

Journal of Engineering Sciences, Volume 4, Issue 2 (2017), pp. H 1–H 8 H 1

H

JOURNAL OF ENGINEERING SCIENCES

ɀУРНАɅ ІНɀȿНȿРНИХ НАУɄ

ɀУРНАɅ ИНɀȿНȿРНЫХ НАУɄ

Web site: http://jes.sumdu.edu.ua

DOI: 10.21272/jes.2017.4(2).h1 Volume 4, Issue 2 (2017)

UDC 004.42

Model of the management program for a means complex of the design works

automation as a finite-state automaton

Zakharchenko V. P.
*
, Marchenko А. V., Nenia V. H.

Sumy State University, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine

Article info:

Paper received:

The final version of the paper received:

Paper accepted online:

November 11, 2017

November 28, 2017

December 1, 2017

*Corresponding Author’s Address:

victoriait@ukr.net

Abstract. For software development it is necessary to have its mathematical model. It is established that for a

means complex of the design works automation a model of a finite automaton is the best choice. The automatic ma-

chine has been chosen with a single feedback state, which asynchronously initiates the execution of design proce-

dures, on which there are Terms of References. For this an additional requested automaton is used. This automaton

implements the selection of design work according to a status of the initiated design procedure. Commands of de-

signers also are processed by a separate automaton. Situations arising in the automated design process and are associ-

ated with designers’ commands, are divided into five groups.

Keywords: program model, finite-state automaton, automation means, design works.

1 Introduction

Design takes the important place in the life cycle of

technical objects. It is so because at this stage efficient,

reliable and durable their functioning is provided. Fast

and ecological withdrawal of technical objects from the

operation also takes place at this stage. Manufacturing of

technical objects continues to grow nowadays. There is a

feature of modern phase of its development which recent-

ly takes place [1]. It means that the volume of design

works increases in ten times every ten years. At the same

time, labor productivity in manufacturing grows up to

1000 %, while in design and construction it grows only

up to 20 %.

The overcoming of this contradiction by means of ap-

plication the systems of design works automation

(SDWA) has led to success.

2 Statement of the problem

From the beginning of systems for design works

(SDWA) automation the algorithms, which were adapted

to specific objects, were offered for computerized execu-

tion of design procedures. The work [2] has generalized

experience of the initial stage of SDWA development.

There the proposed algorithm of design for a robotic

complex has been presented. It is clear, that development

and improvement of software for design in the conditions

of the progressing development of element base in the

presence of a rigid design algorithm is almost unpromis-

ing thing. This confirms the historical experience of de-

velopment of systems for design works automation, and

actually its absence.

Launching the logic schemes of design was the next

step [3]. Introduction of a logical description of the de-

sign process became an important stage, the essence of

which is to separate the description of the design process

from the software of its implementation. The lack of a

formal description of design processes and appropriate

information technologies have not given practical results

for the last four decades.

Substantially this has been promoted by commerciali-

zation of software and significant “advertising pressure”.

Under its influence, separate decisions of computerization

the constructing process without design, without complex

approach to the tasks solution inherent to a design stage

as one of the most important stages in life cycle of a

technical object have become widespread.

The biggest shortcoming is the lack of a computeriza-

tion for the design process management. Methodological

http://jes.sumdu.edu.ua/
https://doi.org/10.21272/jes.2017.4(2).h1

H 2 Computational Engineering

H

incorrect definition of the design works automation al-

lows managers of industrial enterprises and design organ-

izations to report about essential level of the design works

automation. Although design automation itself is practi-

cally absent, and its mechanization is at extremely low

level.

Therefore, the topical problem is to develop the scien-

tific and methodical basis of mechanization and automa-

tion of design works in general and to develop models of

the software which are considered in this paper.

3 Related works

It is necessary to develop the program according to the

type of solvable tasks. Nowadays it is steady to divide

programs into two types [4]. Programs which transform

the data (transforming programs) belong to the first type.

Programs which react to actions of the user (responding

programs) belong to the second type. In the pure form,

such programs are encountered extremely rarely. Usually

there are programs of the combined type. Reference of

the program to a concrete type is defined by the prevail-

ing part of the performed functions. The most successful

programs developments essentially take into account the

peculiarities of their functioning and use appropriate for-

malism (theory, models, methods and algorithms).

