
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 10 No 1, 01005(5pp) (2018) Том 10 № 1, 01005(5cc) (2018) 
 

 

2077-6772/2018/10(1)01005(5) 01005-1  2018 Sumy State University 

Modeling the Effects of Temperature and Doping Density on the Performance of  

Mid-infrared Quantum Cascade Lasers 
 

D. Sebbar1,2,*, B. Boudjema1,† 

 
1 LRPCSI, Université 20 août 1955-Skikda, B.P. 26, Route d'El-Hadaiek, 21000 Skikda, Algeria 
2 Laboratoire de Physique des Techniques Expérimentales et Applications de Médéa (LPTEAM),  

Université de Médéa, 26000 Médéa, Algeria 

 
(Received 03 October 2017; revised manuscript received 13 November 2017; published online24 February 2018) 

 
In this paper, we present the effects of temperature and doping density on the performance of mid-

infrared quantum cascade lasers of three-level system based on rate equation. With taking into account the 

thermally activated population of the lower and upper lasing states. The theoretical study based on rate 

equation model leads to evaluation the dependence of the threshold current density and output power with 

temperature and sheet doping density with ns  4.1, 5.2 and 6.5  1011 cm – 2. This model allowed us to eval-

uate the shift of the energy difference between the upper and lower state with the variation the doping 

density. The results also show that output power is decreased when the temperature and the doping densi-

ty are increased. The obtained results by the theoretical calculations are in good agreement with the exper-

imental data, the results obtained from this study can be useful to improve the performance of the quan-

tum cascade lasers. 
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1. INTRODUCTION 
 

The quantum cascade lasers (QCLs) are unipolar 

devices based on tunneling and intersubband transi-

tions, were proposed by R.F. Kazarinov and R.A. Suris 

in 1971 [1] and it was first realization by Faist et al, in 

1994 [2]. These lasers have many applications in science 

and technology as chemical sensors [3], anesthetic gas 

detecting, pollution monitoring, free-space optical com-

munication systems and infrared spectroscopy [4]. This 

kind of laser proved a large game of wavelengths rang-

ing from 3 m to 300  m that not available in other 

lasers. The optimization of the quantum cascade lasers 

design was initially focused on obtaining devices operat-

ing at room temperature with low threshold current and 

increased output power.  

Generally theoretical  studies of QCLs performance 

is required to calculated electron energy levels and 

associated wave functions in a structure with taking 

into account  the doping concentration of injector and it 

is analyzed by the Schrödinger-Poisson self-consistent 

equation[5]. An important aspect of QCL performance is 

its dependence on temperature, a variable applied elec-

tric field or an external magnetic field, extraction barri-

er, number of stage and injector doping concentration 

[6-13]. For other CaAs/AlGaAs plays a dominant role in 

preceding stimulated emission in the far-infrared rang 

which is the topic of investigation, both theoretical and 

experimental effort to improve the performance and 

efficiency of the QCLs. The modeling and optimization 

of QCLs depend mainly on the ability of controlling the 

doping, temperature, electric field.  

In this paper we use the rate equation model to cal-

culate the threshold current density and output power 

as a function of the temperature and the concentration 

density. We compare the results obtained by our theo-

retical model with experimental data available in litera-

tures. 

 

2. THEORETICAL CALCULATION 
 

2.1 Rate Equations 
 

The three-level system was based on rate equations 

material system used for describing the dynamic of 

carriers and photon numbers in each level for quantum 

cascade, where spontaneous emission can be neglected 

[14], and taking into account the thermally activated 

population in the lower and upper lasing state 2
thermn  

and state 3
thermn  respectively. 
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where Ni
 
is electron number in level i, is the photon 

number, (1 – )J and J are the current density inject-

ed into the lower and upper lasing level respectively,  

is the injection efficiency, L and W are the length and 

width of the cavity respectively, V is the volume of the 

cavity determined by V  NWLLp where Lp in this case 
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is the length of one period of the cascade laser struc-

ture, while N is the number of periods, e is the electron 

charge, 3, 2 are electron lifetime in the n  3 and n  2 

respectively, 21, 32 is electron scattering time between 

the states of the system,  is confinement factor, p 

represent the photon lifetime in the cavity obeys the 

following relation p
 – 1  c’(αw + αm) where c’  c/neff is 

the velocity of light in structure (neff is the refractive 

index of the cascade laser structure), αw is the wave-

guide losses while αm is the mirrors losses determined 

by αm  – ln(R1R2)/2L where R1 and R2 are represent 

the reflectivity of facet 1 and 2 respectively. 32 is the 

stimulated emission cross section given by: 
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where z32 is the optical dipole matrix element of transi-

tion,  is the QCL wavelength, 0 is the electric 

permittivity of free space T is the absolute tempera-

ture, 232(T) is the full width at half maximum FWHM, 

it’s temperature dependence is given by: 
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where nq(T): the phonon population, is determined by 

the Bose Einstein distribution: 
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where ħLO is the energy of the longitudinal optical 

phonon. 

