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Conductance and magnetoresistance of Si  B  whiskers with diameters 5-40 m doped with boron 

impurity were investigated in temperature range 4.2  300 К, frequency range 1105 Hz and magnetic 

fields with intensity up to 14 Т by method of impedance spectroscopy. Hopping conductance on impurity 

states was shown to be realized in the crystals in low temperature region. The studies allow us to obtain 

parameters of hopping conduction. On the basis of experimental results a miniature inductive element was 

created using silicon wire. 
 

Keywords: Silicon wires, Impedance spectroscopy, Metal-insulator transition, Inductive element. 
 

DOI: 10.21272/jnep.10(2).02038 PACS numbers: 73.43.Qt, 71.30. + h, 73.25. + i 

 

 

                                                                 
* druzh@polynet.lviv.ua 

1. INTRODUCTION 
 

Variable-range hopping conductance is of great im-

portance studies in low dimensional structures [1-4]. At 

the same time, silicon whiskers  make it possible to 

vary the perfection of the structure within wide limits, 

and thus to simulate different conditions for checking 

and clarifying existing representations and obtaining 

new data on the physical nature of many processes oc-

curring in solids [5]. 

The basis of the measurement of these characteris-

tics is the determination of the electrical conductivity of 

the crystal, which varies under the influence of the 

external factor (temperature, pressure, deformation) 

[6]. Therefore, the study of the behavior of the electrical 

conductivity of the crystals is an important fundamen-

tal and practical task. 

On the other hand, to predict the characteristics of 

the sensors it is important to know the concentration of 

alloying impurities in silicon crystals, which are diffi-

cult to determine by direct methods (Hall studies) due 

to the complexity of manufacturing Hall contacts to 

crystals of small diameter [7]. 

The use of an alternating signal (sinusoidal or 

pulse) makes it possible to neglect the interference 

from the industrial network and the thermo-e.r.f.,  that 

arise when dealing with heterogeneous materials, as 

well as in cases of measuring dynamic signals that 

change in time [8, 9]. The present work deals with 

studies of Si wire resistance at alternating current with 

frequency 0.01-250 kHz in temperature range from 4.2 

to 300 K. The conducted investigations allow us to cre-

ate miniature inducted element based on Si wire (see 

chapter 3).  

 

2. EXPERIMENTAL RESULTS 
 

Silicon wires crystals were grown by chemical vapor 

deposition method in vacuumed ampoules with bro-

mine using boron impurities for doping and gold as 

initiating growth. Crystals had 10-40 m in diameter 

and 0.3-1 cm length. The wires concentration varied 

from 2  1018 to 2  1019 cm - 3. Contacts to the crystals 

were created as a method of arc welding platinum mi-

crowire with a diameter of 15 m and a special method 

of anodizing silver on the surface of wire ends and then 

installing them on substrates with aluminum tracks. 

Both methods provide ohmic contact to the samples in 

the temperature range 4.2-300 K. Crystals resistance 

has been measured by four contacts method. Accuracy 

of resistance measurement is less than 1 %. During the 

experiments there were obtained three groups of crys-

tals, doped boron with concentration up to 

300K  0.0143 Ohmcm, 300K  0.0155 Ohmcm, 

300K  0.0168 Ohmcm in the dielectric side of the met-

al-insulator-transition (MIT). Frequency dependence of 

resistivity for Si whiskers was obtained by frequency 

generator in the range 0.01-250 kHz at various tem-

peratures in the range from 4.2 to 70 K.  

Temperature dependencies obtained at constant 

current in temperature range 4.2-300 K for typical 

samples are shown in Figures 1, 2. 
 

 
 

Fig. 1 - Change in the resistance for Si whiskers samples 

versus temperature with   0.0168 Оhmсm  
 

The transfer of charge carriers at low temperatures 

is due to hopping tunneling (in accordance with the 

Mott law) with a variable length of the jump with sim-

ultaneous absorption or phonon emission [10]. 

