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In this paper, we investigate the influence of topological defects in a crystal lattice of a graphene na-

noscale and graphene flakes on their conductivity. By the direct Hamiltonian diagonalization for the gra-

phene electrons, we obtain the density of states, which was recalculated into a tunneling current between 

the graphene nanoribbon and the contacting material (metal, quantum dots). We observe the effect of the 

defect type and its location on the tunnel current characteristics. 
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1. INTORDUCTION 
 

As is well known, there are practically no crystals, 

all atoms of which would occupy a position with mini-

mal energy. There are two types of deviations from ide-

al positions: a permanent and a temporary. In this pa-

per, we study the permanent defects, and in particular 

point defects [1]. 

Such defects in the crystal lattice can be created in-

tentionally or appear randomly at the synthesis. Such 

topological defects due to the rearrangement of intera-

tomic bonds have a great influence on the properties of 

solids. 

Although structural defects can degrade the per-

formance of graphene-based devices, of-ten such devia-

tions from the excellence can be useful in some applica-

tions, since they allow new functional capabilities to be 

achieved. 

In graphene, which is a crystal with a hexagonal 

lattice [2], such defects are also observed. The simplest 

of these is the Stone-Wales defect [3-6], which occurs 

when one of the C-C bonds is rotated through an angle 

of 90◦, as a result we have that four hexagonal cells are 

transformed into two pentagons and two heptagons. 

It should be noted, because the Stone-Wales defect 

violates the crystal lattice symmetry, this leads to the 

appearance of a dielectric gap in graphene [7]. This 

makes it possible to use graphene in nanoelectronics. 

At the same time, such defects are the centers of pref-

erential adsorption of some chemical elements [8, 9]. 

This property can be useful in the impurity deter-

mining and the use of graphene as a highly sensitive 

detector of these gases. 

In addition to the Stone-Wales defect, in this paper 

we also consider another zero-dimensional defect of the 

vacancy type [10, 11]. Such defects take a place in local 

changes in the interatomic distances and cause the 

distortions in the crystal lattice. In this case, an in-

crease in the resistance of the lattice to a further dis-

placement of the atoms is observed, which favors the 

increase in the strength of the crystal and their electri-

cal resistivity. 

2. METHODS 
 

In The influence of above mentioned defects we 

evaluate with the help of the tunneling effect arising in 

the contact of a graphene nanoribbon/flake with a met-

al and quantum dots. The given approach has already 

been tested by the authors in studying the sensitivity 

of graphene flakes and nanorings to impurities [12]. 

The Hamiltonian for electrons in graphene nanorib-

bon can be written in the following form: 
 

    . .i j
ij

H a a c c , (1) 

 

where   2.7 eV, the summation is over the nearest neighbors. 

A two-dimensional array of car-bon atoms is renumbered into a 

one-dimensional for the convenience calculations. One method 

of such numbering for the Stone-Wales defect (Fig. 1a) and for 

the vacancy (Fig. 1b) is presented in the Fig. 1 for graphene 

nanoribbon and graphene flake respectively.  
 

 
 

Fig. 1 – The geometry of the problem: a) the Stone-Wales 

defect; b) the vacancy 
 

Further, we numerically diagonalize the Hamiltoni-

an (1). Based on the Kubo theory we can write the ex-

pression for the current density of a contact [13]: 
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where (x) is the Dirac delta-function, the sum is de-

scribed the tunnel density of states for contact A and B 

respectively; nf(E) is the equilibrium distribution of 
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fermions with the energy Е; V is the voltage between 

the contacts; ,
A B

p q
E E  are the dispersion laws for con-

tact materials A and B with the momentums (p and q). 

Here we use the “rough” contact approximation, when 

there are the restrictions on the geometry of the con-

tact. 

 

3. THE MAIN RESULTS 
 

The dependence of the tunneling current (contact 

with metal and quantum dots) for the graphene flakes 

on the voltage for the vacancy defect is given in Fig. 2. 
 

 
 

Fig. 2 – Dependence of the tunneling current (contact with 

the metal – Fig. a, contact with the quantum dots – Fig. b) for 

the flake versus the voltage in the case of the vacancy defect. 

The solid line – flake without defects; the dotted line – one 

vacancy; the dashed line – two vacancies nearby 
 

The dependence of the tunneling current (contact 

with metal and quantum dots) for the graphene flakes 

on the voltage for the Stone-Wales defect is shown in 

Fig. 3.  

The dependence of the tunneling current for the 

rectangle nanoribbon on the voltage is presented in 

Figs. 4 and 5. 

In this work, we were able to estimate the effect of 

defects in graphene nanostructures on their conductive 

properties based on the obtained volt-ampere charac-

teristics for tunnel contacts of nanoribbons and flakes 

with a metal and quantum dots. Within the framework 

of the proposed approach, the system is able to detect 

the presence of defects in it. 

From given Figs. 2 and 3 it can be seen that the de-

fect introducing rather change the current-voltage 

characteristics (CVC) of the contact with the metal and 

quantum dots. At the same time, a placement of the 

defect does not have so much influence on the CVC (the 

dotted line and the dashed line in Fig. 2 and 3). 

For the metal case, we see a significant diodes effect. 

 
 

Fig. 3 – Dependence of the tunneling current (contact with 

the metal – figs. a, contact with the quantum dots – figs. b) for 

the flake versus the voltage in the case of the Stone-Wales 

defect. The solid line – flake without defects; the dotted line – 

defect in the middle of the flake; the dashed line – defect near 

the border of the flake. 
 

 
 

Fig. 4 – Dependence of the tunneling current (contact with 

the metal – Fig. a, contact with the quantum dots – Fig. b) for 

the rectangle nanoribbon versus the voltage in the case of the 

vacancy. The solid line – the graphene nanoribbon without 

defects; the dotted line – one vacancy; the dashed line – – two 

vacancies near-by 
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Fig. 5 – Dependence of the tunneling current (contact with 

the metal – Fig. a, contact with the quantum dots – Figs. b) 

for the rectangle nanoribbon versus the voltage in the case of 

the Stone-Wales defect. The solid line – the graphene nano-

ribbon without defects; the dotted line – defect in the middle 

of the flake 
 

This fact allows us to apply the graphene nanoribbon 

and flakes (even with different defects) with the contact 

with metals as diodes. It can be useful for the practical 

applications. Because we can not always get the perfect 

graphene materials. 

As the results of the calculations showed, the influ-

ence of both considered defect types for the contact 

with the quantum dots is less pronounced than for the 

contact with a metal (Figs. 4 and 5). 

It must also be said that the presence of a defect 

like Stone-Wales and the vacancy defect is easier to 

detect in the graphene flake than in the nanoribbon. 

 

4. CONCLUSION 
 

In this section, we indicate the main results:  

1. The influence of the defect type on the tunneling 

current was observed.  

2. It was shown that neither the location of the 

Stone-Wales defect nor the number of vacancies leads to 

significant changes in the CVC of the tunneling con-tact.  

3. The results of the numerical experiment allows 

us to conclude that for the defect detection the contact 

with a metal is the preferred option. 
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