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1. INTRODUCTION 
 

Research of optical absorption in quantum wells 

(QWs) has led to the development of several practical 

devices, such as the quantum well infrared photodetec-

tor and the quantum cascade laser. In this area optical 

properties of wide range of two-dimensional systems 

were investigated both theoretically and experimental-

ly (see e.g. [1] and references therein). 

The importance of nonparabolicity bands influence 

on the selection rules and the oscillator strength in QW 

is shown in [2, 3] and in several other works. However, 

there are many semiconductors (narrow-gap II-V and 

one-axis strained III-V materials, chalcopyrite semi-

conductors, etc.), which are characterized not only by 

strong nonparabolicity of energy spectra but also ener-

gy dependent anisotropy of electron and holes energy 

bands due to the one axis symmetry of these crystals. 

In this paper we construct theory of optical absorption 

in rectangular QWs with infinite barriers based on 

such materials. For this purpose we use modified ver-

sion of the eight-band Kane model (so-called quasi-

cubic approximation) [4] that is well proven itself in 

describing of electronic properties of these types of sem-

iconductors. The numerical calculations are done for 

cadmium arsenide ( 3 2Cd As ) that is the three-

dimensional Dirac semimetal with unique properties 

[5]. For example, this tetragonal crystal of the II-V fam-

ily has large mobility, low effective mass and highly 

nonparabolic conduction band. It exhibits an inverted 

band structure (optical energy gap 0
g
  ) like HgTe. 

The interest to the low dimensional structures of this 

material is caused by recent realization of an ultrafast 

broadband QW photodetector based on 3 2Cd As  [6].  

According to [7] the energy band structure of bulk 

3 2Cd As  near the Brillouin zone center is depicted in 

Fig. 1. They are four relevant to the optical absorption 

edge twofold degenerate bands (we have omitted small 

k -dependent spin splitting of bands): conduction I 

band; heavy-hole (hh) valence band split off the light-

hole (lh) valence band at 0k   due to the tetragonal 

field splitting and spin-orbit (so) valence band splits off 

these last two bands at 0k  . Fig. 1a indicates that 

conduction and heavy-hole valence bands come into 

contact only at two (with 0x yk k  ) equal in modulus 

zk  points and the thermal energy gap becomes zero at 

this points. Moreover, the dispersion law for this pair of 

bands in the vicinity of these points is linear in zk . 

Therefore, one can conclude that these two points are 

the Dirac points [8]. There is a “dent” in heavy-hole 

valence band between these points due to the exchange 

of curvature between it and the conduction band. There 

are the electronic states in this “dent”. When the direc-

tion of wave vector k  changes from zk  to ( )x yk k  the 

shape of all dispersion curves changes also and the 

small energy gap between conduction and heavy-hole 

valence bands appears (Fig. 1 b). All these effects are 

caused by the negative value of g  (optical energy gap 

between conduction and light-hole valence bands that 

appears at the  -point) and non-zero value of   (crys-

tal field splitting parameter).  

 

2. THEORETICAL CALCULATIONS 
 

The electronic wave function of our problem in the 

envelope function approximation (EFA) [9] can be cho-

sen in such a form [10]: 
 

 ( )
1 3 6 8

2 4 5 7

1 F S F Z F R F R

F S F Z F R F RN

 

 

      
    

      
r , 

 

where N  is a number of unit cells in crystal, 

  2R X iY    and symbols   and   mean the 

spin-up and spin-down functions, respectively. 

, , ,S X Y Z  are the periodic Bloch amplitudes trans-

formed as atomic s - and p - functions under the opera-

tions of the tetrahedral group at  -point. iF  are  
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Fig. 1 – Structure of 3 2Cd As  conduction and valence bands near k =0. The wave vector is: a) parallel to the main crystalline z -

axis; b) perpendicular to the main crystalline z -axis 
 

envelope functions satisfying the set of eight coupled 

differential equations, which in the case of quasi-cubic 

approximation in the first order perturbation theory 

can be represented in the following matrix form [10]:  
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Here 1 g    , 2 ( 3)       , 

3 ( 2 3)     , 1 2 3   ,    ˆ ˆ ˆ1 2 x yk k ik   , 

ˆ ˆ ˆ, ,x y zk k k  are the components of the operator ˆ i  k  

Thus, the model along with g  and   parameters re-

quires knowledge of the values of spin-orbit splitting of 

valence band   and interband momentum matrix ele-

ment P . 