The programs complex of systems for design works

automation is developed as a combined complex with a

clear distribution of performed functions between pro-

grams. Programs which are used in the design procedures

are developed as transforming programs. They read the

output data from files, perform the corresponding design

calculation and write down results in the certain file.

Programs, by means of which the design process and its

management are organized, belong to type of responding

programs. Exactly the last ones as more complex pro-

grams are considered in this work.

The first from eleven fragments of a flowchart of the

technical object automated design is presented in Figure 1

from the work [2].

The analysis shows that this fragment contains four

from forty states of the decision-making program regard-

ing the directions of the continuation of the design. The

states of control for reading and writing the design data

are added to the mentioned states (ten cases on a frag-

ment). Therefore, it is clear that the main program of the

design process management has to belong to a type of the

responding programs. According to the chosen type of

programs, we use the corresponding model of the pro-

gram, which represents the main software as a state ma-

chine [5].

In native practice it is accepted to call such machine as

a finite-state automaton [6]. The theory of finite-state

machines considers several problems, implementation of

which guarantees that the proposed solution will match

the necessary requirements in the best way. Firstly, the

automaton must be minimal. The minimal automaton is

an automatic machine which has the smallest possible

quantity of states and implements the set function of out-

puts.

For any finite-state automaton the equivalent to it a fi-

nite-state automaton with the smallest number of states

can be constructed [7].

The minimality of the automaton provides the minimal

cost and the maximum reliability of work. Secondly, the

automaton has to give an opportunity of the transition

into any set state. This requirement provides the imple-

mentation of functional requirements completeness.

The authors’ choice of a finite-state automaton as a

model of software for automated design management is

supported by the current tendency to develop the control-

ling programs of various directions [8–10].

Application the modelling of the responding programs

in the form of finite-state automatons continues to be

investigated in various directions. They have been ana-

lysed below.

The work [11] is devoted to the development of logical

control programs models and corresponding formalism.

The finite-state discrete automaton as a management

program model is described by directed graphs as the use

of a large number of the machine states is supposed. The

problem of parallel processes management is solved by

the decomposition into several graphs. The problem of

coordination connected with the use of the synchronism

concept is solved separately.

In the work [12] the synthesis of control systems,

which use the microcontrollers, is presented. The offered

method of automatic programming is considered below.

This method is based on the formation of the program

model according to the structural scheme of a control

automaton new type. The new structural software model

differs by introducing the multiplexer for selection one

logical condition according to the code of the automaton

state. This condition is checked at each step of the pro-

gram model work. The offered method is focused on the

structural organization of automatons with an input mul-

tiplexer. The result of this variant of automatic program-

ming are high-speed programs with a minimal number of

commands of the program code.

The problem of ambiguities elimination during the

work of a finite-state automaton within the creation of

control program systems is considered in work [13]. The

structural scheme of the finite-state automaton model was

created by the authors. It was done by taking into account

the waiting time for the performance of functions and the

result of their performance, the counting of the events

number and stacks of states. It is concluded that the use

of a finite-state automaton in the field of the program

systems allows to determine the behavior of the program,

to minimize the number of errors in the program logic

and formalize the development process. The authors

found it convenient to use the index-matrix approach to

solve the problem of changing the automaton states.

Journal of Engineering Sciences, Volume 4, Issue 2 (2017), pp. H 1–H 8 H 3

H

Figure1 – Fragment of the automated design flowchart

H 4 Computational Engineering

H

In the work [14] the models of programs for manage-

ment of the parallel and distributed processes are present-

ed by three groups: the generalized models, the models of

data flows and the models of parallel processes with the

interaction between them. Preference is given to models

of the third group. At the same time it is specified their

shortcomings. For example, the models do not allow a

possibility of asynchronous interaction between processes

(only via the rendezvous mechanism) and do not contain

mechanisms for the creation of flexible templates of

management modules. A multi-level model of distributed

programs has been offered. It consists of the level of

module templates (the highest level), the levels of distrib-

uted and embedded modules, and the structural and regis-

ter level (the lowest level).

Along with this, it is recognized that such model can

be suitable for systems with a predetermined set of tasks.

However, it is not suitable for the models of programs for

design works automation because a means complex of the

design works automation has to be constantly extended

and be improved [3]. Models of programs can be built

both on the basis of one finite-state automaton, and on the

basis of their combinations.

