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In present research paper, a Bopp’s shift method and standard perturbation theory are used to
find exact analytical solutions of the noncommutative 3-dimensional space phase (NC: 3D-RSP) for
modified time-independent Schriédinger equation of weakest bound electron potential model
(WBEPM) theory for neutral indium. We have obtained the explicit higher energy eigenvalues for

th

n" excited states. Furthermore, the obtained corrections of energies are depended on the discreet

atomic quantum numbers (j=1+1/2, (n*,l*) = (n+ d,l+ d) , ng and m ), in addition to the four

infinitesimal parameters (G),x) and (é,g) which are induced by position-position and momentum-

momentum noncommutativity, respectively. We have also shown that, the total complete degeneracy
of higher energy level of the modified (WBEPM) theory equal the new values on?.

Keywords: The weakest bound potential, Noncommutative space and phase, Star product and

Bopp’s shift method.
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1. INTRODUCTION

Over the past ten years, Zheng et al. have devel-
oped the (WBEPM) theory for many electron systems
and obtained very satisfactory results with theoretical
and experimental results in the literature for calcula-
tion of spectroscopic data [1-5]. The study of weakest
bound potential has now become a very interest field
due to their applications in different fields [6]. The
noncommutative symmetries which was introduced
firstly by H. Snyder [7], considered as a logical extend-
ed of ordinary quantum mechanics, have been the sub-
ject of studies in recent times, we want to extended,
this study to case of noncommutative space phase to
obtaining an profound new interpretations in the sub-
atomics scales on based to our previously works [8-13]
and other works in this context [14-20]. The nonrelativ-
istic energy levels for neutral indium in the context of
noncommutative space have not been obtained yet.
This is the priority for this work. The modified
(WBEPM) theory used in this framework takes the
form (see below):

v (%)=—£ +[d(d+1§+2dl]+[[d(d+lz+2dl}_ % ][®+ [N
o, 2

h b i

The crucial purpose of this paper is to determine
the energy levels of above potential in (NC: 3D-RSP)
symmetries using the generalization Bopp’s shift meth-
od which depend on the concepts that we present below
and in the third section to discover the new symmetries
and a possibility to obtain another applications to this
potential in different fields. The new structure of ex-
tended quantum mechanics based to new noncommuta-
tive canonical commutations relations (NNCCRs) in
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both Schrédinger and Heisenberg pictures ((SP) and
(HP)), respectively, as follows (Throughout this paper
the natural units ¢ =% =1 will be used) [9, 10, 13-16]:

oo 0).5,()] -3,

[5o1,]=0 = {aeifge,}{xi(t)faej(t)}:ieﬁ @
DisD; =0 . r * _

[ J |:i)isi)j:|: ﬁi(t),f)j(t):|=i9ij

However, the new operators (aﬁi (¢). B, (t)) in (HP)

are depending to the corresponding new operators
(%;,0;) in (SP) from the following projections relations,

respectively [11]:

(xi (t), p; (t)) = exp(iI:Im- (t-t) (xi,pi)exp(fil:lni (t-t, )=

R R 3)
(%:(2), 5, (t)) = exp(H,_y; (t =1, ) * (£, 5,) * exp(=iH,_,; (£ ~t, ))

dx. (¢) dp, (¢t
While the dynamics of new systems (%() , pczlt( ) )

are described from the following relations:

dxéit(t) a0, ] = %t(t) _ {x (t)fﬁncm}
dlzt(t):{ﬁi(t)jﬁmm}

)
dpi(t) _ [Pi (t)’f{ni:| N
denote to the ordinary and new

dt

here I:Im' and H,

ne—ni

quantum Hamiltonian operators in the quantum me-
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dp, (t)

A, (t) and are
dt dt

describe the dynamics of systems in (NC: 3D-RSP). The

chanics and it’s extension while

very small two parameters 6* and 6" (compared to

the energy) are elements of two antisymmetric real

matrixes and (*) denote to the new star product, which
is generalized between two arbitrary functions

