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In present work, the exact analytical bound-state solutions of modified Schrédinger equation (MSE)
with modified extended Cornel potential (MECP) have been presented using both Bopp’s shift method and
standard perturbation theory in the noncommutative two dimensional real space and phase (NC-2D: RSP),
we have also constructed the corresponding noncommutative Hamiltonian operator which containing two
new terms, the first one is modified Zeeman effect and the second is spin-orbital interaction. The theoreti-
cal results show that the automatically appearance for both spin-orbital interaction and modified Zeeman
effect leads to the degenerate to energy levels to 2(2Z+1) sub states.
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1. INTRODUCTION

The concept of non-relativistic symmetries of the
Schrédinger Hamiltonian discovered centuries ago
were recognized empirically in many field of sciences
for example spectroscopy, atoms, molecules, and nuclei
by using numerous methods such as quasi-linearization
method, Hill determinant method, point canonical
transformation, numerical method, Nikiforov-Uvarov
method, Laplace Transform method, SUSQM method,
power series technique and the analytical exact itera-
tion method. The non-relativistic Schréodinger equation
which describes the motion of spin 1/2 particle has been
successfully used in solving many physical problems in
a lot of heavy quarkonium systems and low-energy
physics [1-5]. Recently, the symmetries were extended
to new space-phase known by noncommutative space
and phase to obtain profound interpretation in Nano
and plank’s scales, much work in case of the noncom-
mutative space-phase at two, three and N generalized
dimensions has been done for solving the three funda-
mental equations [6-10] and in particularly, our previ-
ously works [11-18] . The notions of noncommutativity
of space and phase developed on based to the Seiberg-
Witten map, Bopp's shift method and the star product,
defined on the first order of two infinitesimal parame-

ters antisymmetric 2(9"”,5”) =gl (Hk,ék) as
(h=c=1) [6-11]:
F(x)* g (x) =1 ()2 (x) - 0" 03f (x)0%g ()

- @
_éeﬂvaﬁf(x)afg(x).

Thus, the noncommutativity commutators of the co-
ordinates [)A(i , )A(j ] and corresponding momentums

lf)i, P; J* can be described by the following commuta-

tions relations:
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[xx J _io.,

U Jl 7 ®))
[i’i’ﬁjl = iaij-

The simplest case corresponds to &; and §ij being con-

stants, which we call non-dynamical or (9— 0 ) NC spac-

es-phases. It’'s important to notice, that the Bopp’s shift
method will be apply in this paper instead of solving the
MSE with star product, the SE will be treated by using
directly usual commutators on quantum mechanics, in
addition to the following two commutators [10-14]:

[ii’ijJ:ieijand [ﬁi’ﬁj]:iéij. 3)

In this paper we are using noncommutative theories
in (NC: 2D-RSP) model to find out what will happen for
2D nonrelativistic spectrum if effects of noncommuta-
tivity of both space and phase are considered for MECP
that governs the new extended Cornell potential

|4 (f):

nc—mec

, d ¢ b 6L,
Vina )=V 0+ G i pmalorr .

On based of two main references [4] and [14], to dis-
cover the new spectrum of energy and a possibility of
obtain new applications in different fields (V (I’) is giv-

en in the next section). The rest of present search is
organized as follows: In next section, we give briefly
review to the SE with ECP in 2D spaces. In section 3,
we shall briefly introduce the fundamental concepts of
Bopp's shift method and then we apply this method to
derive the MECP and the corresponding noncommuta-
tive (spin-orbital and new Zeeman) Hamiltonians oper-
ators and the corresponding two spectrums by applying
perturbation theory for ground stat and first excited
states. In section 4, we conclude the global noncommu-
tative Hamiltonian and we resume the global spectrum
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for MECP in first order of two infinitesimal parame-
ters’ @ and @ in (NC-2D: RSP) symmetries. Next, we
calculate the mass spectra of heavy quarkonia in the

2D space-phase. Finally, the important found results
and the conclusions are discussed in the last section.