Let us express 3 8F F  in terms of 1F , 2F  and elim-

inate them by substituting in the first two equations of 

the set (1). Then we obtain two equivalent differential 

equations for 1F  and 2F : 
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Let the main crystalline z -axis is perpendicular to the 

two-dimensional layer’s plane. Then functions 1,2F  can 

be represented in form: 
 

 1,2 1,2 1,2exp ( ) ( )x yF A i k x k y z     , (3) 

 

where 1,2A  are the normalization constants; ,x yk k  are 

the components of two-dimensional wave vector k  with 

modulus 2 2
x yk k k   , which characterizes electronic 

motion in the interface plane. Substituting right hand side 

of the equality  (3) into the equation (2) we obtain: 
 

  
2

1,2 2
1,2 2 1 1,22

( )
( )

z
A f f k z
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, (4) 
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If one chooses the origin of z -axis in the middle of two-

dimensional layer with thickness d than the hard wall 

boundary conditions take the following form: 

 2 0d   , so, in this approximation taking into ac-

count (4) we obtain: 
 

 
p

p

for p

for p

( ) cos( ) ( 1,3,5 ) 1

( ) sin( ) ( 2,4,6 ) 1

n n

n n

z k z n

z k z n

   

    

, (5) 

 

where p 1   is a parity, nk n d , and 

 

 
2 2

1 2( ) ( ) ( ) .nf k f k      (6) 

 

The dispersion equation (6) describes four sets of 
subbands with different numbers n . Each subband is 

twofold degenerated for the arbitrary value of k . The-

se are: conduction subbands ( c ), heavy-hole valence 

subbands ( 1j ), light-hole valence subbands ( 2j  ) 

and spin-orbit split-off valence subbands ( 3j  ). Here 

index j  enumerates sets of valence subbands in de-

creasing order of their energies. The independence of 

energy spectrum from the direction of k  is the conse-

quence of coinciding of main crystalline axis with the 

normal to the two-dimensional layer’s plane. 

Because of 1F  independence from 2F  we have two 

independent orthogonal functions ( ), r  which we 

enumerate by index 1,2.   The rest of functions 

3 8F F  can be found using (3), (5) in terms of F  as 

,i iF c F    where the coefficients ic   listed in Table 1. 

Therefore, in our case the wave function of electron 

Table 1 – The coefficients ic   
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Note: P̂  is the operator that changes sign of the p ( )n z  parity. 

 

At fixed value of modulus k  depends on type of sub-

band ( c  or j ), quantum numbers p, ,n  and the value 

of polar angle  arctan .y xk k   

Taking into account the relations 
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(here iu  is the Bloch amplitude, ij  is the Kronecker 

symbol) and considering that envelope functions vary 

slightly under the crystal volume V  one gets: 
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(here we applied the first mean value theorem for inte-

gration). Without loss of generality we assume that 
2 2 2

1 2
A A A   

   and using expression (7) and 

normalization condition  
1 2

1     
 Ψ Ψ Ψ Ψ  

we derive 
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The knowledge of energy subband structure and 

wave functions allows deriving the expression for imag-

inary part of dielectric function i( )   that is respon

-sible for the optical absorption in crystals. According to 

[9] in the case of direct optical transitions the general 

formula for it has the following form: 

 

      
n,m

n m ,
2

2

i m n n m2 2
0 0

ˆ( ) , ( ) ( )
e

f f
m V


        

   
    k ku p . (8) 

 

where u  is the polarization vector of electromagnetic 

wave; ˆ i  p  is the momentum operator; ( )f   is the 

Fermi function;  n m      is the delta function. 

The summation in (8) is taking over all states for which 

the following conditions are executed: ,
 

k = k  where 

m , 

k  are respectively initial energy and wave vector 

of electron; n , 

k  are the energy and wave vector of 

excited electron. It should be noted that as-grown sam-

ples of 3 2Cd As  are degenerate n-type  semiconductors. 

However, the extreme electrostatic charge doping in 

single-crystalline thin films of this compound enables 

significantly lower the position of Fermi level up to 
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change in the type of conductivity [11]. That is why in 

the following below we assume that all states of the 

valence subbands are fully occupied while all conduc-

tion subbands are empty so the bracket m n( ) ( )f f   is 

equal to 1. In the case of 3 2Cd As  such a condition can 

be realized if the Fermi level corresponds to zero ener-

gy and the absolute temperature 0T  . 

Since the allowed values of vector 

k  fill the reciprocal 

plane with density of (4 )2V d  one can obtain from (8):  

 

 
, , ,
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           up
c jc jΨ Ψ . (9) 

 

In finding the optical matrix element 

ˆ
c c j jp n p n up

c jc j
Ψ Ψ  we took into account smoothness 

of spatial variation of envelope functions as compared 

to Bloch amplitudes and consider them as constants, 

while taking partial derivatives of the product i iF u  . 