So in the work [15] the model on the basis of parallel

automatic machines or one automatic machine, which has

a set of descriptions of simultaneous partial states, is

investigated. On the basis of sets of the atomic, partial or

full state of the parallel automaton and parallel inputs the

parallel functions of transitions and parallel outputs,

which are set by matrixes of transitions and outputs, are

defined. This way makes it possible to implement three

types of the processes interaction: synchronous, ordinary

and mixed. Conditions for the transformation of a parallel

automaton into parallel-sequential compositions of sim-

ple automatons also have been formed.

Additionally to the peer automaton there is a possibil-

ity to create the hierarchical structures of automatic ma-

chines. So in the work [16] the set-theoretic description

of such model has been investigated. There is a main

automaton on top of the hierarchy. Embedded automatic

machines perform subordinate roles and are located be-

low in the hierarchical structure. Information communica-

tions on reception a condition of the management object

and on giving to it certain management commands take

place at all hierarchical levels of the structure of the man-

agement automaton. The efficiency of the proposed hier-

archical model has been demonstrated both on Moore

machines and on Mealy machines.

In addition to hierarchical, the models use regular

structures in the form of cellular [17] and multitape struc-

tures [18].

Considerable attention continues to be paid to the min-

imization of finite-state automatons taking into account

previously adduced arguments and which are supported

by other researchers definitely. In the work [19] the solu-

tion of a problem of minimization for the automatic ma-

chine, behavior of which depends on the time when the

input command or event occurs, and to which the au-

tomaton responds, is considered. It is also shown that

there is a single minimal form for a fully determined

automaton with temporary restrictions. The algorithm of

minimization for a fully determined automatic machine

with temporary restrictions is offered. It has been pro-

posed on the basis of creation the splittings according to

such equivalent states, at which if there is the identical

number of identical commands at the outputs, we will

have the identical results.

The algorithms needed simultaneously for solution of

two problems of minimization of nondeterministic finite-

state automatons, vertex and arc ones, are given in the

work [20]. Taking into account the fact that the arcs cor-

respond to the functions performed by the automatic ma-

chine, the reduction of the arcs number is not acceptable.

It is so because the object that simulates such automaton

will not conform to the specified requirements. A useful

opportunity is the simultaneous construction of the func-

tions for the states markup.

Fuzzy machines are considered in the work [20] from

the position of using the minimax criterion for evaluating

their functioning if there are fuzzy commands on the

input. The results of this work can be used for processing

the dialogue of designers and constructors based on the

elements of their professional communication language.

4 Purpose of the work

The purpose of the work is to develop a model of the

functioning of the system software for a means complex

for the design works automation.

The research object is the organization of the technical

objects design process.

The research subject is the model of program imple-

mentation of the design process organization.

5 Research results

The process of the functioning the management pro-

gram of a means complex for the design works automa-

tion is the basis of the software tools functioning. It is

impossible in advance to predict all possible aspects,

structure and types of design works if it is necessary to

solve new tasks [3]. Despite this still there is a need to

develop and use the automation means. Therefore, it is

expedient to solve this contradiction by using a different

approach to the design of a finite-state automaton as a

model of means for design works automation instead of

its synthesis taking into account all performed functions

and transitions into all necessary states. To implement

this gained experience in theory of inventive problem

solving is used, for example [21]. According to provi-

sions of this theory the proposed solution is better when it

gets closer to the ideal end result. At the same time the

ideal end result is understood as that one, at which the

required function, is performed and the object itself,

which performs this function, is absent. It determines the

Journal of Engineering Sciences, Volume 4, Issue 2 (2017), pp. H 1–H 8 H 5

H

provision for the development of the design object struc-

ture of the minimum complexity.

For implementation of this provision the following

consecutive algorithm of development is used:

1) to offer the functional model of the investigated ob-

ject;

2) to choose an element, which implements the func-

tional model;

3) to improve an element for the implementation of a

full design process;

4) to supplement the element with necessary compo-

nents for the information technology implementation.

Under the condition of self-management and usage of

own mechanisms of actions performance, the functional

scheme of the work of a means complex for the design

works automation takes the form, which is shown in Fig-

ure 2, where ToR – Terms of Reference.