(Fg) (x.p)>(F.2)(2.5) to f(%.5)&(%.5)=(f*g)(x.p)

instead of the usual product (fg)(x,p) in ordinary 3-

dimensional spaces [12, 15-19]:

(fe)(x.p)=(f*g)(x.p)
e Egw i og Tw 8)‘ og
—[fg 2[0 on* é‘x"+0 ap" o V]](x,p)

the second and the third terms are induced by (space-
space) and (phase-phase) noncommutativity properties,
respectively. The organization scheme of the study is
given as follows: In next section, we briefly review the
Schrodinger equation with ordinary potential V(rl) on

based to refs. [4, 6]. The Section 3, devoted to studying
the 3-dimensional modified Schrédinger equation by
applying Bopp's shift method for (WBEPM) theory. In
the fourth section and by applying standard perturba-
tion theory we find the quantum spectrum of the high-

er N excited levels for spin-orbital interaction in the

framework of the (NC-3D: RSP) symmetries. In the
next section, we derive the magnetic spectrum for stud-

ied potential V, m( L) In the sixth section, we resume

ol ) ©

s )

the global spectrum and corresponding noncommuta-
tive Hamiltonian operator for (WBEPM) theory and
corresponding energy levels. Finally, we give a brief
conclusion in last section.

2. REVIEW OF THE EIGNENFUNCTIONS AND
THE ENERGY EIGENVALUES FOR NEUTRAL
INDIUM IN ORDINARY THREE DIMENSION-
AL SPACES

We shall recall here the time independent Schro-
dinger equation for a weakest bound potential, which
can be divided into two parts, the first one is the Cou-

*

lomb potential (—Z] and the other one

hi

d(d+1)+2dl
LH is the dipole potential [4, 6]:
Z" [d(d+1)+2dl]

V(n)=- (6)

where Z" and r. are the effective nuclear charge and

the distance between the weakest bound electron and
nucleus, respectively. The terms containing eq. (6) have
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positive and negative contributions. If we insert this
potential into the Schrédinger equation:

2
2 T

PA_Z7ﬁmﬂﬂﬂﬂﬂ}4a:Ewﬁ) @

The electronic radial wave functions are shown as a
function of the Laguerre polynomial in terms of some
parameters [4, 6]:

gz )2 o -2
R(n):( n j [(n*—z*—1)!r(n - +1)] ®

n n

where(n l*) (n+d l+d) are defined to be effective

principal quantum number, and effective azimuthal
quantum number, respectively. In spherical coordi-
nates, the complete wave function W(r,6[ ) and the

energy eigenvalues are given by [4, 6]:

N -2
n x %
Y(ro0,0)=| — i -+l
con( ] |t
z* N 27" 9
exp[—n*ﬁjr' Lil*Jrll'l[ " riJYlm(g'(”) @

o T

*2
2n

Where n" =n—-6 and & given by [6]:
s=a+b(n-6,) 2 +cn—5,)" +d(n-5,)° (10)

which present defect for a given fixed orbital quantum
number whilea,b, ¢ and d are coefficients.

3. THREE DIMENSIONAL NONCOMMUTATIVE
REAL SPACE-PHASE FOR (WBEPM) THEO-
RY

In this section, we shall gives an overview for the
weakest bound potential V(r) in (NC: 3D-RSP), to

perform this task the physical form of Schrédinger
equation should be written as [11, 12]:
Ordinary three dimensional Hamiltonian operators

H (p;,x;) will be replace by new three Hamiltonian
operators IAJm_ni (P%;),
Ordinary complex wave function ‘{’(;) will be re-

placing by new complex wave function ¥ (;) .

Ordinary energy E will be replaced by new val-
uveskE, ...

