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The quaternary compound Cu2ZnSnS4 (CZTS) is considered as an alternative material to replace CIGS 

material in future manufacturing of thin film solar cells. In this paper, a comparative study of temperature 

effect on thin film CZTS (Cu2ZnSnS4) and CIGS (Cu(In, Ga)Se2) solar cells was leaded. For this purpose we 

used the one dimensional simulation program tool SCAPS-1D (Solar Cell Capacitance Simulator in one 

Dimension. The dependence of the CZTS and CIGS solar cells characteristics with temperature was inves-

tigated from 300°K to 360°K. The comparative results showed that the cell with CZTS had an improved 

behavior at high operation temperatures. The maximum power coefficients, depending on temperature var-

iations, were respectively – 1.8 mW/cm2 °K and – 7.84 mW/cm2 °K. 
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1. INTRODUCTION 
 

Solar energy is the most promising and powerful en-

ergy source among renewable energies. It provides an 

alternative solution to conventional energies. It is a low 

cost, clean and environmentally friendly energy [1]. 

In recent years, thin-film solar cells have drawn 

great attention due to their promising performances. 

Also, they play a significant role in reducing the cost of 

manufacturing photovoltaic modules. Potential candi-

date for thin film solar cells materials are: CdTe, Cu (In, 

Ga) Se2 (CIGS) and Si amorphous. For reasons of stabil-

ity, respect for the environment and the displayed 

yields, the CIGS compounds are the most emerging and 

the most promising [2]. 

The CIGS solar cell has a high absorption coefficient 

(  105 cm – 1); its conversion efficiency reached 21 % in 

2016 [3]. Also, it is considered as a semiconductor of 

future which will allow enhancing the conversion effi-

ciency of III-V tandem solar cells, due to its band gap 

which can achieve 1eV. This value of band gap permits 

to this compound to play the role of a third junction in 

III-V tandem solar cells [4].  

However, the use of relatively expensive and rare el-

ements such as indium (In) and gallium (Ga), in the 

production of CIGS solar cells, limits the production of 

PV CIGS modules on a large scale [5]. 

On another hand, the quaternary compound 

Cu2ZnSnS4 (CZTS) has been intensively examined as an 

alternative solar cells material due to its similarity in 

material properties with CIGS and the relative abun-

dance of raw materials [2, 6, 7]. The obtained results of 

Wadia et al. 2009 [8] indicate that the cost of raw mate-

rial for a CZTS PV technology is much lower than that 

of the three existing thin film PV technologies (CIGS, 

CdTe, and thin film Si). Thin film CZTS is also nontoxic 

and is prepared on a low-cost substrate such as a glass 

plate, a metal sheet, or a plastic sheet [6]. Furthermore, 

due to the high absorption coefficient of the CZTS ab-

sorber (  104 cm – 1), its direct band gap of 1.5 eV [9] 

and the good adaptation between the maximum quan-

tum efficiency of the materials and the maximum power 

of the terrestrial solar spectrum (AM1.5G) [10], this 

absorber is ranked among the best semiconductors used 

in the field of photovoltaic terrestrial, for power genera-

tion. Laboratory tests allowed obtaining average con-

version efficiency of about 12.6 % [11]. 

In order to lead comparative tests between the per-

formances of the new CZTS cell and those of the CIGS, 

the outdoor installation of the PV modules, in different 

locations, necessities to study their behavior with re-

spect to temperature which can reach 63 °C in desert, 

during summer period [12]. The study of temperature 

effect on solar cells allows us to quantify thermal losses 

in the solar cell. This helps a choosing of the most suit-

able material in the manufacturing of the solar cell that 

ensures optimal operation under climatic conditions of 

the chosen site.  

This work focuses on the simulation of CIGS and 

CZTS solar cells. The numerical solutions obtained by 

using solar cell capacitance simulator in one dimension 

(SCAPS-1D) will be used to improve solar cells perfor-

mances [13].  

