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As foremost sensors of ambient conditions, temperature sensors are regarded as the most vital ones in 

wide-ranging applications touching the societal life. Amongst the temperature sensors, NTC thermistors 

have captured their unique place due to the favorable metrics such as highest sensitivity, low cost, and 

ease of deployment. Transition metal oxides especially the NixMnxOx are widely used for thermistor syn-

thesis in spite of the main difficulty of predicting the final sensor characteristics before the actual synthe-

sis. In view of the above, we report an Artificial Neural Network (ANN) technique to accomplish the syn-

thesis with predictable results saving valuable resources. In the said  ANN modeling we use hyperbolic 

tangent sigmoid transfer function for input layer and linear transfer function for the output layer. Leven-

berg-Marquardt feed-forward algorithm trains the neural net. We measure the performance of the ANN 

model with regard to mean square error (MSE) and the correlation coefficient between expected output and 

output provided by the network. Moreover, we uniquely model the resistance-temperature (R-T) character-

istics of different thermistor samples using optimized ANN structure. To model such sort of behavior, we 

provide nickel content, room temperature resistance, and concentration of oxalic acid as an input data to 

the network and predict the nickel acetate and manganese acetate concentration. The accomplished ANN 

modeling evidences a lower number of hidden neuron architecture exhibiting optimum performance as re-

gards to prediction accuracy. The lower number of hidden neurons signifies a lesser amount of memory re-

quired for prediction of different chemical composition. Thus, we demonstrate exploitation of modeling, 

simulation and soft computational approaches for predicting the best suitable chemical composition and 

thus establish the synergy between the materials science and soft computing paradigm.  
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1. INTRODUCTION 
 

Among the principle physical parameters, the tem-

perature is the one gauged and controlled for the most 

part in industrial, domestic and all the part touching 

regular human life. There exist collections of tempera-

ture sensors which have progressed over various years 

of inventive work. One such by and largely used a tem-

perature sensor, solely known for its sensitivity is a 

thermistor. Thermistor essentially a world war II prod-

uct, conceived using the transition metal oxides, strik-

ingly caught the entire scope of domestics, communica-

tion, industrial and unified applications. Attributable 

to the most noteworthy sensitivity displayed by these 

cost effective sensors they turned into the most promi-

nent though a portion of the deficiencies, for example, 

higher batch to batch tolerance, narrow measurement 

range and sometimes infant mortality in case the man-

ufacturing quality assurance is not followed as per 

standard norms [1-3]. 

The NTC thermistor has the most noteworthy sensi-

tivity, small heat capacity, rapid response, miniature 

size, low cost and modestly high resistance at room 

temperature [2, 3]. Inferable from the cost sufficiency of 

thermistors which really starts from the key move met-

al oxides framing these sensors; various research 

groups, including our own particular, are trying hard to 

make these sensors agreeable and compatible with the 

state of art advanced instrumentation. Some of these 

achievements of our investigations include customiza-

tion of room temperature resistance for power optimi-

zation through a variety of chemical compositions and 

in this manner to keep away from the self-heating [1]. 

Our group has additionally reported temperature 

measurement utilizing the pulse width modulation 

wherein thermistor was put as a sensor. We have like-

wise addressed the linearization aspects of these sen-

sors utilizing a non-linear ADC as a part of catering to 

the disproportionate difference between dynamic range, 

resolution and measurement accuracy [4].  

The present investigation, however, focuses on us-

ing soft computing approach both concerning to mate-

rials synthesis as well as output characteristics to ad-

dress the limitations of thermistors such as lack of in-

terchangeability; poor linearity and precision; limited 

range; instability at high temperatures; hysteresis; and 

low resolution. In the present investigation, we effec-

tively exhibit the utilization of Artificial Neural Net-

work both for the synthesis of thermistors and addi-

tionally for the linearization of the Resistance Vs Tem-
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perature characteristics. 