2. REVIEW OF THE EIGENVALUES AND
EIGNENFUNCTIONS FOR MECP IN 2D

In this section, we shall review the eigenvalues and
eignenfunctions for spherically symmetric for the po-
tential known by ECP in 2D spaces [4-5]:

V(r):ar2+br—£—%. (5)
ror

The four parameters:a, b, ¢ and d are constants,
the above confining interaction potential consisting of a
sum of harmonic, linear, Coulombic and pseudohar-
monic potential terms, the last term is incorporated
into the quarkonium potential for the sake of coherence
while the rest terms represents the Cornell potential
,the complex eignenfunctions \I’(r,q)) in 2D space for
above potential satisfied the SE in spherical coordi-
nates is [4]:

d 1d P c d
(drz +;$—r—2+2y[Enl —ar® —br+;+r—2j]‘}’(r,¢) =0, (6)
where g and | are the reduced mass of the two parti-
cles and the angular quantum number, respectively
while E,| is the total energy of the particle. Now, in-

serting the new form of ‘I’(I’, (0) [4]:

¥ (16) = 57 0, (r)exp(£imp). M

Eq. (6) reduces to [4]:

dzgon(r)
dr?
o d+1/4-0

N 2}%@):0.

+2y[gnl —ar® —br+

®)
r r
With the simplifications (gm ,a,by, ¢, dl)z Z,U(Em ,a,b,c, d)

and then, the complete normalized wave functions and

corresponding energies for n" excited state in 2D

space, respectively [4]:

) (?) = anz[(r—c;zi("))rl'/2 x
i1

xexp{—;\ﬁ#arz - \Ebr] exp(+img) C)

2
E, = f; (2+2n+l')—i—,
7 a

where I'=4/41> —=8zd and (N, N;) are two normalized

constants.

3. NONCOMMUTATIVE PHASE-SPACE HAMIL-
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TONIAN OPERATOR FOR MECP

3.1 Formalism of Bopp’s Shift

In this sub-section, on based to our previously
works [15-18], we give a brief review to the fundamen-
tal principles of modified Schréodinger equation in (NC-
2D: RSP), to achieve this goal we apply the important
4-steps on the ordinary SE:

- we replace ordinary 2D Hamiltonian operator

H (pi , Xi) by noncommutative new Hamiltonian opera-
tor H(p;, X ),

- we replace ordinary complex wave function \I—’(F)
by new complex wave function \i’(}:),

- we replace ordinary energy E,, by noncommuta-

tive energy E, .,

- the forth step correspond to replace the ordinary
old product by new star product.

Which allow us to constructing the modified SE in
(NC-2D: RSP) symmetries as:

H(p,,&,)*¥(7)= E,¥(F). (10)

The Bopp’s shift method allows finding the reduced
following SE without star product:

H(ﬁt’j&t)l//(?):Encl//(?)’ (11)

the modified Hamiltonian H(p;,%;) defined as a func-

tion of two operators X; and p; :

A 2
..\ D; A
Hnufmecp (pi’xi) = ZIU + VnC (7'), (12)

the modified 2D potentialVy¢ mecp (f) obtained by the

following procedure:

Vi e (F)=ai? 107 =S - L (13)
ror
the two operators X; and f;in (NC-2D: RSP) symme-
tries are given by [14-18]:
N

and D, =p;+ 5 x; . (14)

On based to our references [15-18], we can write the
two operators 2 and p? in NC 2D spaces and phases
as follows:

~2 2 D
and p_:p_+9_Lz_(15)
2u

7 =r?-0L,
2u 2u

After straightforward calculations one can obtains
the different terms in (NC-2D: RSP) as follows:
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af? = ar? -alL,, br =br —EHLZ
d d 223 (16)
r r 2r r rr

Which allow us to writing the modified 2D potential
Vne-mecp (f) in (NC-2D: RSP) symmetries as follows:

\% (f‘):ar2+br—£—i+V

nc—mecp r 1"2 pert

(r,e,é). )

It’s clearly that, the first 4-terms in eq. (17) repre-
sent the ordinary ECP while the rest term V¢.(r, 6,0
is produced by the deformation of space and phase. The
global perturbative potential operatorszert,mcep r,o, 0

for studied potential MECP in (NC-2D: RSP) symme-
tries will be written as:

(r,e,5)=[i+i—ﬂ—ajaL +%Lz, (18)

Vv
rto2r® or Y7

pert—mecp

3.2 The Spin-orbital Noncommutative Hamilto-
nian for MECP in (NC: 2D- RSP)

In order, to discover the new contribution of MECP,

we replace the two couplings 6L, and ELZ

by o®SL and a6 §[ , respectively, then the above per-
turbed operator becomes as:

Hpert-mec (7",@, g) =

0] - = 19
=a<6 £+L—£—a +g LS.
rto2rt 2r V7

Here S denote the spin of a quarkonium system.