The main objective of this research is also to study 

the behavior of CZTS and CIGS solar cells in high tem-

perature condition and to select the best one (i.e. the 

one having less thermal losses). 

 

2. MOTIVATION TEMPERATURE EFFECT ON 

SOLAR CELL ELECTRICAL PARAMETERS 
 

The numerical calculations were performed by the 

SCAPS-1D V.2.9 simulator, developed with Lab Win-

dows/CVI of National Instruments at University of 
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Gent. It has a user-friendly program interface and in-

cludes in his data output the five main parameters es-

sential to examine the behavior of solar cell. These pa-

rameters are: short circuit current density (JSC), open 

circuit voltage (VOC), fill factor (FF), conversion effi-

ciency () and quantum efficiency (QE) [2]. 

The analysis of the semiconductors is based, essen-

tially on the Poisson equation, conditions to the limits 

and electron- and hole-continuity equations. These are 

the basic equations who describe the different phenom-

ena involved in most photovoltaic structures. 

The Poisson equation links the variations of the 

electrostatic potential (electric field) to the local densi-

ties of load. It is expressed by [14]: 
 

 
2

2
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φ dE ρ

dx ε εdx
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   (1) 

 

where  is the total electric load in the semiconductor, 

ε0 and εr are respectively the permittivity under vacu-

um and the relative dielectric permittivity of materiel, 

φ is the electrostatic potential and n and p are the con-

centrations of the free carriers. The total electric load 

() is determined by the following equation: 
 

 ( )D Aρ q p n N N      (2) 

 

Where DN
  and AN

  are the densities of the ionized 

donors and acceptors. 

The continuity equations permit to determine, in all 

point and in every instant, the concentration of the 

carriers in a semiconductor. They are expressed as fol-

lows: 
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Where Gn and Gp are the optical generation rates of 

the electrons-holes pairs, Rn and Rp are respectively the 

rates of recombination for the electrons and the holes, 

nJ  and pJ  are the densities of the currents of the 

electrons and holes. 

A solar cell, under real operating conditions, can be 

assimilated to a current generator in which the direct 

polarization or darkness current Jobs (reverse satura-

tion current density) of the junction must be driven.  

A solar cell circuit is composed of a current genera-

tor with two diodes representing the behavior of the 

cell at darkness junction PN (Fig. 1). 

A mathematical model of the equivalent circuit of 

Fig. 1, is given by the following equations [6]: 
 

 

Fig. 1 – Equivalent circuit model for a real solar cell 

  

01

02 '

(
exp 1

( (
exp 1 ,

S
L

B

S S

ShB

q V JR
J J J

AK T

q V JR V JR
J

RA K T

  
     

   

     
       

     

 (5) 

 

where T is the absolute temperature in Kelvin, JL is 

the photocurrent, J01 and J02 are the two saturation 

current densities, A and A’ are the ideality factors of 

these diodes, Rs and Rsh are respectively the series and 

shunt resistances.  

The open circuit voltage is given by: 
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0 01 02  J J J  , is given as a function of temperature 

dependence: 
 

 3/ ( )n EgJo BT exp
mkT

  (7) 

 

Where B is an empirical parameter, k is Boltz-

mann’s constant, m and n are empirical parameters 

depending on a dominating recombination mechanism 

in a solar cell. 

A variation of the semiconductor band gap with a 

temperature is described by Varshni model [2]: 
 

  
2

   0 
 

( )G g
αTE eV E

T β
 


 (8)  

 

Where  and  are the coefficients of band gap tem-

perature dependence for the considered material and 

Eg0 is the band gap energy at T  0°K. 

The fill factor FF0 depends only on the quantity 

  OOC CVv KT  as shown in equation (9):  
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COv  is the normalized open-circuit voltage defined as 

follows:  
 

 CO

nkT
v Voc

q
  (10) 

 

Where n is the diode ideality factor. 