And the last step corresponds to replace the ordi-
nary old product by new star product (*), which allow

us to constructing the modified Schrédinger equations
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in both (NC-3D: RSP) as:

an—m(pu )*qj() Enc—ni‘ij(’r;) 11)

Instead of solving any quantum systems by using
directly star product procedure, a Bopp’s shift method
can be used [16-20]:

(&%) =[%(0).% ()] =i6; and [By.b;|=[Ai(t).5;(t)| =165 (12)
The new generalized positions and momentum co-
ordinates (aﬁi,f)i) in (NC: 3D-RSP) are depended with
corresponding usual generalized positions and momen-
tum coordinates (xii, pi) in ordinary quantum mechan-

ics by the following, respectively [14-19]:

6,
fimxi-y P,
2 (13)
A 6;
PPy

Which allow us to getting the two operators (fz
and p2)in (NC-3D: RSP), respectively [10, 11]:

7?2=r’-LO and pl2 = piz + Lo (14)

Where the two couplings L® and I—_é are
(L,©y, + L0, + L.O) and (L6012 + L, 623+ L, 613 ),
respectively and (L, Ly and L, ) are the three compo-

nents of momentum

and®; =6i/2.

tion (without star product) can be written as:

H(;, % W (F) = Epo_nit/(F) (15)

Where the new operator of Hamiltonian H(p;,%;)

operator L
Thus, the reduced Schrédinger equa-

angular

can be expressed as:
0, 6
H, . (p:%)=H fci:xi—%pj and p =p. —?x (16)

After straightforward calculations, we can obtain
the two important terms, which will be use to deter-
mine the modified weakest bound potential in (NC: 3D-
RSP):

d(d+1)+2dl
[d(d +1)+ 2405 =[d(d+1)+2dI]; % + M 8,

rd
' a7

_Z*f‘._l _ Z*r_l Z L@

1 1
27}3

From above relations, one can write the deformed
operator Vni(f“) for modified weakest bound potential

a2
and the noncommutative kinetic term £— , respectively:
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. Z" [d(d+1)+2dl
Vni(l)__7+[7ﬁ2 J
:i i (18)
p*_p Lo
2 2 2

Which allow us to obtaining the global potential opera-
tor H,. () in (NC: 3D-RSP) as:

ne-ni

H, . (7)- oz ) [d(d+ 12 +2dl | .
- (19)
[dd+)+2dl] z" Le
— - LO+
r; 2r? 2

It’s clearly, that the two first terms are given the ordi-
nary weakest bound potential in three dimensional
space, while the rest terms are proportional’s with two
infinitesimals parameters (® andf ) and then gives
the terms of perturbations H i (r) in (NC: 3D-RSP)

as:

[dd+D+2d]] 7' ). [0
Hper-ni (7‘) [’;4 rl L@ + ? (20)
4. THE EXACT SPIN-ORBITAL SPECTRUM
MODIFICATIONS FOR MODIFIED (WBEPM)
THEORY IN (NC:3D- RSP):

Again, the perturbative term H

berni () can be re-

written to the equivalent physical form:

H i (1) = 2[®£M—2Zr;]+g] SL (21)

T i

Furthermore, the above perturbative terms
H_..;(r) canbe rewritten to the following new form:

per-ni

oo (r)= [@([d(d”z +2dl]_22]+9](32 -5 e

perm r or® ) 2u

2 i

We just replace SL by the expres-

sion — (J L -S ) , iIn quantum mechanics, this oper-
ator traduces the coupling between spin and orbital
momentum. The set (I:ISO_ni(r),JZ, I?, S?and J,)

forms a complete of conserved physics quantities and
the eigen-values of the spin orbital coupling operator

are k, = ;{[l + %j I+ % +1D)+I(+1)— i} corresponding:

j=1+% (spin up) and j=1-1 (spin down), respective-
ly, then, one can form a diagonal (3><3) matrix, with

non null elements are (IT:IS(H”-)H,(IT:IS(HLi)22 and

(f[ -)33 for modified potential in (NC: 3D-RSP) as:

so—ni
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(), - o[ ne20) 223, 0

3
T 2r, 2m,

ifj=1+% = spin -up

(ﬁso—ni)22 = k, (@[M_TJ+ é J (23)