Now, we replace the spin-orbital interaction LS by

2 1(w2 =2 <2 . .
G :E J -L -S to obtain the new physical

form:

] 3c 2b 9
et o34 B

r r

w2 «2 o2
As it well known, (J ,L , S and S,) formed com-
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plete basis on quantum mechanics, then the operator

(‘j’ 2_ye_g? j will be gives  2-eigenvalues

k. E;{(li;)(l-i-;i1j+l(l+1)(l+1)—i}, correspond-

ing j=l+% respectively (for s=1/2). Then, one can
form a diagonal matrix F'so—mecp of order(2x2), with

non null elements (I:| so-mecp )1 1 and (I—] so-mecp )2 ) for
MECP in (NC-2D: RSP) symmetries:

(ﬁso—mec ) :k+05 o %+%—£_a +i
P rt 2r° 2r 21
for j=I1+1 = spinup
(ﬁsofmec ) :k,a 9 i+%—£_a +i
Pl rto2rt 2r 2u

for j=1-1 = spin down.

After profound straightforward calculation, one can
show that, the radial function ¢,(r) satisfied the fol-

lowing differential equation for MECP in (NC-2D: RSP)
symmetries:

d*p (r -2
an()_’_zﬂ gnl_a1r2_b1r+cil+%_
dr r

d ¢ b 0|-¢
_a{a[#+2rg—2r—aj+#}LS}on(r):O.

3.3 The Exact Spectrum of Ground States Pro-

r
(22)

duced by NC Spin-orbital Hamiltonian
H,, ., for MECP in (NC: 2D- RSP) Symme-
tries

Now, the aim of this subsection is to obtain the
modifications to the energy levels for ground states

Eymep (@,0,€,d) and Eg.peep (@,b,c,d)

for spin up and spin down, respectively, at first or-

der of two parameters € and @ . In order to achieve this
goal, we apply the standard perturbation theory:

Bramal0h) i oot <) of o s a2 o
a2T1|N,| 0 roer H (23)
Ed_ D (aybycyd) e I'+1 2 ( d 4 b j 5
mec] :k_ r + exp —ﬁr —yr 0l —+————qal|+— |dr. 24
a2l1| N[ ! | ez 2 0

Where f=,2ua andy = % , a direct simplifica-
+
tion gives:

4
Eq-meep (8,0, ¢,d) = 2TT|N,|? k+{9£2

T; J + iTs} (25)
2p

Ed_mecp(a,b,c,d)=2HN02k{HEZTL-}L;Ts}. (26)
yr

1=1
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Where, the five terms T; (i = ZFS) are given by:

+o0

T,=d | =2 exp(—ﬂr2 - yr)dr,
I exp(—ﬂr2 - )/r)dr,
| 0 exp(—ﬂ’r2 - 7r)dr,
0
T,=-aT,=-a T pl*2) exp(—ﬁr2 - yr)dr.
0

In order to obtain the above integrals, we applying
the following special integration [19]:

T ep(-pt = px)dv=(2p) 2T () D, U%j

Where p [ Y J denote to the Parabolic cylinder
v zﬂ

(29)

functions function, T'(v) Gamma function Rel(£))0
and Rel(v>0). After straightforward calculations, we
can obtain the explicitly results:

dop) F (20,0 45 )

-5 T a0, £

——§<2ﬁ> T | )
T,~—aT, =-a(28) % T(+2)D. ., (\/;T’J

Inserting the above expressions into equations (22)

(29)
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and (23), one obtains the following results for exact
modifications of ground states E, e (a,b,c,d) and

Ed_mecp (a, b,c, d) produced by new spin-orbital effect for
MECP:

E, ey (@,0,¢,d) 2H\N\ k, { . OS+§TMP} 30)
E{ e (a,0,0,d) 2H\N\ k { he0s + 0T o

Where the two factors T, o and T,.o, are given
by:

nc Os — Z T
and (31)
Tnc—Opis = T5'

It’s important to notice that the above two terms
Theos and T

geometry of space and phase, respectively.

