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Zinc oxide (ZnO) is an n-type semiconductor with a large optical gap (3.4 eV) belonging to the transpar-

ent conductive oxides family (TCO). Strongly present as optical window in the chalcopyrite based struc-

tures CIGS and CIS. 

The structural, morphological, optical and electrical properties of ZnO thin films deposited onto glass 

substrates by ultrasonic spray pyrolysis (USP) technique have been investigated. For comparison and a 

better understanding of physical properties of undoped and (Al, In) doped ZnO  thin films, a number of 

techniques, including XRD, SEM, optical absorption method (UV) and four-point probe technique were 

used to characterize the obtained ZnO thin films. Structural analysis shows that all the films were found 

to be polycrystalline with a wurtzite structure and show a (1 0 1) preferential growth. Besides, we noted 

that the preferred orientation does not depend on the nature of dopant. The band gaps (Eg) varied from 

3.35 to 3.37 eV by Al and In dopants.  
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1. INTRODUCTION 
 

Zinc oxide (ZnO) is one of the most multifunctional 

semiconductor material used in different applications’ 

domains like optoelectronic devices [1], light emitting 

diode (LED) [2], gas sensors [3],  and photovoltaic de-

vices [4], owing to its direct wide band gap of 3.37 eV 

[5], n-type conductivity and high exciton binding ener-

gy of 60 meV [6]. On the other hand, it is one of the 

most potential materials for being used as a TCO 

(Transparent Conducting Oxides) because of its high 

electrical conductivity due to lack of oxidation and high 

transparency in the visible wavelength range. This 

property can be improved by a selective doping substi-

tuting Zn with various metals such as indium (In) [7], 

aluminium (Al) [8] and gallium (Ga) [9]. ZnO (doped 

and undoped) is currently used in the CIGS thin-film 

solar cell [10].  

Several deposition techniques have been used for 

the growth including, magnetic sputterig [11], laser 

deposition [12], sol-gel [13] and spray pyrolysis [14]. 

In the present work, undoped and (Al, In) doped 

ZnO thin films were prepared by ultrasonic spray py-

rolysis [15] onto glass substrate at temperature of 

400°C. 

This technique is attractive and widely used, be-

cause it is an inexpensive, simple, without toxicity and 

non-contaminating production process. ZnO can be 

doped with a wide variety of ions. The ZnO doping is 

achieved by replacing Zn2+ atoms of elements of higher 

valance such as In3+, Al3+, Sn4+ and Pb4+ [16]. The 

structural, morphological, optical and electrical charac-

terization of undoped and doped ZnO films were evalu-

ated. Such as better stoichiometry control, better ho-

mogeneity, low processing temperature, lower cost, 

easier fabrication of large area films, and having an 

easy coating process of large substrates. 

 

2. EXPERIMENTAL DETAILS  
 

2.1 Preparation of Thin Film 
 

Films were deposited on glass substrates thickness 

(1.35 mm) and size (75  25 mm2), these substrates 

were ultrasonically cleaned with acetone, methanol (for 

30 minutes) and finally washed by deionized water, in 

order to clean them.  

A spray ultrasonic technique was used to obtain 

undoped and (Al, In) doped zinc oxide thin films. The 

starting solution used for the films investigated here is 

composed with 0.1 M of zinc acetate dihydrate 

(C4H6O4Zn.2H2O). Doping sources were indium (III) 

chloride (InCl3), and aluminum (III) chloride hydrated, 

(AlCl3, 6H2O). Both, the precursor and the dopant 

source (with the doping ratio In/Zn, Al/Zn were fixed at 

5 %) were dissolved in methanol alcohol. 

The deposition substrates temperature was fixed 

equal to 400 °C, the distance between the substrate 

and the spray gun nozzle was fixed at 20 cm. The depo-

sition time was fixed at 5min for all samples. The se-

lected optimal temperature of the substrates is 400 °C 

because the deposited layers have the lowest sheet 

resistance and good transparency. After depositing the 

film, it was allowed to cool to room temperature. A 
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schematic drawn of the spray pyrolysis apparatus for 

the synthesis of the undoped and (Al, In) doped ZnO 

thin films is depicted in Fig. 1. 
 

 
 

Fig. 1 – Schematic diagram of spray pyrolysis process of ZnO 

and (Al, In) doped ZnO  thin films preparation 
 

The structural, morphological, optical and electrical 

analysis of films has been investigated by XRD, SEM, 

UV spectroscopy and four-point probe technique were 

used to characterize the obtained ZnO thin films. 

The substrate temperature was monitored with a 

thermocouple and controlled electronically. The thick-

ness of the films was determined by ellipsometry using 

SEMILAB Spectroscopic Ellipsometter. X-ray meas-

urements were done by the PANalytical X’PERT Pro 

Philips diffractometer with a CuKα radiation (λ = 

1.54059 Å). The morphology of samples was observed 

by scanning electronic microscope (SEM) Philips 

SEM505 (HT/15kV). The optical transmittance meas-

urements have been carried out with a spectrophotom-

eter (Cary 500) in the wavelength range (300-1200) nm. 