The population inversion N  N3 – N2 between up-

per and lower levels is determined by rate equations 

and it’s given by: 
 

  

 
 

 
 
 

 

 

21 21
3 2 3

32 3

1 1

,

1
,

therm therm

ph

ph

T T J
T WL WLn WLn

T T e
N T

N

N sat T

 
  

 

  
      
  
   



 (5) 

 

where Nph,sat(T) is the saturation photon number in the 

cavity given by Hamadou et al. [14]: 
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where 3
 – 1  31

 – 1 + 32
 – 1 + th

 – 1, and th is the thermi-

onic lifetime of a electron undera electrical field as 

defined in ref. [15]: 
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where Eact is the activation energy, m* is the effective 

mass for the electron in the well, Lz is the approximate 

extent of the n  3 state wave function and K is the 

Boltzmann constant. 

The threshold current density relation can be de-

termined by Nth  V/Nc’32p [16], where Nth is ob-

tained by put Nph equals to zero and replacing J by Jth 

in the Eq. (5) we get the following relation: 
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2.2 Thermally Activated Population  
 

The thermally activated population of the upper 

state n3therm and the lower state n2therm play important 

role in the expression of the threshold current density. 

In a simplified model the thermal population n3therm 

and n2therm can be approximated by a simple thermal 

activation term at a temperature T and the sheet dop-

ing density of the injector ns as following: 
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where 3inj and 2inj are the energy difference between 

the upper and lower state respectively and the chemi-

cal potential (quasi-Fermi level) of the injector. The 

threshold current density can be depend on the tem-

perature and the doping injector as follow: 
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where eff(T) represent the effective lifetime, the first 

term Jth(T) is calculated by model of Hamadou et al 

[14], given for the sheet density of the injector ns0 

equals 4.1  1011 cm2, so Eq. (10) become: 
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By conformity of the Eq.11 with the relationship 

Jth(Ns)  (KA/cm2)  Jth(4.1)+(Ns – 4.1) reported in ref. 



 

MODELING THE EFFECTS OF TEMPERATURE AND DOPING DENSITY… J. NANO- ELECTRON. PHYS. 10, 01005 (2018) 

 

 

01005-3 

[17], which gives the threshold current density depend-

ing on injector doping, we find that  the first term 

Jth(4.1) depends on the sheet density from the reference 

concentration ns0 and it is equals to 4.1 1011 cm – 2, 

while in the second term Ns represents the sheet densi-

ty given in 1011 cm – 2,  is the constant. This conformi-

ty gives a system of two equations depends on the val-

ues of the temperatures T1 and T2 where their objective 

is to determine the values of the 2inj and 3inj, which is 

described as following: 
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where 1 and 2 are the constants extracted from the 

experimental results at the temperatures T1 and T2 
respectively. The Eq.12 formed a system of nonlinear 

equations with two unknowns 3inj and 2inj, for 
T2/T1  3 and we assume that x1  exp( – 3inj/kT2) and 

x2  exp(– 2inj/kT2) this system leads to solving a quad-

ratic equation as a flowing form: 
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with take the expression of 1 and 2  as following: 
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We obtain the expression of 2inj and 3inj as follows: 
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In this model 3inj and 2inj represent the shift of the 

energy difference between both the upper and lower 

level and the chemical potential of the injector with the 

their exact values, so 3inj and 2inj are affected by the 

variation of doping concentration, where the exact 

values of 2inj and 3inj are include in first  term of the 

threshold current density of the Eq.11. This allows us 

to replace 2inj and 3inj by 2inj and 3inj respectively. 

For example to calculate the exact value of the 2inj 

based on the relationship as Vp  (ħ + 2inj) [18], 

where Vp is the voltage drop per period that can be 

expressed as Vp  FLp, where F is the intensity of the 

electric field. 