nc-op are represent the noncommutative

3.4 The Exact Spectrum of First Excited States
Produced by Noncommutative Spin-orbital

Hamiltonian H so-mecp for MECP in (NC: 3D-
RSP)

The aim of this subsection is to obtain the new mod-
ifications to the energy levels for first excited states

E, meep1 (n=1,0,b,¢,d) and Ed--mecpl(n =1a,b,c,d) corre-
sponding spin up and spin down, respectively at first
order of two parameters € and @ for MECP which are

obtained by applying the standard perturbation theory
as:

= n=1a,b,c,d I .
u me0pl( : ):k+ J‘(rns +(a1(1))2r|+1 20[() '*2)exp(—a 2_ppr] .
211Ny 5 5
2u
d c b
Ed ]_(n:l,a,b,C,d) o , @[r4+2r3 —E_ j
--mecp : —k_ J(r'+3+(0!1())2 I+ Za() Zjexp(—a 2_pgpr] o o)
211|N,| 0 9
2p
Where (&', ) are equals ({2ua ’Z\IIjb )and then Ey e (n=1La,b,¢c,d) =
2a
a direct simplification to the above equations (31) and _ 2H‘N‘ r {@ZL +7 Z T} (35)
(32) gives: T 2,

E nzlabcd)z

u--mecpl (

(34)
=211, & {(BZL 23 T}

m, i=13

Where, the 15- terms L (i :L15) are given by:
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400

L=d[r? te)(p(—oz'r2 —ﬂ'br)dr

0

_< j ()= exp(—a'r2—ﬂ'br)dr,
2b° (36)
L= 2j (143)- exp(—a'rz—ﬂ‘br)dr
0
j?o (1+4)- exp(—cx rz—ﬂ'br)dr
0
L5:( ( )ngrl : exp(—a r’-p br)
Ly :(al(l) 2%+(J<j°r(l 1) lexp( 2 —ﬂ'br)dr, .
L, :—(al(l))zg b[ Pl exp( a'r’-p' br)

@
Ly, =" | P97 exp(—a'r2 —ﬂ'br)dr
0

L,= Zaal(l) T rl

0

r+3)-1 exp(—a 2 - ﬂ'br)dr
L, = T it exp(—a'r2 - ﬂ'br)dr,
2+ l+2 12 o
L, ( ) gr exp( a'r ﬂbr)dr (39)
L, =—2a1 Tr“s exp(—a'rz—ﬂ'br)dr
0

In order to obtain the results of above equations, we
apply the special integral which represents by eq. (28):

L =d(2p) > T(1)D, [Jg?]

I'+1

C o pn-tt 7'
Sy E 0[]
L,=-2(2p) > r(re3)D A -
3__§(ﬁ) (1'+3) 7(14)3ﬁ’
I'+4 [
=—a<zm‘2r(z'+4>D_(,,+4)[5j
Ly = (a4 ) (28" > (- 2)D, Z)U%],
2 Vi
Lo=(a) S(2p)2 T (1-1)D .y {&J
(41)

J

(1))2(2ﬁ|)‘71—~(lv+2 D /4

—(1'+2) \W

1

'
'

[

2 h I+
L7=—(a1(1)) 5(2/3') 2 T(l'+1)D(z-+)1[\/;7
10
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L =-2aa(ap) ¥ T[]

Ly =-a"e(25) 2T (1 )D"(\/%} (42)
Iv2 [ 7' ]

b(28) 2 r('+2)D_,

L, = ‘7‘1

I'+2)

4@‘

1'+3

Ly, =2aa," (28) 2 T(1'+3)D

ol &
]

L13:(2ﬂ)77[‘(l'+4 l+4£ L
Ly, =(a (”)Z(zﬁ)*l;2 r(I'+2)D [VJ (43)
14 — |\ %1 —(1'+2) ﬁ

1'+3 '
L = _20‘1(1) (28) = r(I'+2) D—(l'+3) [\/;_ﬂ]

The above obtained explicitly results allow us to get-
ting the exact modifications
E

u--mecpl (n = l,a,b,c,d)
and

E

d--mecpl

(n :l,a,b,c,d)

of degenerated first excited states corresponding two
polarized states produced by new spin-orbital Hamilto-

nian operator H

so—mecp *

Eu--mecpl (TL = 1,(1, b; c, d) =
3 (44)
_2H‘N‘ k {6an 1s %anlp}
and
Ed--mecpl (n = 1,a,b,C,d) =
0 (45)
_2H‘N‘ k. {gan 1s Z,LILMIP}