3
T 2 2my,

ifj=1-% = spin -down

(F]so—ni)SS =0

For, the non-weakest bound electrons (the Schro-
dinger equation in multi electron systems), SL cou-
pling is the dominant coupling scheme in light atoms
and electric dipole line strength for transitions between

two excited levels in this coupling scheme can be given
to be [4, 5, 21]:

B z<[(...a1L1,12)L(...slsZ)J‘rM*(...agL'l,z'z)L'(...svls'z)J'D

(24)
SeJ'+L 41!, qe. LS I L L L]y
=(- LT Pl
( ) ‘:J’J’ ’ :Il {Jv 1 L‘}{l L' lv2 Ll

+o0
With P = [r*?R,, (r

0

ol (r)dr is the transition

L S J
J' 1 L'
known by Racah coefficient or Winger’s 6-j symbol.

matrix element and { }: W (abed;ef) which

4.1 The Exact Spin-orbital Spectrum Modifica-
tions for Modified (WBEPM) Theory in (NC:
3D- RSP)

In order to obtain the bound solutions at higher n*

excited levels, we first the find the corrections E

and E, ; for spin up and spin down, respectively, at

first order of two parameters ® and 6 obtained by
applying the standard perturbation theory:

-1

oz’ V'l en’ -
Eu—ni =(7j mr(n -1 +1) k+

* . 2
T exp| —2 Z_ || e [22, (25)
J n* i n 1" -1 n* i
(@([d(d+1)+2dl]_ VA ]+0Jn2dr-

rt 27;3 2 ¢

i

A )
E‘*'“i:[n*J [(;1—1—1)vr(n -1 +1)} k.

+00 * * 2
J‘exp(—QZ*rijrw {Lilf;l[zz* rlj:l U (26)
0 n n

D[@[[d(d +1Z +2dl] 7" } q ]r-Zdr-

T or3 2"

13 13

A straightforward calculation yields:
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243 B - =
_|2 I e s 0
Eu'm_[n*] (n*—l*—l)!r(n 4 k+{®(T1+T2)+273} 0
o7 ' +3 o ! ]
n * *
Edni:[n*] mr(n -1 +1)} k{@(T1 +T2)+2T3} (28)

Where, the three terms 7} (Z*,n*,l*)(i = 17%) are given
by:

T,(2" ") =[d(d+1)+2d1] j exp{-2jn],z,-11 { Lil"?l(zj rﬂ o

0

£ % 2
T3(Z*,n*,l*) =7 j exp[—2f*ri]r2“ {Lil:*ll,l [izrlﬂ dr, (29)

0

* * 2
T3(Z*,n*,l*) = I exp[—2z*ri]r2r*31 {Lil:*l{l {227;]} dr,
d n n

We apply the following special integration [22]:

T t* " exp(-wt) L), (ot ) L (ot )dt =
0

0 T(n-a+B+1)I(m+1+1)

~ mll(1-a+pB)r(1+4)

3 I (—m,a,a—ﬁ;—n-&-a,x\-&-l;l)

(30)

where ,F,(-m,a,a—f;—n+a,A+1;1) obtained from the

generalized the hypergeometric function
F (al,...,ap,ﬂl,....,ﬂq,z) for p-3 andq-2 while T'(x)

pTq
denote to the usual Gamma function. After straight-
forward calculations, we can obtain the explicitly re-
sults:

-2+
[2*] - s2)r{a 41 +1)

T(2' 0 1) =[did+ D) 2al "

o i ((n*—l*—1)!)2r(3)r(2+2l*)

JBy (-0 40 L2 -1 -2one 2 1,20 +2:1)

(3D

a2

— Z*[zf*j P 1 1)r(n 1 41)
L) = -

’ ((n*—l*—1)!)2r(2)r(2+2l*)