Also we applied the technique of calculating of volu-

metric integral as it was done in the derivation of for-

mula (7) and considered that the selection rules in qua-

si-cubic model are as follows: 

0
ˆ ˆ ˆ ( )
x y z

S p X S p Y S p Z im P    (all the 

other types of matrix elements are equal to zero). As a 

result we obtained:  

 

 
, , ,

( ) ( ) ( ) ( ) ( )
2 4 22 2 220

2
0

ˆ
4c c j j

c j c j c j

p n p n cn jn cjn
p p n n n

m P k
k k d k k M k



 
 


 

        uup
c jc j A AΨ Ψ ,  

 

where for the transversal plane polarization of light 

zu  (


u = u ) 
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in the longitudinal polarization zu  (u = u ) 
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The following notations are introduced in the formulas 

(10-11): 
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Therefore, in the approximation used the only transi-

tions with 
j c
n n  are allowed. 

To execute integration over k


 in (9) one may use prop-

erties of the delta function. It is well known that 
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where we denoted zeros of ( )f x  on the interval from 
1
x  

to 
2
x  through 

0
x . In our case there may be (or may not 

be at all) only one value of k


 at which direct optical 

transition exists for fixed photon energy 
ph
   and 

pair of subbands. This value we denote as 
cjn

k


. Final-

ly,  we have 
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3. NUMERICAL RESULTS AND DISCUSSION 
 

As an example we consider the application of de-

rived expressions to the computation of energy and 

absorption spectrum in QW based on 
3 2

Cd As . As the set 

of band parameters of this material we used [7]: 

eV m107.4 10P    , eV0.1
g
   , eV0.3  , 

eV0.1  . Fig. 2 a, b shows its energy subbands ar-

rangement near 0k

  for two cases: nm50d   (a) and 

nm10d   (b). 

There are four set of subbands relevant to the opti-

cal absorption edge. 

It is clearly seen that in both cases light-hole and split-

off valence subbands “move” downward on the energy 

scale in a conventional manner with the increasing of 
number n . 

For the two other type of subbands the situation is 

more complex. In the first case the energy of 1n   

heavy-hole valence subband 11
(0) 0   and the bottom 

of appropriate conduction subband corresponds to the 

energy 0   at 0k

 . With increasing of number n  

the energy 1n
 , while staying negative at 0k


 , in-

creases, whereas the bottom of appropriate conduction 

subband corresponds to the energy 0   at 0k

 . 

Such a pattern exists up to a certain number 0
n  (for 

nm50d   0
3n  ) beginning from which top of each 

heavy-hole valence subband corresponds to the energy  
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Fig. 2 – The dependencies ( )k


  for the four sets of subbands 0k

 . The numbers 1, 2, 3 correspond to the values of the quan-

tum number n . (а) – nm50d  ; (b) – nm10d   

0   at 0k

 . At the same time bottom of appropri-

ate conduction subband corresponds to the increasing 

with rising of number n  energy 0   at 0k

 . The 

transition from the first to the second case should take 

place at critical value of d: nm
cr

23    
g

d P  (this 

relation can be easily obtained from equation (6) if one 

puts in it 1n  , 0k

 , 0  ). 

Let us now consider the peculiarities of interband 

absorption within the frameworks of derived expression 

(14). First of all, we note that the effective optical ener-

gy gap 
g

   in QW based on 
3 2

Cd As  should vary in non-

trivial way with the changing of thickness d , when 

d>
cr

d  (see Fig 3 a). This circumstance is caused by the 

anomalies discussed above in the position of the first 

few conduction and heavy-hole valence subbands. More 

exactly, such a modulation is periodic in d . The nodes  

n
d  of such “damped oscillations” can be easily obtained 

from the equation 
2 0

( ( ) ( ))
n

f k  

 : 

crn
d n d  There-

fore, the oscillations period is also equal to 
cr

d . With 

crn
d  d  

g
   increases in usual manner, when thickness 

of QW is decreasing. We can call this effect “blue shift 

delay” or “deferred blue shift”. 

The peculiarity ( )
g
d   of 

3 2
Cd As  considered above 

was earlier reported in [12] within the framework of 

model, which includes second order perturbation theo-

ry, but neglects spin-orbit splitting of valence band and 

nonparabolicity of bands as it is in our case. Here we 

present more comprehensive analysis based on the en-

ergy spectrum of QW for arbitrary orientation of quan-
tum confinement to the main crystalline z -axis calcu-

lated below. Let us introduce the axis transformation 
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where 0  is the angle between the main crystalline z-

axis and the normal to the two-dimensional layer 

plane. In the new coordinate system the equation (2) 

takes the following form:  
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The substitution exp ( ) ( )x yF A i k x k y z      
  

 into this equation leads us to the following ordinary differential 

equation:  
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and 2 2
x yk k k

    , arctan( ).y xk k    The solution of the equation (13) in hard wall approximations has form:  

 

p

p

for p

for p

( ) exp( 2)cos( ) ( 1,3,5 ) 1
,

( ) exp( 2)sin( ) ( 2,4,6 ) 1

n n

n n

z idz k z n

z idz k z n

      


       

 

 

where p= 1   is a parity, ,nk n d  and 

 

 
2 2 2 2 2 22

1 1 0 2 02 2
1 0 2 0

( )
( ) ( ) sin cos ( )sin ( )cos .

