ (;) will be replac-

ing by new complex wave function ¥ (7E ) ,

— ordinary energy E will be replaced by new values Enc- ip,
and the last step corresponds to replace the ordinary
old product by new star product (¥*), which allow us to
constructing the modified Schrodinger equations in
both (NC-3D: RSP) as:

A

H, , (52)* ¥ (7) =, ¥(7) (15)

Now, we apply the Bopp’s shift method on the above
equation to obtain the reduced Schrédinger equation:

H(i)l’fcl)‘//(?) = Enc—kpl//(i:) (16)

Where the new operator of Hamiltonian H(p;,%;)

can be expressed as:

0. 0,
S P A j
H, . (b.%)=H|% =x —épj and p, =p, 5 %
After straightforward calculations, we can obtain the
five important terms, which will be use to determine
the modified Kratzer potential in (NC: 3D- RSP):
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2dLO 3¢ ~=

drt =dr™ t— P S =cer® — Lo
r 2r
bt =br?+ L6 =+ 0 (19
r 2r
2 _p® L8
2u 2u 2u

From above relations, one can write the deformed
operator V| (f*) for Kratzer potential and the noncom-
i)Z
mutative kinetic term o respectively:
7]

. a b ¢ d
Vkp(’”)==;+72 PR .
¥ _p L8
2u 2u 2pu

which allow us to obtaining the global potential opera-

tor H,,, (7) for Kratzer potential in (NC: 3D-RSP) as:
Aabcd2d3cba——lq_6
H M=t —d—+| 4 —+ =+ — |LO+—.
nc'kp() rorr ot [rG or® ot 2r3j 2

It’s clearly, that the four first terms are given the
ordinary Kratzer potential in three dimensional space,
while the rest terms are proportional’s with two infini-
tesimals parameters (® and@ ) and then gives the

(r) in (NC: 3D-RSP) as:

terms of perturbations H

per-kp
2d 3¢ b a \-= I:é
H r)=| —4—+—+—F+— |[LO+—. (21
per—kp() (re ord 4 2r3j 2u @1

4. THE EXACT SPIN-ORBITAL SPECTRUM
MODIFICATIONS FOR KRATZER POTEN-
TIAL IN BOTH (NC:3D- RSP):

Again, the perturbative term H (r) can be re-

per-kp
written to the equivalent physical form:

Hper_ip(r):2(®£2d+ 3¢ +b+"3j+29#j§i (22)

82t ot 2
Furthermore, the above perturbative terms
(r) can be rewritten to the following new form:

H

per-kp

2d 3¢ b a 0 V(=2 =2 =2
H =0 =+—+—+—|+—||J -L -S
per’kp(r) { [rﬁ or® 2r3j 2/1)( )

We just replace SL by the expres-

—2 =2 =2
sion%(J -L -S ), in quantum mechanics, this op-

erator traduces the coupling between spin and orbital
momentum. After profound straightforward calcula-
tion, one can show that, the radial function ®,,(r)

satisfied the following two equations, in (NC: 3D-RSP),
respectively:
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‘L, A B C D
dr® A
B @[% 3c_ % %}r 0 (:]2_22 §2)_l(121)
r’ o2t 2r°) 2my, r

The set (HSO’ikp(r),JZ, 12,

complete of conserved physics quantities and the eigen-
values of the spin orbital coupling operator are

k, = ;{(Z + éj I+ % +D)+I(+1)- i} corresponding:

S*and oJ,) forms a

j=1+1/2 (spin up) and j=[-1/2 (spin down), respec-
tively, then, one can form a diagonal (3 x 3) matrix,
with non null elements are (Hs-ip)i1, Hse—kp)22 and
(Hsc-kp)33 = 0 for Kratzer potential in (NC: 3D-RSP) as:

2 +00 . 27/
E =|IN, [k [r*Z%ex [—+2ar ®[—+ ot —
u-0kp ‘ 0.1 ‘ + £ p . 6 o A g8

Eypp =|Noo[ & | r?o2exp| 2L 1 20r || ©f 244 3¢
d_Okp—‘ 0’1,‘ 7({7’ exp| — +2ar = +—

A direct simplification gives:

2 4 7]
Eu-Okp:‘NO,l" k, ®§T0i+ﬂT05

_ (28)
2 4 o
Eqop = ‘No,z" k10X Ty +——Tp;
i=1 2/,!
where, the five terms 7] (i = 1,75) are given by:
T, =2d f pl27-5)1 exp (2—7 + 2arjdr,
r
_3c¢ j p(20-4) exp(Z—y + Zarj dr,
r
Tos =b | pl2A-3) exp[ﬂ + 2ar], (29)
0 r
+00
T, = & | r# I exp (& + 2arjdr,
2 0 r
+o0
Ty = P21 exp (% + 2ar)dr
0 r

After straightforward calculations, we can obtain
the explicitly results:

24-5

Ty, :2[§j z K2ﬂ—5(4 705)>T02 :2[§TK2/?—4 (4 70‘)

B-1
j Koo (172)

25-3

T, =2(§j Ky s (4re). T, :2(

ISIEN

which allow us to obtaining the exact modifications of
ground states Ewop and Edorp produced by spin-orbital
effect:

J. NANO- ELECTRON. PHYS. 9, 03031 (2017)
2d 3¢ b a 0
(HSO kp) =k, [ -+ 5+—4+—3j+
n ro2r° rt 2r 2m,,
o) l(fr) =0
=1+% = spin -up
(Hsofip) =k @(%-ﬁ- 30_+%+%)+ 0
22 r’o2r’ rt 2r’) 2m,
4.1 The Exact Spin-orbital Spectrum Modifi-
cations for Kratzer Potential in Both (NC: 3D-
RSP) for Ground States

(25)

ifj=1-1

5 = spin -down

In this sub section, we are going to study the modi-
fications to the energy levels for ground states Eu.oxp
and Eg.orp for spin up and spin down, respectively, at
first order of two parameters @ and @ obtained by ap-
plying the standard perturbation theory:

2d, 3¢, b, j+0jr2dr (26)
2u
2d 3¢ b a o),
—+— |[+—|rdr 27
2r’ ot 2r3j 2;1] @7)

2 o
Eu-Okp = ‘NO,I" k {GTILC 0skp mi TncOpkp} (3 1)
0

2 7]
Ed-Okp = ‘NO,I" k {®Tnc Oskp ; TncOpkp} (32)
0

We have introduced new parameters Tnc-oskp and
Tne - opkp for the sake of simplicity:

265

Tmmzz[gjz Kypa( ya)+2(§fxz,,,4 (1J7)+
7t p-1 (33)
2] Kyp(a@)+ 2 L] Koy (a)
Tnc—Opkp E2[£j K2ﬁ+1 (4 }/a) (34)

The first term The-skp produced with the noncom-
mutative geometry of space, while the term Thc- opip
produced from the noncommutativity of phases.

It is important to notice that, the above calculations
are obtained by applying the following special integral
[22]:

il oo e o

(21 and /12)

and K, the modified function of second

and

Where

ENEMAIC

kind and orderv .

are positive numbers

4.2 The Exact Spin-orbital Spectrum Modifi-
cations for Kratzer Potential in Both (NC: 3D-
RSP) for First Excited States
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Now, we turn to the modifications to the energy lev-
els for first excited states E i and Eyx for spin up

and spin down, respectively, at first order of two pa-

J. NANO- ELECTRON. PHYS. 9, 03031 (2017)

rameters ©® and @, which obtained by applying the
standard perturbation theory:

+o0 9 6 2 2 3
B, = ‘wa k| (r2/1+4 —2(1117‘2“3 +(a11) r21+2)exp(2—y+2arj J" r’or r dr 36)
0 r +i
2u
and
(% B¢ b, a
9 6 2 5 4 2 3
Eqp= ‘Nu‘ k_ f(uH -2a,7 2“3+(a11) r“*z)exp(Z—erZarj g o " \ar 37
r
+7
2u