3 (—n* +0+1,20,-1;-n" + 80" +1,20" + 2;1)

(32)

(25: ]ZFSr(n*—l*—2)r(”*+l*+1)
TS(Z Ll )= ((n*—l*—1)!)2T(‘3)F(2+2l*)

3 I, (7n* +I +1,2l* +3,2;7n* +30" + 4,21* +2;1)

(33)

Which allow us to obtaining the exact modifications
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of n excited states E _;, and E,  produced by

spin-orbital effect:

#\20 +3
Eu_m(j,z*,n*,l*)z[zz*j 0
n

w20 +3
By (0200 = [ZZ] 0
) - (35)

2 o .
0 (n_ln_l),r(n -1 +1)} k{@Tnc”i+2Tg}

we have introduced new parameters 7, . (Z n Ll )

for the sake of simplicity:
(2°,n".0") =[d(d+1)+2dI]0

e N-20"+1
{2%] P 1 +2)r(n* +1 41)
u

n

(v -1 —1)!)2 r(3)r(2+20)

5By (-n" + 1+ 1,20 —1,-2-n+ 20 -1,20" +2;1) (36)

w20
y [2 i] r(n* -T +1)r(n* +0 +1)

3 3 FoU
((n" =1 -1)1) T(2)r(2+20)

u(—n* w120 ~1-n" 430 +1,20 + 2;1)

It is note worthy to note that the first factor
T

ne—ni

(Z*,n*,l*) produced with the noncommutative

geometry of space, while the second term TS(Z*,n*,l*)

produced from the noncommutativity of phases.

4.2 The Exact Magnetic Spectrum Modifications
for Modified Weakest Bound Potential for
Higher Excited States

Now consider physically meaningful phenomena,
it’s possible to found another automatically symmetry
for the production of the perturbative terms of modified
weakest bound potential H,;(7) related to the influ-

n

ence of an external uniform magnetic field, it’s suffi-
cient to apply the following replacements:

{(_E)axf?z{[[d(d+:i+2dl]_zz;"]ié+|‘_29J
60 - oB i B i (37)
:[x[[d(d+1z+2dl]_zj+gJ§Z

T or3

i i

Here y and o are infinitesimal real proportional’s
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constants, and we choose the magnetic field B= Bk,
which allow us to introduce the modified new magnetic
Hamiltonian H,,_,; in (NC: 3D-RSP) as:

ni

H, - (x([d(d D +2dl]_Z;]+‘2’](ﬁ,7 _5B)es)

4
n 2,

here (—§E) denote to the ordinary Hamiltonian of

Zeeman Effect. To obtain the exact noncommutative
magnetic modifications of energy E,

magni » W just re-

place:k,, ® and 6 in the eq.(34) by the following pa-
rameters: m, y and o, respectively:

-1

0z V' o
Emag»ni Z[ o j {(n*—l*—l)Vr(n -1 +1) 0

0Bm { AT+ g TP}

(39)

We have -1 <m <+, which allow us to fixing (2/+1)
values for discreet number n .

5. THE EXACT MODIFIED OF »" EXCITES
STATES FOR MODIFIED WEAKEST BOUND
POTENTIAL IN (NC: 3D- RSP)

In the light of the results of the preceding sections,
let us resume the modified eigenenergies (E

ne -uni ~
E

nc -dni
down for modified Schrodinger equation obtained in
this paper, the total modified energies are determined

) of a particle fermionic with spin up and spin

corresponding higher n excited states, respectively,
for modified weakest bound potential in (NC: 3D-RSP),
on based to original results presented on the Egs. (34),
(35) and (39), in addition to original results of energy
for commutative space (9):

*\2 N2 +3
(j,Z*,n*,z*,m)=—(2Z ) +(2Zj

e E

nc -uni *9
n n

{mr(n - +1)] (40)

{k+ {®Tnc—ni + g T’S} +Bm {xTnc—ni + g T’S}}

7 2 N2 +3
(j,Z*,n*,l*,m)=—(2n*)2 +[2Z* ]

e E

nc -dni
n

[(nfl"_l)'r(n _r +1)] (41)

