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Transparent electrodes based on conductive transparent oxides (TCO) are increasingly invading the 

photovoltaic (PV) field because of their unique ability to reconcile high transparency with good electrical 

conductivity. The TCO market is dominated by the Indium oxide doped with Tin (ITO) with a resistivity of 

30-80 Ω/sq and a transmittance of 90 % in the visible range. Yet, its cost is rising due to the high indium 

content, is one of the reason that encouraging research on alternative materials essential for the develop-

ment of PV technologies. It is in this theme that graphene, a material with exceptional properties, is tested 

as a design material for transparent electrodes for Si solar cells. In this paper, we optimized optically and 

electronically the graphene-based transparent electrodes (G-TE) by proposing a model of simulation based 

on artificial intelligence and specifically artificial neural networks (ANN) which is the ANN-model. There-

fore, to achieve an appropriate characterisation of a behaviour of G-TE for the Si solar cells, the ANN mod-

el has been performed to simulate and optimise different parameters of the G-TE, by controlling graphene 

layer number, tuning graphene work function, and deduce the suitable transmittance and resistivity in or-

der to have a complete adjustment for these parameters. Our study mentioned that a G-TE with three lay-

ers of graphene and a work function of 4.75 eV leads for a sheet resistance of 50 Ω/sq and transmittance of 

91.4 %; these results suggest that G-TE is a promising candidate in the TCO field. 
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1. INTRODUCTION 
 

The cost of photovoltaic technology is mainly related 

to the cost of the materials used and the cost of the 

manufacturing process. One of the most expensive ma-

terials is that used for the fabrication of the transpar-

ent electrode. A material commonly used as a transpar-

ent electrode in PV devices is ITO, which has excellent 

electrical and optical properties and can be produced on 

a large scale [1]. However, the large scarcity of indium 

reserves and a significant increase in demand has led 

to an increase in the price of indium. Therefore, explo-

ration of new materials for transparent electrode appli-

cations is necessary to achieve low cost and high effi-

ciency. Potential replacement materials include metal 

grids [2], metal oxides [3], and thin film metals [4]. Low 

sheet resistivity and high optical transmittance are the 

fundamental requirements for these electrodes. Cur-

rently, neither ITO nor the alternative electrodes satis-

fy the industry’s future requirements. 

Graphene, a two-dimensional material made up of a 

monolayer of carbon atoms oriented in a hexagonal net-

work, has attracted a great deal of scientific attention 

since its discovery in 2004 by K.S. Novoselov and 

A.K. Geim [5]. This is due to its exceptional properties, 

such as electronic mobility greater than 200 000 cm² 

V – 1s – 1 [5] and mechanical properties by making a flexi-

ble and extremely resistant material [6]. Moreover, the 

high transparency of a graphene monolayer, 97.7 % [7], 

makes it possible to envisage it as transparent electrodes 

for solar cells. 

Experimental studies have been performed to op-

timize the characteristic of the sheet of graphene used 

as solar cells transparent electrodes, for that several 

parameters are studied: layer number of graphene, 

resistivity, transmittance, doping status; the stake is to 

find the adequate recombination of this parameters 

which gives us better results.  

In this paper, a theoretical model is presented to 

simulate the performance of G-TE for solar cells using 

artificial intelligence interpreted by the ANN-model. 

Using parameters extracted from experiments, our 

simulation gives consistent results with tested perfor-

mance. Based on our theoretical analysis, two practical 

optimization treatments have been proposed: the work 

function (WF) and layer number (N) of graphene should 

be carefully adjusted and thereafter deduce the trans-

mittance (T) and sheet resistance (Rsh) of our G-TE. 

 

2. GRAPHENE AND ITS APPLICATION AS 

TRANSPARENT ELECTRODES IN PV 
 

2.1 Graphene Physics 
 

Graphene is defined as a single layer of carbon at-

oms arranged in a hexagonal lattice. Its atomic struc-

ture can also be used as a basic building block to con-

struct other carbon-based materials (Fig. 1a): it can be 

folded into fullerenes (zero-dimensional: 0D), rolled up 

into carbon nanotubes CNT (one-dimensional: 1D), or 

stacked into graphite (three dimensional: 3D). This 

carbon allotropes are all bonded by various combina-

tions of the four 2s22p2 orbital valence electrons of each 

carbon atom. 

In graphene (two dimensional: 2D), a carbon atom 

shares electrons with three nearest neighbours, in the 
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form of three sp2 bonds, leaving out-of-plane pz orbitals 

with one electron per atom. The three electrons forming 

the sp2 bonds are responsible for the outstanding me-

chanical and thermal properties of graphene (Fig. 1b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 – (a) Schematic of carbon atom and carbon allotropes, 

from 0D to 3D; (b) atomic orbitals of graphene; (c) energy dis-

persion of graphene, where the energy dispersion is linear for 

low energies near the six corners (Dirac points) of the two-

dimensional hexagonal Brillouin zone 
 

On the other hand, the electrons in the pz orbitals 

can easily hop between the neighbouring atoms, since 

the hopping energy is high ( 3.0 eV), and thus form 
the π bands in the conduction bands (Ec) and π* bands 

in the valence bands (Ev). These electrons contribute to 

the outstanding electrical properties of graphene. As 

shown in Figure 1c, Ec and Ev meet at the six corners 

of the first Brillouin zone (named as Dirac points) re-

sulting in a zero bandgap. Hence, graphene behaves 

like a semi-metal [5]. 

 

2.2 Graphene Preparation and Transfer 
 

Graphene can be fabricated mainly by two tech-

niques. Physical technique-which involves: 

 Micromechanical exfoliation of highly ordered py-

rolytic graphite (HOPG) [5], with this technique we 

obtain samples of high crystalline quality but their 

dimensions are inadequate to use as a transparent 

electrodes (samples in order of micrometre). 