Artificial Neural Network (ANN) is a bio-enlivened 

computing design which has numerous applications in 

the diversified fields, for example, natural science [5-6], 

materials science [7-8], electronics and communication 

engineering [9-10], control system [11], sensors [12] 

and much more. ANN is fundamentally the same as 

human brains and procedures the data as the human 

brain work. ANN is trained, validate and test as per 

the intended mathematical rules and once so trained no 

further programming is required [13]. The entire de-

sign of ANN is comprised of various ANN nodes. Every 

node comprises of input ports, output ports, weights or 

coefficients, summation block and activation function. 

In the event that all substances in the framework work 

appropriately, then any issue arising in the system can 

be tackled palatably. There are a good number of re-

search groups working on the adoption of ANN for var-

ious application [14-18]. 

In the backdrop of the universal exploration of ANN 

as regards to the materials science, depicted above, the 

present paper reports the prediction of nickel acetate 

and manganese acetate concentration utilizing ANN. 

We have additionally modeled the resistance-

temperature attributes of an atrial test utilizing im-

proved ANN design.  
 

2. ARTIFICIAL NEURAL NETWORK (ANN) 
 

ANN is very similar to the biological neural net-

works in which weights and activation function associ-

ated with the network plays an important role in learn-

ing [19-20]. The magnitude of the weights increases or 

decreases to learn the specific pattern of the dataset. A 

schematic depiction of ANN is shown in Fig. 1. Fig. 1 

(a) represents the typical ANN node, which consists of 

inputs (Xi), weights (Wi), a summation block (), bias 

(b), net input function (), activation function (S()), 

and output (Y). The dataset is provided through the 

inputs (Xi) section. The aim of the ANN is to model the 

dataset and this is accomplished by adjusting the 

weights of the network. The ANN adjusts their weights 

in such a way that the mean square error (MSE) be-

tween the target output and output produced will be 

minimum [9]. 

The activation function serves as a threshold utility 

when the net input is higher than the threshold value 

then only ANN produces an output. For the present 

investigation, the hyperbolic tangent sigmoid transfer 

function and linear transfer function are used for the 

input and output layer respectively. The network is 

trained by Levenberg-Marquardt feed-forward algo-

rithm. A typical feed-forward ANN is shown in 

Fig. 1 (b). The details of mathematical equations relat-

ed to ANN can be found in the ref. [9].   

 
 

Fig. 1 – (a) ANN node; (b) Typical feed-forward Artificial Neural Network; (c) ANN model of the thermistor [9] 

 

3. MODELING OF NIXMNXOX THERMISTOR  

USING ANN 
 

The intent of the present paper is to report model-

ing of NixMnxOx thermistor utilizing ANN. A typical 

structure of the ANN model of NixMnxOx thermistor is 

shown in Fig. 1 (c). 

The hidden layer consists of the hyperbolic tangent 

sigmoid transfer function and sums net input function. 

The above-referred duo works as a transfer function 

and net input function for hidden layer. In the present 

case, the dot product weight function is used to model 

the thermistor. The output layer consists of the linear 

transfer function and sums net input function. The 

above-referred functions work as a transfer function 

and net input function for output layer and correspond-

ing weights of the output layer. 

The aim of this model is to anticipate the nickel ace-

tic acid and manganese acetic acid concentration, so as 

to develop the high-performance thermistor. In addi-

tion, we have likewise shown the resistance-

temperature (R – T) characteristics of various thermis-

tor samples utilizing optimized ANN architecture. To 

model such a behavior, we have provided nickel con-

tent, room temperature resistance, and concentration of 

oxalic acid as an input data to the network and predict 
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the nickel acetate and manganese acetate concentra-

tion. The experimental data for the said purpose can be 

found in the ref. [1-4]. 