In real situations, the FF is very sensitive to para-

sitic resistances Rs and Rsh of a solar cell [2]: 
 

 0      (1 )sFF FF r   (11) 
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Finally, the conversion efficiency of the solar cell is 

given by:  
 

 oc scV J FFPout
Pin Pin

 
 ŋ  (13) 

 

3. THE STUDIED STRUCTURE 
 

The CZTS/CdS/ZnO and CIGS/CdS/ZnO structures 

have been considered for a comparative study of based 
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thin film photovoltaic devices. The two solar cells are 

formed by a similar Transparent Conductive Oxide 

(ZnO) and a same Buffer (CdS) materials but with dif-

ferent absorber materials (CZTS, CIGS). The window 

layer must be both conductive and transparent, so as to 

collect the electrons while letting the light pass. This 

layer consists of a conductive transparent oxide (TCO), 

on which a thin metal grid (Ni-Al) is deposited, so as to 

reduce the series resistance of the window layer. The 

generally used TCO is zinc oxide (ZnO), the buffer layer 

is an N type semiconductor located between the absor-

bent layer and the optical window whose gap must be 

greater than that of the absorber; its thickness is 

around 50 nm. Two roles are mostly attributed to him: 

one role is electrical and the other is protective; from 

an electrical point of view, the buffer layer makes it 

possible, among other things, to optimize the alignment 

of the bands between the CIGS and the window layer 

and to limit the recombination of the carriers at the 

interface of these two layers. It also makes it possible 

to protect the surface of the absorber during the deposi-

tion by sputtering of the ZnO layer, which can cause 

the formation of defects on the surface of the CIGS [15]. 

The schematic diagrams of the two structures a 

shown in Fig. 2 and physical parameters of 

CZTS/CdS/ZnO and CIGS/CdS/ZnO solar cells, used in 

the simulation, are shown in Tables 1 and 2.  
 

Table 1 – Front and back contact properties with series and 

shunts resistance of the two solar cells 
 

Cell properties 

 CIGS Cell CZTS Cell 

Cell temperature 300 K 

Series resistance (Ωcm –2) 0.3     [ 2 ] 2 [6] 

Shunt resistance (Ωcm –2) 3800  [ 2 ] 400 [6] 

 Front metal contact 

properties 

Electron surface recombi-

nation velocity (cm/s) 

1E7    [8] 1E7 [6, 7] 

Hole surface recombina-

tion velocity (cm/s) 

1E7    [8] 1E5 [6,7] 

Metal work function (eV) 4.45    [8] Flat band 

[6,7] 

 Back metal contact prop-

erties 

Electron surface recombi-

nation velocity (cm/s)  

1E7    [8] 1E5 [6,7] 

Hole surface recombina-

tion velocity (cm/s) 

1E7    [8] 1E7 [6,7] 

Metal work function (eV) 5.4      [8] 5.5   [6] 
 

Table 2 – Main material parameters CIGS/CdS/ZnO and 

CZTS/CdS/ZnO solar cell used in the simulation 
  

Semiconduc-

tor parame-

ter’s 

ZnO CdS CIGS CZTS 

Band gap 

(eV) 

3.3 

[8, 6] 

2.4 [8, 6] 1.15 [8] 1.5  [6] 

Dielectric 

permittivity 

(relative) 

9[8, 6] 10 [8],  

9 [6] 

13.6  [8] 10   [6] 

Electron 100 100 [8], 100  [8] 100  [6] 

mobility 

(cm²/Vs) 

[8, 6] 350[6] 

Hole mobili-

ty (cm²/Vs) 

25 

[8, 6] 

25[8],  

50[6] 

25  [8] 25  [6] 

NC effective 

density of 

states 

(1/cm3) 

2.2E18 

[8, 6] 

2.2E18 

[8], 

1.8E19[

6] 

2.2E18  

[8] 

2.2E18  

[6] 