A direct simplification gives:

Eypp = N[ k{@ZLh ZTH} (39)

Eyyp =Nyl k{@ZLh ZTM} (39)

my i=13

where, the 15- terms L, (i = I,T5) are given by:

L,=2d J' 2 xp(2 +2arjdr

Lm:%f 2= lxp(27+2arjdr
r

0

L,=b for(Z/M)_lxp (2—7 + Zarjdr,
r

’ (40)
L, :g | p(24+2) xp[2 +2ar]dr
0
L =-4da, j (2472 xp[2—y+2arjdr,
r
L =—6ajc j [ 2y [&Jﬂar] dr
0 r
L, =-2ab [ r**'xp [&+2ar] dr,
0 r
1 40
L= ~ad | r(21+1)71xp(2—7+2ar)dr
2 0 r
+00
L,=2d(a ’ r(ufa)flxp &+2ar dr,
19 1
0 r
2 (41)

L= | P22 (% + 2ar] dr
2 0 r

L, =b (all )2 T r(u*l)*lxp [2—7/ + 2ar] dr,
r

0

a(all)z e (27
Ly, = 3 (j)r B xp(7+2arjdr

L, = jzor(Z/Hf’)f1 exp (Z—G + 2br] dr,
r
L, =—2a f P07 exp [z—a + 2brj dr (42)
r

L,=a (a11 )22 jwr(z“'g)'l exp [2—(1 + 2brjdr
r

0

Now we apply the special integral which represents
by eq. (35) to obtain the following results:

2/-1

L11:4d(§J2 K, (4ra),

3c(y ¢
le:?(;j K24(4 70‘)’

L13:b£§j 2 K2/1+1(4 7“)’

(43)
aly A+l
14 _5( J Ky (4 70!)
15 = —4da) [gj K, 2 4 ;/a)
—_60’1 [éj sz 1 70‘)
Ly = _zallb(ng Kyia (4\/}2)7
L 221
Ly = _%(gj Ky (4\%)
Ly =2d (o} ) [gj Ky (1),
(44)

241

LHOZSc( 1)2((9 Ky (147),
Ly, =b(a) (éj Ky (440a),

()

9 (ng Ky, (4 7/0‘)

L112 =

03031-5
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2451

Ly = [gj 2 K5 (4 70!)7

A+2
L, = _20‘11 (gj Ky (4\/7?), (45)

Lyys = (o)) [gj K, (4\rer)

which allow us to obtaining the exact modifications
E,;, and E; , of degenerated first excited states

produced for spin-orbital effect:

0
ulkp ‘Nll‘ k {®L

ne— 1skp 9
M

anlpkp} (46)

7]
d 1kp — ‘Nll ‘ k {®an 1skp 2anlpkp} (47)
u
Where the two obtained factors 7}, ,,, and L,
are given by:
nc 1skp — ZLI and an -1pkp = z le (48)

5. THE EXACT MAGNETIC SPECTRUM MODI-
FICATIONS FOR KRATZER POTENTIAL IN
(NC:3D- RSP):

5.1 The Exact Magnetic Spectrum Modifica-
tions for Kratzer Potential in (NC: 3D RSP) for
Fundamental States

We now consider physically meaningful phenomena,
it’s possible to found another automatically symmetry
for the production of the perturbative terms of Kratzer
potential related to the influence of an external uni-
form magnetic field, it’s sufficient to apply the following

J. NANO- ELECTRON. PHYS. 9, 03031 (2017)

2d 3¢ b a P
Hmkp:[;([’ﬁ+2r5+r4+2r3]+2#](BJ—SB) (50)