Where the two factors L, , and L, ,, are given by

the following form, respectively:

nc -1s — ZL and nc 1p = Z L (46)

3.5 The Exact Spectrum Produced by Non-
commutative Magnetic Hamiltonian Iqm,mecp

for MECP in (NC: 2D- RSP) Symmetries

On other hand, it’s possible to found another auto-
matically symmetry for MECP related to the influence
of an external uniform magnetic field, generated from
the effect of the new geometry of space and phase, it’s
deduced by the two following two replacements:

® > yB and 6 —>oB (47)
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Here y and o are infinitesimal real two propor- Emag_l(n=1,m,aybyc,d)=
tional’s constants and to simplified the calculations we y oT (51)
e T o =2T1|N,|" Bm| yT, .y, +—22 |
choose the magnetic field B=Bk and then we can ne-ls 2u
make the following translation:
d ¢ b 7 - Where E o0 (n=0,m,a,b,c,d) and
0 o + 203 or a |+ 2 - Epaga (n=1,m,a,b,c,d) are the exact magnetic modifi-
— (48) cations of spectrum corresponding the ground states
N ( Z(% + Ls b aj + O_] and first excited states, respectively. It should be noted
v o 2u that coefficients 7; (i = 1,74) and L, (i = LT5) are the
Which allow us to introduce the modified new mag- same as those found in our reference [14].
netic Hamiltonian I:Imfmec in (NC-2D: RSP) for MECP
P 4. THE NEW GLOBAL EXACT SPECTRUM OF
as: LOWEST EXCITED STATES FOR MECP IN
— (NC-2D: RSP) PRODUCED BY THE DIAGO-
gmfmecp = [ (14 +L3 _ b _aj+‘7](§j+ H) (49) NAL ELEMENTS OF NONCOMMUTATIVE
v 2 2u HAMILTONIAN OPERATOR A, ..

Here H,=-SB denote to the ordinary operator of It’s clearly, that the obtained previous results which
Hamiltonian for of Zeeman Effect in quantum mechan- ~ are presented by Egs. (30), (44), (45), (50) and (51) of
ics. To obtain the exact noncommutative magnetic mod-  eigenvalues of energies are reels and then the non-
ifications of  energy (E g0 (n = O,m,a,b,c,d) , commutative diagonal Hamiltonian operator H,, .,
E, .1 (n=1m,a,b.c,d)) for MECP we just replace the ~ will be Hermitian operator. Furthermore, we can ob-

tain the explicit physical form of this operator on based

3-parametersk,, © and ¢ in the Egs. (30) and (34) by to the results (21) and (49) for MECP, its represent by

the following new parameters m (-i<m<+), y ando, diagonal noncommutative matrix of order(2x2), with
respectively: elements (ﬁncfmecp) and (ﬁncfmecp) in (NC-2D: RSP)
11 22
E oco (” = O,m,a,b,c,d) = symmetries:
oT, (50)
= 211N, |” Bm[ AT 05 + ;E‘OP J
7]

(ﬁm_mec) :—AJrar2+br—£—%+k+ 6(%+%—£—a]+i + Z(%+%—£—a]+i BL,
Pl 2u ror rto2r 2r 2u rto2r 2r 21 (52)

ifj=1+5 = spinup

(ﬁm,_mec) :—A+ar2+br—£—%+k_ ®[%+%—£—a]+i + l(%+%—£—aj+i BL,
P /22 2u ror rt 2rt 2r 2u r* 2r° 2r 2u (53)
ifj=1-§ = spin -down

Now we find the corresponding global modified en- E_ 4. (n =1,1,s, m,a,b,c,d)) for ground and first excited

ergies (Epewo (n,:O,l,m,s,a,b,c,d) states of a particle fermionic with spin up and spin

E, 4(n=0,,m,s,a,b,cd)) and  moving in the MECP, referring to Egs. (30), (44), (45),
(50) and (51), we find the results as follows:
(Enc ul (n = 1,l,s,m,a,b,c,d)

k+ [ngc—Os + 29 Tnc—Op]
2 H
(n,=0,l,m,s,a,b,c,d) = —2(1 (2+l')—72'uc 3 +21_[‘N0‘2

E - (54)
H (l + 1) +Bm[lTnC—Os + rLC—Op]

nc u0

2u

k_[HT I j
2u

nc-0s

2
Enc do(n:O,l,m,S,a,b,c,d): Zi(3+l')_ z'uc 2+2H‘N0‘2 (55)
\) u

(I'+1)

ol
+Bm [ AT, o+ —20.