NV effective 

density of 

states 

(1/cm3) 

1.8E19 

[8, 6] 

1.8E19 

[8], 

2.4E18[

6] 

1.8E19  

[8] 

1.8E19  

[6] 

Absorption 

coefficient 

(cm – 1) 

SCAP

S data 

SCAPS 

data 

SCAPS 

data 

2.5E4    

[6] 

 

 
 

Fig. 2 – Structure of the CIGS/CdS/ZnO and CZTS/CdS/ZnO 

solar cells used in simulation 

 

4. SIMULATION RESULTS 
 

Before undertaking a comparative study between 

CZTS and CIGS solar cells for different temperature 

conditions, the application study has been begun by 

calibrating the two structures according to published 

results with light illumination of (1000 W/m2) corre-

sponding to AM1.5G global spectrum and temperature 

of 300 K.   
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Fig. 3 – Comparison of simulated J-V characteristics of 

CZTS/CdS/ZnO and CIGS/CdS/ZnO under standard test con-

ditions 
 

The CZTS solar cell has been studied and optimized 

based on the optimized model of Malkeshkumar et al. 

2012 [16]. The other CIGS cell has been optimized ac-

cording to the experimental work given by Miguel in 
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Ref [17]. The simulation results allowed obtaining the 

J(V) characteristics, which are compared to results of 

the optimized cell presented in Refs. [17] and [16] as 

shown in Table 3. The obtaining results are in good 

agreement with those obtained by the Refs. [2, 17, 16]. 
 

Table 3 – Comparison of simulated J-V characteristics of 

CZTS/CdS/ZnO and CIGS/CdS/ZnO with literature ref. 
 

 Compari-

son 

Voc 

(Volt) 

Jsc 

(mA/ 

cm2) 

FF 

(%) 

 

(%) 

C
Z

T
S

-c
e
ll

 SCAP-1D 
Simulation 

0.991 19.42 68.7 13.19 

Optimized 
cell Ref[16] 

1.002 19.31 69.35 13.41 

C
IG

S
-c

e
ll

 SCAP-1D 
Simulation 

0.646 34.89 78.03 17.55 

Experi-
mental da-
ta Ref[17] 

0.674 34 77 17.7 

 

4.1 Temperature Effect on CZTS Solar Cell 
 

In this section, a J(V) characteristics of CZTS and 

CIGS based solar cells have been achieved in various 

temperatures ranged between 300 and 360 K. 
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Fig. 4 – Temperature dependence of J(V) characteristics of 

CZTS solar cell 
 

Table 4– Performances of CZTS/CdS/ZnO solar cell at various 

temperatures 
 

Temperature 

K- CZTS 

Voc 

(Volt) 

Jsc 

(mA/cm2) 

FF 

(%) 

 

(%) 

300 0,991 19,428 68,7 13,19 

310 0,974 19,531 69,34 13,16 

320 0,956 19,626 69,71 13,04 

330 0,937 19,714 69,85 12,87 

340 0,917 19,796 69,86 12,64 

350 0,897 19,87 69,6 12,37 

360 0,877 19,938 69,25 12,07 
 

From Fig. 4 and Table 4, a remarkable reduction on 

the open circuit voltage and the conversion efficiency, 

accompanied with a slight increase in the short circuit 

current and the FF, has been registered. A decrease of 

8.5 % in the conversion efficiency is noticed. 

4.2 Temperature Effect on CIGS Solar Cell 
 

For the CIGS solar cell, a very remarkable decrease 

has been obtained in the electrical parameter J(V) 

(Fig. 5). The conversion efficiency of the solar cell de-

creased from 17.55 % to 12.89 %. 
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Fig.5 – Temperature dependence of J(V) characteristics of 

CIGS solar cell 
 

When the temperature increases, the observed dim-

inution in the open circuit voltage (Fig. 4 and Fig. 5) is 

due to the increasing in the reverse saturation current 

density J0; this increase of J0 is mainly caused by the 

increase of the intrinsic carrier concentration ni and 

the decreasing in the band gap of the semiconductor 

material. Also, the increasing of cell temperature af-

fects the material conductivity, which conducts to deg-

radation of the solar cells performances. 
 