As it is known at low temperatures electron 

transport occurs through localized states due to hopping  
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Fig. 2 - Change in the resistance for Si whiskers samples 

versus temperature with   0.0143 Оhmсm 
 

 
 

Fig. 3 - Change in the resistivity for Si whiskers samples ver-

sus temperature (in accordance with the Mott law) with 

300K  0.0168 Оhmсm (1) 300K  0.0143 Оhmсm (2) 
 

conduction. In these experiments, the resistivity of the 

samples described by Mott hopping conductance with 

variable hopping descrihing by formula (1), since there 

are linear dependence ln()  f(T – 1/4) for samples 

shown in Figures 3 at low temperatures. 
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The value n in equation (1) for 3-dimensional space 

and a constant density of states at the Fermi level 

g(EF)  const is equal to 1/4 and the parameter T0 is 

defined by the following expression: 
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where a – localization radius of the wave function. This 

component of the magnetoresistance due to compres-

sion of the wave function in magnetic field is deter-

mined by following equation: 
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As follows from the equations (1-3), at synchronous 

experimental investigation of dependence of conductivi-

ty and magnetoresistance [6] versus temperature it is 

possible to find the density of states and the localiza-

tion radius charge carries. 

The conductivity of Si crystal by alternating current 

within the framework hopping conduction is described 

by Pollack relation, which takes into account hopping 

tunneling only between the two centers. Then the con-

ductivity describes by following equation [11]: 
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The calculations according to the above equations 

(1)-(3) allowed to calculate the parameter T0 and local-

ization radius: a  8.63 nm and 5.01 nm, respectively. 

Using the equation (4) and obtaining, for example, from 

frequency dependences shown in Fig. 4 radius of locali-

zation, one can calculate density of states at the Fermi 

level N(EF). According to [8] distribution of trap states 

near the Fermi level can be expressed by the equation: 
 

 3(4 / 3) ( / 2) 1FR N W    (5) 

 

Carrier jumping occur in a narrow energy region 

(ΔW  1.22 meV, a  8.63 nm, g(EF)  8.96 1017 eV cm - 3, 

8.68  R  10 nm) for samples with 

300K  0.0168 Ohm  cm, and (ΔW  1.16 meV, 

a  5.8 nm, g(EF)   9.8 1017 eV cm - 3, 5.9  R  6.2nm) 

for samples with 300K  0.0143 Ohmcm.  
 

 
 

Fig. 4 - Frequency dependence of conductivity for Si crystal 

(in accordance with the Mott law (AC)) with resistivity 

300K  0.0143 Оhmсm 
 

At charge carrier transport due to hopping conduc-

tion through localized in the bandgap states it should 

be noted that these localized states are randomly dis-

tributed in the sample volume and are divided by the 

energy barrier. Knowing the parameter s, which can be 

estimated from experimental studies of the frequency 

dependence of allow to evaluate the energy difference 

between the ground and free states: 
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Fulfilled calculations showed that in the sample 

Wm  3 meV. This value and the value crystal dielectric 

constant at high frequencies, where    0.8, allow to 
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estimate localization radius by the following equation:  
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To determine the whole activation energy region it  

was held differentiation of temperature region of the 

resistivity:  
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Similar results for hopping tunneling in the tem-

perature region 4.2 K were obtained by the authors of 

works [12, 13], however, the features of the low-

temperature transfer of charge carriers in the material 

are due to the presence of trapping states at the grain 

boundaries in the polycrystalline material. 
 

 
 

Fig. 5 – Change in the resistivity for Si whiskers versus re-

verse temperature with 300K  0.0168 Оhmсm 
 

Change in the resistivity for Si whiskers versus re-

verse temperature is shown in Figure 5, 6. According to 

equations (8) and the data from the linear plot with 

(T – 1) it was received the value of the activation en-

ergy: ε  2.3 meV for samples with resistivity 

300K  0.0168 Ohmcm and ε  1.86 meV for samples 

with resistivity 300K  0.0143 Ohmcm, respectively. 
 

 
 

Fig. 6 – Change in the resistivity for Si whiskers versus re-

verse temperature with 300K  0.0143 Оhmсm 

The results of calculations of the parameters of low-

temperature transfer of charge carriers according to 

experimental data samples are summarized in Table 1. 
 