\
DO
®
~
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and
k+ (ean—ls + éan—lp)
2
E. . (n=11Lsmab,cd)= ""(4+z')—b+2nN12 - (56)
2u 4a +Bm| 4T, |, +—212
2u
and
k— (Qan—ls + gan—lp)
a b? 2 _
E,. (n=11lsm,ab.cd)= f— 4+1")——+2]1|N. B7)
d1 ( ) Z,U ( ) 4qa ‘ 1‘ +Bm[}(Tncls " nclp]
2u
As it’s mentioned in our previously works [14-18], k(j,l,s) =j(j+D)+I(1+1)—s(s+1) of the opera-

the atomic quantum number m can be takes (2/+1)
values and we have also two values for j = li%, thus

every state in usually 2D space of MECP will be in
(NC-2D: RSP): 2(2/+1) sub-states. As it well known,

the eigenvalues j of the total operator J =L+S can

tor (:72 —Zz —§2), thus, by substituting k. by k(j,l,s)

into Eqs. (56) and (58) to obtain
Enc mecp0 (n’ = O,Z,S,a,b,c,d) and
E. ¢ mecpt (n =1,s,a,b,c,d) for ground state and first

excited states:

be obtains from the interval|l—s| < j<|l+s|, which al-
low us to obtaining the eigenvalues
) 7]
) k(]’l7s)) ngc—Os +?Tnc—0p
a , 2uc 2 H
Encmecpo(n:O,l,s,a,b,c,d): —(2+l)— 3 +2H‘N0‘ — (58)
2u (I'+1) T op
+Bm| 4T, (s +———
9 k(j5l7s))(0an—ls +5an—1p)
a b 2 —
E_ =1,1,s,a,b,c,d) = %— 4+10")——+ 21N, 59
anecpl(n s,a ¢ ) 2,U( ) 4a 1_[‘ 1‘ +Bm l’T . + nc-1p ( )
nc—ls 2#
5. MASS SPECTRA OF HEAVY QUARKONIA IN masses in the 2D space-phase:
2D SPACE-PHASE
M =m, +m, +Ey > M=m, +m.+E,._,, (60

In this section, the properties of charmonium meson

and bc meson are calculated, in which the quarkonium
meson have quark and antiquark masses. The follow-
ing relation [4, 20] is used for determining quarkonium

By substituting Eq. (57) into Eq. (29), the quarkoni-
um mass in 2D space takes the following form:

B(5L9) [(mcos + ;ﬂT]
‘No‘z — for n=0
+Bm [;(TMOS + "COPJ
2u
M, ., =M +2]1 _ (61)
k( j,l,s))(@Lmls + ;;lelpj
‘Nl‘z — for n=1.
+Bm [;{Tncls + "c“’]
2u
Where M is the ordinary masse in commutative charmonium mass Mcimecp is given by:

quantum mechanics for the case of N =2, thus, the

06006-
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7]
k(J,1, or. .. +—T,._
\ (] 3))[ nc-0s 2# ne Op]
‘No‘ — for n=0
+Bm[1TMOS +2'wo"]
u
Mc—mecp = Mc +2]1 _ (62)
. o
, k(‘]alas))(gl‘ncls_'—zﬂl‘nclp]
‘Nl‘ — for n=1,
O-Tnc—lp
+Bm [;{Tncls +]
2u

where M. is the ordinary masses in commutative space

for the case of N =2. It is important to notice, the ap-
pearance of the polarization states of a quarkonium
system indicates the validity of the results at high en-
ergy where the Dirac equation applied, which allowing
to the validity to results of present search on the
Plank’s and nano scales level. If we make the lim-

its (Hk,ék)%(0,0) we obtain alresults of ordinary

quantum mechanics.

6. CONCLUSIONS

In this article, we have investigated the solutions of
the MSE for MECP. We showed the obtained degener-
ated spectrum for the modified studied potential de-
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