Table 5 – Performances of CIGS /CdS/ZnO solar cell at vari-

ous temperatures 
 

Temperature, 

K- CIGS 

Voc 

(Volt) 

Jsc 

(mA/c

m2) 

FF 

(%) 

 

(%) 

300 0,646 34,89 78,02 17,55 

310 0,625 34,638 77,25 16,7 

320 0,605 34,37 76,55 15,87 

330 0,584 34,128 75,9 15,08 

340 0,563 33,945 75,21 14,33 

350 0,542 33,819 74,44 13,61 

360 0,521 33,734 73,57 12,89 

 

4.3  Comparison Study 
 

In order to study the behavior of the two solar cells 

(CIGS and CZTS) with respect to temperature varia-

tion, a normalized value of solar cell performance has 

been examined as a function of temperature. The ob-

tained results, illustrated in Figs. 6-10, show that 

CZTS solar cell have a good behavior at high tempera-

ture condition in comparison with CIGS solar cell. The 

linear decrease of Voc and  (conversion efficiency) with 

increasing temperature could be explained by an in-

crease in the darkness current with temperature Fig 6. 

When temperature increases, the band gap becomes 

narrower; the electrons-holes pair’s recombination pro-

cess, between the conduction and valence bands, is 

then accelerated and leads to an increasing in the 

darkness current in the cell. The coefficient of the volt-

age variation to temperature ΔVoc/ΔT of CIGS and 
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CZTS respectively are 0.0021 volt/ K and 0.0017 

volt/ K. However, The FF also showed a tendency as 

similar as that of Jsc (Fig 7 and 8). The decreasing of 

FF and  with increasing temperature and efficiency 

degradation is mainly due to decrease in Voc. For CZTS 

structure, an improvement of FF has been achieved 

when temperature increases, which is in opposition 

with behavior of CIGS solar cell.  

The decrease in maximum power of CZTS and CIGS 

solar cells are, respectively – 1.8 mW/cm2 K and –

 7.84 mW/cm2 K, as shown in Table 6. 
 

Table 6– Coefficient of the maximum power to temperature of 

CZTS and CIGS solar cells 
 

 CZTS CIGS 

ΔPMAX / ΔT 

(mw/cm2/ K) 

– 1.8 – 7.84 
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Fig. 6 – Normalized output open circuit voltage of CZTS and 

CIGS solar cells as a function of temperature 
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Fig. 7 – Normalized output FF of CZTS and CIGS solar cells 

as a function of temperature 
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Fig. 8 – Normalized output current density of CZTS and CIGS 

solar cells as a function of temperature 
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Fig. 9 – Normalized output conversion efficiency of CZTS and 

CIGS solar cells as a function of temperature 
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Fig. 10 – Normalized output maximum power of CZTS and 

CIGS solar cells as a function of temperature 

 

5. CONCLUSION 
 

In this paper, we carried out a comparative study 

on the effect of temperature on performance of 

CIGS/CdS/ZnO and CZTS/CdS/ZnO thin film solar 

cells. Its effect on the solar cell parameters such as the 

open-circuit voltage (Voc), the short-circuit current den-

sity (JSC) and the conversion efficiency ŋ has been 

demonstrated. Simulation results showed a better be-

haviour of CZTS/CdS/ZnO in comparison with 

CIGS/CdS/ZnO solar cell. Moreover, the coefficient 

(ΔPmax/ΔT) in CZTS/CdS/ZnO became very small in 

comparison with CIGS/CdS/ZnO. These results boost 

the use of CZTS material in the manufacturing of pho-

tovoltaic modules expected to work at high tempera-

tures. 
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