Figure 2 – Context diagram of the functioning

of a means complex for the design works automation

This diagram should be considered as a model of the

ideal tool, which in one step allows to perform the design

in accordance with the requirements of Term of Refer-

ence (ToR).

Due to the design of a new mechanical engineering ob-

ject (new structure and performed functions) every time,

it is impossible in advance to predict all possible logic

design schemes and corresponding processes of the work

of the design management subsystem. It is also impossi-

ble to offer the fixed order of the design and its program

implementation even for one object, its components of

different degree of complexity and various structures of

the construction, which are unknown in advance.

At the same time it is obvious that the management

subsystem must pass through a certain number of fixed

states, in which the analysis of the current situation is

carried out. Also the corresponding decisions according

to ways of the continuation of any process, both the man-

ufacturing design process and the auxiliary process (code

conversion, reformatting, etc.) are made.

Such behavior of a subsystem is implemented in the

models of finite-state automatons. They are offered for

use as information technology of processing of the cur-

rent data both about the mechanical engineering objects

design and about processes of its formation and interac-

tion of the components of human, information and soft-

ware complexes.

According to the accepted technology for the finite-

state machines design [22, 23], it has been carried out the

decomposition of the model from the Figure 2, which

takes the following form (Fig. 3), where ToRі – the state

of the design object structure; SDPі – the state of the

corresponding design process in accordance with the

implementation of manufacturing tasks.

Figure 3 – Decomposition of the generalized scheme of the finite-state automaton

This decomposition considers that a finite-state ma-

chine changes the waiting state if there is any change in

the state of the design process and the change of the state

of arbitrary components in the design object structure.

The automaton works asynchronously according to the

cyclic scheme with a feedback. For the transitions per-

formance (actions for design and management) additional

automatic machines for the performance of own transi-

tions are involved.

Such technique excludes a problem of the state uncer-

tainty: a possibility of performance of all transitions and

going through all necessary states. To exclude the need to

remember all previous commands and states, the states

vectors of the design object structure and the states of the

design processes are introduced.

The model of a finite-state automaton, which processes

the states of projects, has its structure shown in Figure 4.

The model of a finite-state automaton, which processes

the actions of designers according to the implementation

of design processes, is presented in Figure 5.

H 6 Computational Engineering

H

Figure 4 – Model of the finite-state automaton which processes the projects formation

Journal of Engineering Sciences, Volume 4, Issue 2 (2017), pp. H 1–H 8 H 7

H

Figure 5 – Model of the finite-state automaton which processes the commands of designers

For these models states are marked as ovals, transi-

tions (performed actions) as lines. In inscriptions condi-

tions are indicated firstly. The next there are actions per-

formed according to them.

 In the work [24] it is pointed out the complexity of

application the model of the finite-state automaton to the

distributed computer systems. The complexity exists

because of the practical impossibility of fixation the

structure of all its components. The use of such argument

is justified in a case of the parallel performance of inter-

connected, and as a result controlled, calculations. If the

asynchronous performance of the independent design

works is applied to this case, the given argument is not

significant. In this situation the state of each implemented

projects, which is fixed in vectors sets of a state of each

design procedure and each design object, is essential.

The offered linear sequence of states and actions guar-

antees performance of all actions and going through all

states. The single-step type of the automatic machines

work provides uniformity of their functioning and a pos-

sibility of their application to the design of objects with

any structure.

6 Conclusions

The process of functioning the management program

of a means complex for design works automation in the

form of a finite-state automaton was presented during the

performance of this research. The uniform description for

functioning of the software means for the organization of

automated design and its management was achieved.

7 Further work

If the mechanism of functioning of the software means

for the organization of automated design and its man-

agement is in the presence, it demands the development

the uniform information description of assignments for

design.

H 8 Computational Engineering

H

References
1. Prohorov, A. F. (1987). Konstruktor i EVM. Mashinostroenie [in Russian].

2. Budya, A. P., Kononuk, A. E., et. al. (1988). Spravochnik po SAPR. Tehnika [in Russian].

3. Zhuk, K. D. & Timchenko, A. A. (1983). Postroenie sovremennyh system avtomatizacii proektirovaniya. Naukova dumka [in

Russian].

4. Karpov, U. G. (2010). Model cheking. Verifikacija parallel'nyh i raspredelennyh programmnyh system. BHV-Peterburg [in Rus-

sian].