Finally, the electrical properties (sheet resistance and 

resistivity) of the films were measured using the four-

point probe conventional instrument. Therefore the 

samples were referenced IZO for In doped ZnO and 

AZO for Al doped ZnO. 

 
3. RESULTS AND DISCUSSION 

 

3.1 Structural Properties 
 

The XRD data was used to investigate the structur-

al properties before and after incorporation of (In, Al) 

in the ZnO thin films. The comparison of spectra with 

the (JBSD 36-1451) specifications ZnO confirmed that 

we have only the peaks of ZnO phase in the XRD spec-

trum. This can be the result of doping the crystalline 

ZnO or of amorphous phase formation. 

Figure 2 shows the recorded XRD patterns in the 

prepared ZnO thin films. As can be seen from figure 2, 

this patterns are composed with several diffraction 

peaks assigned to (100), (002), (101), (102), (110) and 

(103) planes where the strongest one is (101). 
 

 
 

Fig. 2 – Spectra of X-ray diffraction of: (a) undoped ZnO, (b) 

ZnO doped 5 wt % In (IZO) and (c) ZnO doped 5 wt % Al 

(AZO), thin films 
 

This suggests that all the elaborated films are poly-

crystalline in nature and have a hexagonal wurtzite 

structure with preferred orientation along the (101) 

plane [17]. Aluminum doping causes the peaks (102), 

(110) and (103) to emerge [Figure 2(c)], whereas indium 

doping causes its intensity to decrease [Figure 2(b)]; 

this result is in agreement with reference [18]. 

The lattice spacing was calculated using the Bragg’s 

formula [19]: 
 

                                                 (1) 
 

where (h k l) are Miller indices; dhkl is the lattice spac-

ing; θ is half of Bragg angle; and  is the wavelength of 

the target XRD. 

The lattice parameters (a, c) were calculated using 

the following equation [20]: 
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The grain size (D) of undoped and (Al, In) doped 

ZnO thin films were evaluated to be between 12 nm to 

15 nm by using the Debye Scherrer’s formula [21]. 
 

   
   

      
                                              (3) 

 

Where  is the full width at half maximum (FWHM) 

of the diffraction peak;  

The grain size (D) values calculated for the 

2θ  36.25o are ZnO  15 nm, IZO  13 nm and 

AZO  12 nm. By including the indium and aluminum 

ions in the ZnO lattice the crystal order is decreased. 

The AZO films grow mainly oriented in the [101] di-

rection, this result was found by Benhaliliba et al [22]. 

Aluminum doping induced a decrease in average grain 

size. Many authors have reported that Al doping de-

crease the grain size due to the substitution of Zn ions 

(Rionic  0.074 nm) by the Al ion (Rionic  0.054 nm) and 

the difference between them [23]. 
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The lattice parameters (a and c) and grain size in 

the direction (101) are sensitive to the nature of the  
 

Table 1 – Specific parameters of undoped and doped ZnO thin 

films deposited on glass substrate at 400 °C 
 

 
 

doping (Table 1). This result is in agreement with 

Merike Kriisa et al. [24]. The values for doped films are 

smaller than for undoped films. This can be attributed 

to microdeformations produced by residual stresses 

[25]. Calculated values for lattice parameters are in 

good agreement with JCPDS data. The ratio value c/a 

for the AZO layer is identical to the standard value 

(JCPDS). Thus, aluminum doping improves the crystal-

line quality. 

 

3.2 Morphological Properties 
 

The morphology of the surface of our layers was an-

alyzed by SEM microscopy (Secondary Electron Micro-

scope). Figure 3 shows the SEM images of the undoped 

ZnO, IZO and AZO thin films deposited on glass at 

400 °C. The SEM images (Fig. 3) show that the depos-

ited ZnO films are continuous, dense and distributed 

over the entire area with a rough surface. 
 

 

 

 
 

Fig. 3 – Surface SEM micrographs for (a) ZnO, (b) AZO and (c) 

IZO films deposited on glass substrate at 400 °C 
 

The results of the structural analyzes are confirmed 

by the SEM images (Fig. 3) which show a granular and 

polycrystalline morphology with a smooth surface of 

low roughness due to the small thickness of the depos-

ited layers with small rounded grains d an average 

diameter varying between 5 and 50 nm. From these 

images, it is clear that the ZnO, IZO and AZO layers 

have small uniform size grains in the form of nanoparti-

cles. However, the grain size as measured from the sur-

face images is higher than the values calculated from 

the X-ray diffraction measurements, indicating that 

these grains are probably an aggregate of crystallites. 