( )sin ( )cos
n

f
f k f f k

f f


        

   


 
         

 (14) 

 

Therefore, with 0 0   the energy spectrum is anisotropic in the reciprocal plane. It should be noted that with 

0k   there are two extra spurious solutions [13] of the equation (14) so, one has to take into account only that 

four solutions, which occur with 0k  .  

Due to the condition 
 

 p p pp

2

2

( ) ( ) ( 2)
d

n n nn
d

z z dz d     


    

 

for all angles of 0  the only transitions with 0n   are allowed. The extremum of each energy subband is located 

at 0k  , so the equations for finding energy levels, between which direct optical transition take place from (2B), 

has following form: 
 

 
2 2 2

1 0 2 0( ) ( )sin ( )cos .nf f k       
 

 (15) 

 

In Fig. 3 b-d there are shown theoretical depend-

ences ( )
g
d   for different angles 

0
  between the main 

crystalline z -axis and the normal to the two-

dimensional layer’s plane calculated with the help of 

numerical solutions of the equation (15). The following 

patterns are clearly seen: 

1. The considered behavior ( )
g
d   takes place with 

0
0  ; 

2. The oscillations period rapidly increases with rising 

of 
0

 , reaching the value of 132 nm at 
0
90  ; 

3. The 
g

   value, which corresponds to the minima 

of oscillations, becomes non-zero with 
0
0   this value, 

however, is very small ( 60 meV); 

4. The magnitude of oscillations rapidly decreases 

with 
0

 rising. 

 
 

Fig. 3 – The dependencies ( )
g
d 

 for different angles 
0

 : a) 0
0  ; b) 0

30  ; c) 0
60  ; d) 0

90   

The considered peculiarities of ,
0

( )
g
  d  dependence 

may be fully explained by the structure of heavy-hole 

valence band in the vicinity of  -point. Due to pres-

ence of “dent” in it, the energy level of each 1j   sub-

band with 1k   “moves” upward on the energy scale 

from the start of QW thickness decreasing. However, 
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this speed of “moving” is greater than the speed of con-

duction subband energy level “raising” with the same 

number of n on a certain interval of d changing. Be-

cause of this fact the energy gap, which is defined by 

the pair of the nearest conduction and heavy-hole ener-

gy levels with the same number of n, initially decreases 

and then begins to increase. Such an increasing further 

is replaced by the decreasing of 
g

   caused by the mu-

tual arrangement of 1n n    pair.  

 

 

 
 

Fig. 4 – The dependencies i ph( )    for the following 

thicknesses of a two-dimensional layer: (а) – nm50d  ; 

(b) – nm10d   

In Fig. 4 a, b there are presented results of numeri-

cal calculations of i ph( )   dependence in the case of 

transversal light polarization for the following thick-

nesses of QW: nm50d   (a) and nm10d   (b). The 

analysis of resulted curves shows that the transitions 

between heavy-hole and conduction subbands make 

absolutely predominant contribution to the optical ab-

sorption in infrared region. The interband absorption 

caused by the transitions from the light-hole and spin-

orbit split-off valence subbands is comparatively too 

weak to be neglected. The considered peculiarity comes 

from the fact that heavy-hole subbands energies of 

electrons that take part in the direct interband transi-

tions are too close to zero. For the same reason the ab-

sorption for longitudinal light polarization many orders 

of magnitude smaller than for transverse because the 

heavy-hole subbands energies of electrons that take 

part in the direct interband transitions are too close to 

zero (see expressions (10), (11)). 
 

4. CONCLUSIONS 
 

In the presented paper we developed the theory of 

optical absorption in rectangular QWs with infinite 

barriers based on bulk materials with anisotropic non-

parabolic bands. We used quasi-cubic approximation in 

eight-band Kane model and derived both wave func-

tions and the dispersion equation for finding electronic 

energy spectrum for such structures. Using these re-

sults we obtained the expression for imaginary part of 

dielectric function in the case of direct interband opti-

cal transitions. 

Further, we applied our theory for the numerical 

calculations of optical energy gap and interband ab-

sorption for 
3 2

Cd As  QW at its different thicknesses 

and orientation of quantum confinement to the main 

crystalline axis. 

It was shown that due to the Dirac-type of this ma-

terial several peculiarities should appear. These are 

energy gap oscillation and “blue shift delay”.
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