Table 1 – Crystal parameters 
 

300K, 

Оhmcm 

N(EF), 

eVcm-3 

Rhop, 

nm 

aDC, 

nm 

aAC, 

nm 

WDC, 

meV 

WAC, 

meV 

W, 

meV 

0.0143 9.8 1017 5.8-6.5 5.8 18 1.16 2.6 1.8 

0.0168 8.96 1017 8.0-9.5 8.6 26 1.22 3.0 2.3 

 

*were 300K – resistivity of simple; N(EF) – density of 

states at the Fermi level, Rhop – long jump carriers; а 

the radius of localization of charge carriers at constant 

and alternating currents, respectively; WDC – the acti-

vation energy of charge carriers, calculated from the 

experimental data on a DC; WAC – the activation ener-

gy of charge carriers, calculated from the experimental 

data on a AC; W – the activation energy of charge car-

riers, obtained directly from experimental data. 

 

3. DESIGN OF MINIATURE INDUCTIVE 

ELEMENT 
 

As shown in Fig. 7, 8 for Si wires with impurity 

concentration, which corresponds to the vicinity to 

MIT, the Nyquist diagram reflects an inductive nature 

of the resistance in temperature range 4.2-300 K. A 

similar character was observed by the authors in 

[14, 15] in others compounds. 
 

 
 

Fig. 7 – Nyquist diagram for Si wires (300K  0.0168 Ohmcm, 

d  30 m) at temperature: 1 – 4.2 K, 2 – 30 K , 3 – 60 K, 4 – 70 K 
 

Explanation of the causes of the inductive nature of 

the impedance in Si wires samples is to look at the fea-

tures of distributing alternating current in a thin 

whiskers. The distribution of impurities is uneven 

across the wire section, in particular the greater 

amount of impurities is concentrated near the surface 

[16, 17]. 

According to this effect the processes of captures 

and reradiations of free carriers by surface states take 

place, which results in relatively lagging current volt-

age. The result of the above described process is ob-

served in the Nyquist diagram in the form of an induc-

tive nature of the impedance [18]. 
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Fig. 8 – Nyquist diagram for Si wires (300K  0,02 Ohmcm, 

d  30 nm) at temperature: 1 – 4.2 K, 2 – 10 K, 3 – 30 K, 4 –

 40 K, 5 – 50 К, 6 – 60 К, 7 – 70 К, 8 – 80 К 
 

The described effect was used for creating minia-

ture inductive element on the basis of Si wires. 

Figure 9 shows changes in figure of merit depend-

ing on frequency at temperature of liqiud helium for Si 

wire samples with boron concentration 1  1019 cm – 3. 
 

 
 

Fig. 9 – Dependence of figure of merit on frequency for Si 

wires at Т  4.2 К 
 

The comparison between characteristics of induc-

tive elements on the basis of Si wires and planar induc-

tive elements of other manufacturers (See Table 2) 

shows that they have some advantages, including ex-

tended operating temperature range, much lower oper-

ating current value, high figure of merit, what indi-

cates on their perspective application in microelectron-

ics [19-20]. 
 

Table 2 – Characteristics of Semiconductor Inductive Ele-

ments 
 

Manufacturer 

Max in-

ductance, 

mH 

Q 

Operating 

temperature 

range, 

К 

Max 

current, 

А 

Operating 

frequency, 

kHz 

Si 

(ρ300К  0.0168 

Ohmcm) 

0.9 1.5 4.2-300 1 100 

Si 

(ρ300К  0.0142 

Ohmcm) 

0.7 1.3 4.2-300 1 100 

Coilcraft 100 1 230-420 12.5 100 

Panasonic 470 0.8 230-420 12.5 100 

Toko 3300 1.1 230-420 27.2 100 
 

Thus, the design of semiconductor inductive ele-

ments based on silicon whiskers together with simple 

technology allows to provide high output characteris-

tics. 

 

4. CONCLUSIONS 
 

Analyzing the data obtained from the temperature 

dependence of conductivity it was showed that at rela-

tively high temperatures the conductivity is deter-

mined by carrier thermoacttivation carriers with ener-

gy of 1.86 and 2.3 meV. At lower temperatures 4.2-20 K 

the conductivity occurs due to hopping transport of 

charge carriers in localized states that lie in a narrow 

band of energies near the Fermi level (hopping conduc-

tivity with variable hopping length). Experimental syn-

chronous investigation of dependence of conductivity 

and magnetoresistance it was find the density of states 

and the localization radius charge carries as well as the 

average length of carrier jump. 

Obtained localization parameters from numerical 

calculations from DC measurements allow to calculate 

the radius of localization and jumping length for Si 

wires on the base of AC measurement. 
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