 

3.3 Optical Properties 
 

The optical properties of undoped ZnO, IZO and 

AZO thin films were investigated by means of optical 

transmission in the range (300-1200 nm) using a spec-

tro- photometer. The transmittance spectra of these 

films are shown in Fig. 4. 
 

 
 

Fig. 4 – Transmittance spectra of: a) undoped ZnO, b) In-

doped ZnO and c) Al-doped ZnO thin films deposited onto 

glass substrate 
 

The transmission of the doped films is found to be 

superior to the undoped film. A maximum transmit-

tance of 85 % is obtained for undoped ZnO films at 

around 600 nm, whereas both the IZO and AZO films 

exhibit a maximum of 80 % at the same wavelength. 

The energy gap (Eg) of the ZnO films can be calculated 

by using the relation [26]: 

a 

b 

c 
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(   )   (     )                          (4)                
 

where «K» is a constant, «h» is Planck's constant and Eg 

is the band gap energy. The absorption coefficient () 

which is a function of the photon energy (hν) is calcu-

lated from the optical transmittance spectra results 

using the following equation [27]: 
 

  
    ( )

 
                                               (5)  

 

where «d» is the thickness of the film and «» is the 

absorption coefficient which is obtained from transmit-

tance «T». 
 

 

 

 

Fig. 4 – The optical energy gap of undoped and (Al, In) doped ZnO 

thin films: a) undoped ZnO, b) In-doped ZnO and c) Al-doped ZnO 

thin films 
 

Figure 5 shows how the direct energy gap of the 

same coatings mentioned previously has been estimat-

ed by extrapolating the linear part of (hν)2 plot versus 

photon energy (hν) to the wavelength axis. The optical 

band gaps of the ZnO, IZO and AZO samples are al-

most constant proving no structural modifications. ZnO 

film band gap is found to be 3.35 eV, the decrease of Eg 

is estimated at 0.01 and 0.02 respectively with In and 

Al doping. Similar effect has been observed for undoped 

and doped ZnO films grown by RF magnetron sputter-

ing [28]. 

The wide direct band gap makes these films good 

material for potential applications in solar cell due to 

decreases the window absorption loses and that will 

improve the short circuit current of the cell. 

 

3.4 Electrical Properties 
 

The variations of the film thickness (d), resistivity 

(), transmittance (T), refractive index (ns) and energy 

band gap (Eg) for undoped and doped ZnO thin films 

are presented in Table 2. 
 

Table 2 – XRD patterns analysis: Lattice parameters (a and c) 

and Grain size (D) in the direction (101) 
 

 
 

The electrical properties (sheet resistance and resis-

tivity) of the undoped and doped ZnO films are meas-

ured at room temperature by the four-point technique. 

The nature of the charge carriers were measured by 

the hot probe method. ZnO exhibits n-type conductivi-

ty. The films thickness and the refractive index were 

determined from the ellipsometric measurements. As 

can be seen, the thickness values are different and 

depend on nature of the dopant. This is due to the vari-

ation in the involved reactions during growth with the 

same doping ratio but with different precursors. The 

optical transmittance spectra for all undoped and 

doped ZnO films show a very good transmittance over 

the visible region, between 80 and 85 %. The optical 

band gaps of the films were determined to be approxi-

mately same values. The Eg values confirm the do-

pants’ contribuition ZnO in the thin film. The thickness 

increase might be attributed to the dopants that in-

crease the crystallisation nuclei concentration [29]. The 

Al-dopant might introduce secondary amorphous phase 

in the film network, which may also cause a decrease in 

the band gap energy. It was seen that the resistivity 

decrease with the doping sources. 

 

4. CONCLUSION 
 

In conclusion, undoped and (Al, In) doped ZnO thin 

films have been grown on glass substrate at 400 °C by 

the USP technique using zinc acetate dehydrate and 

doping sources (Al, In) were dissolved in methanol and 

deionized water. 

Effect of In and Al dopants on the physical proper-

ties of ZnO thin films have been investigated. X-ray 

diffraction studies confirm that the films have poly-

crystalline nature with preferred orientation along the 
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(101) plane. The grain size values of the films are found 

to be 15, 13 and 12 nm for ZnO IZO and AZO thin 

films, respectively. The structural parameters (thick-

nesses, lattice parameters and grain size) of the films 

were determined. These parameters changed with In 

and Al dopants. XRD indicates that the cristallinity 

enhance with the indium doping, but the average crys-

tallite grain size decrease with the aluminium doping. 

The SEM results indicates that all films are continu-

ous, dense and distributed over the entire area with a 

rough surface. The optical transmittance spectra for all 

undoped and doped ZnO films show a very good trans-

mittance over the visible region, between 80 and 85 %. 

The optical band gaps of the films were determined to 

be approximately same values. ZnO exhibits n-type 

conductivity. It was seen that the resistivity decrease 

with the Al and In doping sources. 

These results indicate that, AZO and IZO films 

were synthesized by low cost way via USP method can 

be considered as the promising candidate for solar cell 

applications. 
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