5. Fedotov, I. E. (2012). Modeli parallel’nogo programmirovaniy. Solon-Press [in Russian].

6. Amosov, N. M. & Artemenko I. A. (1974). Jenciklopedija kibernetiki. Ukr.-sov. encikl. [in Russian].

7. Gill, A. (1966). Vvedenie v teoriyu konechnuh avtomatov. Nauka [in Russian].

8. Zaboleeva-Zotova, A. V. & Orlova, U. A. (2010). Avtomatizaciya nachal’nuh etapov proektirovaniya programmnogo obespech-

eniya. Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta, Vol. 6 (8), 121–124 [in Russian].

9. Filatov, V. A. & Kozyr’, O. F. (2013). Model’ povedeniya avtonomnogo scenariya v zadachah upravleniya raspredel’onnymi in-

formacionnymi resursami. Inzhenernyj vestnik Dona, Vol. 26, No. 3 (26), 24–36 [in Russian].

10. Kozachenko, V. F. (2010). Effektivnyj metod programmnoj realizacii diskretnyh upravljajushhih avtomatov vo vstroennyh

sistemah upravlenija [in Russian].

11. Novozhilov, B. M. (2015). Primenenie grafov v razrabotke programm dlja PLK. Vol. 2, p. 6 [in Russian].

12. Muchopad, U. F. & Muchopad, A.U. (2014). Analiz i sintez upravljajushhih avtomatov slozhnyh tehnicheskih sistem. XII Vse-

rossijskoe soveshhanie po problemam upravlenija VSPU-2014, pp.7295–7306 [in Russian].

13. Smirnova, N. V. & Smirnov, V. V. (2014). Primenenie teorii konechnyh avtomatov v razrabotke programmnyh sistem. Tehnіka
v sіl's'kogospodars'komu virobnictvі, galuzeve mashinobuduvannja, avtomatizacіja, Vol. 27, 316–320 [in Russian].

14. Bolshakov, O. S., Petrov, A.V., et. al. (2015). Model' raspredelennyh programm dlja vstraivaemyh sistem. Vestnik Rybinskoj

gosudarstvennoj aviacionnoj tehnologicheskoj akademii im. P.A. Solovyova, Vol. 1 (32), 165–171 [in Russian].

15. Vorobev, V. A. (2006). Model’ parallel’nogo avtomata. Avtometrija, Vol. 42 (3), 85–93 [in Russian].

16. Kyzmin, E. V. (2006). Ierarhicheskaja model’ avtomatnyh programm. Modelirovanie i analiz informacionnyh sistem,

Vol. 13 (1), 27–34 [in Russian].

17. Schiff, J. L. (2011). Cellular automata: a discrete view of the world. John Wiley & Sons.

18. Furia, C. A. (2012). A survey of multi-tape automata. arXiv preprint, arXiv:1205.0178.

19. Tvardovskii, A. S. & Evtychenko, N. V. (2014). K minimizacii avtomatov s vremennymi ogranichenijami. Vestnik Tomskogo

gosudarstvennogo universiteta. Upravlenie, vychislitel'naja tehnika i informatika, Vol. 4, 77–83 [in Russian].

20. Melnikov, B. F. & Melnikova, A. A. (2011). Mnogoaspektnaja minimizacija nedeterminirovannyh konechnyh avtomatov.

Chast’ І: Vspomogatel’nye fakty i algoritmy. Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Fiziko-matematicheskie

nauki. Matematika, Vol. 4 (20), 59–69 [in Russian].

21. Orlov, M. A. (2006). Osnovy klassicheskoj TRIZ. Prakticheskoe rukovodstvo dlja izobretatel’nogo myshlenija. Solon-Press [in

Russian].

22. Lee, E. A. & Varaiya, P. (2007). Structure and Interpretation of signals and Systems. Lee & Seshia.

23. Karpov, Y. G. (2003). Teorija avtomatov. Piter [in Russian].

24. Cheremisinov, D. I. (2011). Proektirovanie i analiz parallelizma v processah i programmah. Belarusskaja nauka [in Russian].

	1 Introduction
	2 Statement of the problem
	3 Related works
	4 Purpose of the work
	5 Research results
	6 Conclusions
	7 Further work
	References