In order to attain the optimized ANN architecture, 

we have varied the hidden neurons. The resulting op-

timized structure is further used to model the re-

sistance-temperature (R – T) characteristics of 

NixMnxOx thermistor. It was observed that the MSE 

between the target output and output produced by 

ANN decreases at a lower number of hidden neurons 

and MSE is tending to increase with the increase in 

hidden neurons. The epochs were also found higher in 

the lower number of hidden neurons. An epoch is a 

measure of the number of times all of the training vec-

tors are used once to update the weights and the same 

is also responsible for lowering the MSE. The results 

clearly indicate that the average correlation coefficient 

between training, validation and testing data is higher 

only at the lower number of hidden neurons and aver-

age correlation coefficient tends to decrease as the hid-

den neurons increases. Furthermore, the average corre-

lation coefficient is higher only at the lower number of 

hidden neurons (hidden neurons  5 to 20) and it tends 

to decreases as the hidden neurons increases. Correla-

tion coefficient one of the foremost performance param-

eters of an ANN; exhibits the relationship between ac-

tual data and the output produced by ANN. Higher the 

estimation of correlation coefficient demonstrates the 

most accurate model. For the present case, correlation 

coefficient was found to be ~ 1 for all cases. This im-

plies that the proposed model accurately predicts the 

thermistor characteristics with the lower complexity of 

hidden neurons. The results clearly indicate that the 

maximum epochs are observed at a lower value of hid-

den neurons and further the epochs tend to decrease as 

the hidden neuron increases. The results also suggest 

that the lower number of hidden neurons gives the best 

performance in terms of gradient, mu (), validation 

fail parameters. 

The predicted values of nickel acetate and manga-

nese acetate concentration are shown in the fig. 2 (a 

and b) respectively. The results clearly indicate that 

the ANN accurately predicts the different values of 

nickel acetate and manganese acetate for a different 

combination of nickel content, room temperature re-

sistance, and concentration of oxalic acid. The result 

also suggests that the lower number of hidden neuron 

architecture gives the best performance in terms of 

prediction. The prediction accuracy tends to decrease as 

hidden neuron increases. The lower number of hidden 

neurons signifies the less memory requirement for pre-

diction of different chemical composition. This property 

can be utilized for the development of software defined 

as an intelligent block for predicting the best suitable 

chemical composition. This can be really useful in dif-

ferent domains such as chemical sciences, materials 

sciences, and electronics engineering.  

 

 
 

Fig. 2 – (a) Scatter plot of actual values of nickel acetate and ANN predicted values of nickel acetate for different hidden neurons. (b) 

Scatter plot of actual values of manganese acetate and ANN predicted values of manganese acetate for different hidden neurons 
 

Moreover, the optimized lower number of hidden 

neuron ANN structure is used for the predicting and 

linearization of resistance-temperature (R – T) charac-

teristics of NixMnxOx thermistor. For a case study, we 

have taken a couple of our samples namely TA1 and 

TA13 for the said ANN prediction. In this case, tem-

perature becomes the input variable, whereas the re-

sistance of thermistor become output variable. The cor-

relation coefficient between actual R – T characteristics 

and ANN predicted R – T characteristics of TA1 and 

TA13 sample was found to be ~ 1. Hence, it can be con-

cluded that ANN accurately predicts the R – T charac-

teristics of NixMnxOx thermistor. Considering the re-

search outcome of present work, further, we are in the 

process of developing an open source software platform 

based on ANN. This software will help the research 

fraternity to predict the different synthesis combina-

tion for thermistor application. 

 
 

4. CONCLUSION 
 

The present manuscript reports the modeling of 

NixMnxOx thermistor characteristics using an Artificial 

Neural Network (ANN). The results evidenced that the 
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lower number of hidden neuron architecture exhibits 

the best performance as regards to MSE and correla-

tion coefficient. The optimized ANN structure is fur-

ther used for modeling and linearization of resistance 

temperature (R – T) characteristics of NixMnxOx ther-

mistor. The results depict that the correlation coeffi-

cient is higher in both cases. This clearly leads to the 

conclusion that the ANN accurately predicts R – T 

characteristics of NixMnxOx thermistor. As reviewed in 

the opening part of the paper, the ubiquitous use of soft 

computing tools and techniques in materials science 

has made it an obligatory tool in the development of 

end products with predictable characteristics with sig-

nificant optimization of resources. The present paper 

once again establishes the synergy between ANN and 

thermistor synthesis for value added end products and 

once again reiterates the cross-fertilization of ideas 

between diverse domains of research. 
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