{k— {®Tnc—ni + ZT3} +Bm {xTnc—ni + %TS }}

Thus, the original energy levels at higher excited
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states will be changed in the framework of extended
quantum mechanics as follows:

)2 N2l +3
e Z) (2]

*

-1
2 -
(n*_;_l)!r(n -1 +1)]

r
on’? n

{IQ {@Tnc_m- + 27’3} +Bm {me_m- + ZT3H for-spin up (42)

{k {G)Tncm. + % Tg} +Bm {xTncm. + g T, H for-spin down

It is evident to consider the quantum number m
takes (2/+1) values and we have also two values

for j :li%, thus every state in usually three dimen-

sional space of energy for weakest bound potential will
be 2(2/+1)sub-states in (NC: 3D-RSP). It’s clearly,

that the obtained eigenvalues of energies are real’s and

then the noncommutative diagonal Hamiltonian H

ne—ni

ne—ni

A A +
is Hermitian [H :(anfni) ), furthermore it’s pos-

sible to writing the three elements: (H

ne—ni )11 ’
(I:Inc_ni )22 and (I—:Tm,_ni )33 as follows:

(A ) A Z' [dd+1)+2dl]
_ni =——+t-——+=F+
nc—ni 1 2 rl 7}2

ok [6[[d(d+lz+2dl]_2z3]+2] )
T T

1 1

{x([d(dﬂz +2dl]—Z1J+ZJ(§7—§§)

I 2r,

(A ) A Z' [d(d+1)+2dl]
_ni =+t -——+=F+
ne-ni Jo, 2 rl 7'~2

i

o (@[[d(d+1i+2dl]_22’;}29] )
T T ¥

13

{X([d(dnz +2dl]_z}+;](fﬁ_§§)

.
3
T 2r,

Az +[d(d+1g+2dl] @)

(Flnc—ni)s?) :_§+ . A

i i

For, the non-weakest, we replace k (k) by the
thus we have, the modified energy E

nc -ni

coupling Sz,

as follows:
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+\2 . o +3
s (T

5
o2n'2 n

(n,—ZZn—l)'r(n -T +1)] (46)

6 o
{ng {®Tnc—ni + 2T3} +Bm {xTnc—ni + ET’i }}

Thus, the total complete degeneracy of higher ener-
gy level of the modified (WBEPM) theory in noncom-
mutative 3-dimensions spaces-phases, we need to sum
for all allowed values of [ . Total degeneracy is thus,

—

n—

2(20+1) =2n* (47)

]
(=]

i

Note that the obtained new higher energy eigenval-
ues (E -E ) now depend to new discrete atom-

nc -uni nc -dni

ic quantum numbers (j,l*) and m , in addition to effec-

tive nuclear charge Z" and effective and effective azi-

muthal quantum numbern” .

6. CONCLUSION

In the present work, we reviewed the exact solu-
tions of the Schrodinger equation with the weakest
bound potential and the formalism of Bopp’s shift
method. Then, we have applied the Bopp’s shift method
to solve the modified Schrodinger equation for modified
weakest bound potential in (NC: 3D-RSP), we obtained
in present research paper:

The exact energy spectrum (E

e -uni ~ Enc -dni ) for
higher n* excited levels for the weakest bound elec-

trons and the non-weakest bound electrons.

The modified Hamiltonian operator H for the

nc—nit
modified weakest bound potential,

We shown that the old states are changed radically
and replaced by degenerated new states, describing two
new original spectrums, the first new one, produced by
spin-orbital interaction while the second new spectrum
produced by an external magnetic field,

We have shown that, every state in usually three
dimensional space of energy for weakest bound poten-
tial will be 2(2l +1) sub-states in (NC: 3D-RSP).

Finally, our obtained results can find many applica-
tions to develop the (WBEPM) theory.
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