 

2.3 Output Power 
 

Output power is related on the a number of photons 

and can be written by this relation: 

 0 / ,out pP Nph    (16) 

 

where ħ is the energy of lasing laser, and 0 is effi-

ciency given by: 
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3. RESULTS AND DISCUSSION 
 

In this section we treat the dependences of the 

threshold current density and output power with the 

variation of the temperature and doping density for the 

structure reported in ref. [19]. In our numerical  calcu-

lation we use the parameters at T  77 K [14, 17, 20], 

some parameters can be varied with temperature as 

32  32 ps, 21  0.3 ps, 3  1.4 ps, 232  12 meV and 

parameters fixed with temperature as   9 m, 

Z32  1.7 nm, neff  3.27, αw  18 cm – 1, αm  6 cm – 1, 

Eact  58 meV, N  48,   0.32, Lp  45 nm, 
Lz  10 nm, L  1 mm, W  34 m, 

m*  0.067 m0,1  0.91 KA,2  2.91 KA, T1  80 k 

and T2  240 k. 
 

 

 

Fig. 1 – Variation of threshold current as a function of the 

temperature, it also shows comparison between our model and 

experimental data[17] 
 

In Fig. 1 we plot the threshold current density as a 

function of temperatureas defined in Eq. 11 with dop-

ing density ns  4.1  1011 cm – 2, in this case the second 

term in Eq. 11 depend on the variation of doping densi-

ty which vanish when 2inj equals to the 3inj and 

take the value of 7.49 meV, the model in this case is 

identical to the model reported by Hamadou et al. [14], 

our model shows that at T  292 K we have 10.22 % 

error compared with the experimental results reported 

in ref. [17], this error due to the variation of fractional 

injection  where in our calculations takes the fixed 

value equals to one for various temperature values.  

The dependence of the threshold current density 

with versus sheet doping density of the injector be-

tween 4.1 and 6.5  1011 cm – 2 is plotted in Fig. 2, it 

shows clearly that the proportionality quasi linear of 

the threshold current density with the sheet doping 

density, for sheet doping density of the injector 

5.2  1011 cm – 2 we find 2inj  7.2 meV and 
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3inj  7.8 meV as for the sheet doping density of the 

injector 6.5  1011 cm – 2 we find 2inj  6.98 meV and 

3inj  8.3 meV. Also Fig. 2 shows a comparison be-

tween the theoretical and experimental results, we 

notice that for the temperature T  240 K are in very 

good agreements, however for T  80 K are in good 

agreements with small shift corresponding to the sheet 

doping density 6.5  1011 cm – 2 this shift is probably 

due to the several parameters in our model taken fixe 

with the variation of the temperature, such as the 

wavelength, mode confinement factor, and the optical 

dipole matrix element of transition, where these pa-

rameters which expected to have a great impact on 

quantum cascade lasers performance. 
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Fig. 2 – Variation of threshold current as a function of the 

Sheet doping density of the injector, it also shows comparison 

between our model and experimental data [17] 
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Fig. 3 – Variation of threshold current as a function of the 

temperature 

 

Fig. 3 shows the variation of threshold current den-

sity as a function of temperature for different sheet 

doping density. The optical power of the injector be-

tween 4.1 and 6.5  1011 cm – 2, can be result that the 

threshold current density increase with the sheet dop-

ing density. 

The optical power is plotted in Fig. 4 and Fig. 5 as a 

function of injection current for different sheet doping 

density at temperatures T  80 K and T  240 K re-

spectively, therefore we noted that the optical power 

decrease with temperature and also with injection 

current and doping density. 
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Fig. 4 – Variation of output power as a function of the injec-

tion current at T  80 K 
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Fig. 5 – Variation of output power as a function of the 

injection current at T  240 K 

 

4. CONLUSION 
 

In this paper the rate equation model have been 

used by taking into account the thermally activated 

population in the lower and upper lasing states in or-

der to study the influence of both temperature and 

doping in performance of the quantum cascade lasers. 

Our numerical results show that the threshold current 

density increase with the temperature and doping den-

sity, however the output power decrease  when the 

temperature and doping density increase. We have also 

estimated the shift of the energy difference between the 

upper and lower state with the variation the doping 

density. The validity of these results obtained by our 

model are in very good agreement with the experi-

mental results.  
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