Here (—gﬁ) denote to the ordinary Hamiltonian of

Zeeman Effect. To obtain the exact noncommutative

magnetic modifications of energy (E,,.. oxp s Emag 11p) T
® and 0 in the

Egs.(31) and (46) by the following parameters: m, y

Kratzer potential, we replace: %, ,

and o , respectively, to obtains:

2 o
Emag-Okp = ‘NOZ" Bm {ZTILC Osl’p Z,U TncOpkp} (5 1)

o
Emag»lkp ‘Nll ‘ Bm {Zan lskp 2,[1 anlpkp} (52)

and E

mag-1kp

Where E

magOkp are the exact magnetic
modifications of spectrum corresponding the funda-
mental states and first excited states and we
have -1 < m <+, which allow us to fixing (2/+1) values

for discreet number n .

5.2 The Exact Modified of the Lowest Excita-
tions Spectrum for Kratzer Potential in (NC:3D-
RSP)

Let us resume the eigenenergies of the modified
Schrodinger equation obtained in this paper, the total
modified energies (E ) and (E

E.. a15,) of a particle fermionic with spin up and spin

ne u0-ip ~ nc do-ip ne ul-ip ~

down are determined corresponding ground and first
excited states, respectively, for Kratzer potential in
(NC: 3D-RSP), on based to original results presented on
the Egs. (32), (33), (51) and (52):

replacements: 9 —
A*D 2 o
~ - = Enc wkp — 7, — .2 + ‘NO,Z" k {®Tnc Oskp 9 Tnc—()pkp
©—>7B ((2d 3¢ b a\-= L6 2(2VD-C) H
= 2|ttt |Le+— |
0 > B r’2r° rt 2r 2u ) >
— (49) +‘NOZ" Bm XTnc—Oskp +-— Tnc—Opkp
2d 3¢ b a 24
Xl —st-s+t7+t-= +Z |BL
oot 2K ) 2u B
A’D 2 o
— o . . . 5 Enc dokp — , — .2 + ‘NO,I" k— {G)TncOskp +—T,
Here y and o are infinitesimal real proportional’s 2(2@ —C) 2u
constants, and we choose the magnetic field ‘B=BFk , , p
which allow us to introduce the modified new magnetic +| Ny | Bm {;{Tm,_()skp +2Tnc_0pkp}
Hamiltonian H,, ;, in (NC: 3D-RSP) as: H
and
4 0 o
ncul-kp — ‘Nll ‘ k {GLM 1skp a anlpkp} ‘Nll ‘ Bm {Zan 1skp E anlpkp} (55)
4 6 o
ne dikp — ‘Nll ‘ k {®an 1skp ﬂ anlpkp} ‘Nll ‘ Bm {anc 1skp g anlpkp} (56)

It is evident to consider the quantum number m
can be takes (2] + 1) values and we have also two val-

ues for j =1+ 1/2, thus every state in usually three di-
mensional space of energy for Kratzer potential will be
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2(21 + 1) sub-states in (NC: 3D-RSP). It’s clearly, that

the obtained eigenvalues of energies are real’s and then

the noncommutative diagonal Hamiltonian H,, ,, 1is

Hermitian, furthermore it’s possible to writing the
A a b

), =—— =+

d ré o ort ot

——+—+
2u r r

[(201 3¢ b
+ ¥ +—+—+

(an—kp )22 3

& o2r® ot

— =+ =+ +£4 (59)
r

)_Aabi
2u r r* p?

(H,

ne—kp 33

It is possible physically to gives interpretations to
the above obtained results as Hamiltonian operator
describing atom which has two permanent dipoles: the
first is electric dipole moment and the second is mag-
netic moment in external stationary electromagnetic
field as it’s shown in our work [13].

6. CONCLUSION

In this work, we reviewed the exact solutions of the
Schrodinger equation with the Kratzer potential and
the formalism of Bopp’s shift method. Then, we have
solved the Schrodinger equation for modified Kratzer
potential in (NC: 3D-RSP), we have obtained the exact
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