 Sublimation of silicon from SiC at high tempera-

tures [8], but the high cost of SiC substrates is the 

major inconvenient to use this method for producing 

G-TE. 

Chemical technique-which involves:  

 Reduction of graphene oxide [5-9], the electrical 

properties of these films are lower. 

 Chemical vapor deposition (CVD) on metal cata-

lyst substrates [10]. 

The CVD method produce large- scale and high quality 

of graphene. In this method, usually, Cu foil or Ni lay-

ers are used as the catalyst, and CH4 is used as the 

carbon source with H2 as the carrier gas. The synthe-

sized graphene is usually transferred to the device sub-

strate with the help of a polymer PMMA [poly (methyl 

methacrylate)]. It is reported that graphene synthe-

sized by CVD electrically and optically outperforms 

ITO [11] and thus is promising in serving as a trans-

parent conductive film. 

With the growth of graphene on copper, we obtain 

samples of more than 95 % monolayer graphene [12]. 

The use of monolayer graphene makes it possible to 

have a better control over the transparency of the elec-

trodes produced by stacking several layers of graphene. 

Despite the exceptional mechanical properties of 

graphene [6], its thickness of a few atomic layers makes 

it very difficult to transfer its samples (on the order of 

centimetre) without causing rupture to the graphene. 

For this reason, most graphene transfers are carried 

out by adding the PMMA. 

For the step of metal sheet dissolution, different 

chemical solutions are used: solution of FeCl3 or HCl 

used for nickel sheet, and a solution of Fe (NO3)3 used 

for copper sheet. When the metal sheet is completely 

dissolved, the graphene film floating on the surface of 

the solution is then rinsed in deionized water and re-

covered directly on the desired substrate. The samples 

are then dried. It is then possible to remove the PMMA 

by immersing the samples in acetone.  

 

2.3 Graphene/Semiconductor Schottky Junction  
 

Because of the near-zero band-gap and high conduc-

tivity characteristics of graphene, the graphene/n-type 

semiconductor heterojunction can be taken as a met-

al/semiconductor Schottky junction (assuming the work 

function difference between the graphene and the sem-

iconductor is large enough). Recently, several studies 

proposed a photovoltaic model in which highly conduc-

tive, transparent graphene films is coated on n-type 

silicon (n-Si) wafer to form Schottky junction [13]. The 

results of these studies showed that in this Schottky 

solar cell, graphene as energy conversion materials not 

only contributes to charge separation and transport, 

but also functions as transparent electrode. 
 

 

n-Si 

Back contact 

Graphene 

Front contact 

 

Fig. 2 – A graphene/semiconductor photovoltaic device 
 

The mechanism of such Schottky junction solar cell 

can be understood qualitatively by plotting the energy 

band diagram. Figure 3a shows the energy diagram of 

a graphene/n-Si Schottky junction solar cell under il-

lumination. Due to the work function difference be-

tween the graphene (ϕG), and semiconductor (ϕS), a 

built-in potential forms in the semiconductor near the 

interface. Under light illumination above the bandgap, 

the photogenerated holes and electrons are separated 

and driven towards the Schottky electrode (graphene 
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film) and semiconductor layer, respectively, by the 

built-in electric field. We assume that the junction be-

tween graphene and semiconductor is an ideal Schottky 

contact, so the built-in potential ϕbi equals to the work 

function difference of these two materials: 
 

 ϕbi  ϕG ‒ ϕS  ϕG ‒ χ ‒ k T ln(ND/NC) (1) 
 

Where χ is the semiconductor electron affinity, ND and 

NC are the doping and the effective electron state con-

centration of semiconductor, respectively. As graphene 

is metallic, n-type silicon is chosen as the substrate to 

obtain a comparatively large built-in potential. If the 

graphene WF becomes larger, a stronger electric field 

will be formed on the semiconductor side of the junc-

tion, hence improving the junction's capacity to collect 

photo-generated carriers. The mechanism of tuning the 

WF of graphene is rather straight forward. As shown in 
Figure 3.b, the dispersion of mobile π electrons in 

monolayer graphene near the Dirac point in the first 

Brillouin zone is in a linear correlation. For intrinsic 

graphene, the Fermi energy is located at the crossing 
point of the π and π* bands, which renders the carrier 

density at a low level. However, if the Fermi energy is 

shifted away from the original position (Fig. 3c), more 

electrons or holes can be activated to participate in the 

conduction process. Therefore, graphene with shifted 

Fermi energy (i.e., modulated WF) performs better in 

conducting. 

The WF of graphene can be tuned either by an ap-

plied electric field or by proper chemical doping. For 

example, AuCl3 doping can improve the WF to as high 

as 5.1 eV. After chemical doping, the transmittance T is 

almost unchangeable, furthermore, the sheet resistance 

Rsh has rapidly decreased after chemical doping [13], 

and a several analysis of the dependence of Rsh on WF 

[13], from which it is known that Rsh decreases signifi-

cantly upon a tiny shift of WF from its intrinsic state. 

 
 

Fig. 3 – (a) The energy band diagram of the graphene and n-Si semiconductor, (b) The energy band diagram of the graphene/n-Si 

Schottky junction before doping graphene, (c) after doping graphene 

 

3. CHARACTERISATION OF G-TE WITH ANN 
 

The objective of this work is to create an ANN mod-

el that can faithfully reproduce the response of the so-

lar cells G-TE. For this, we must determine parameters 

that have influences on the performance of the G-TE, 

and thereafter we dispatch up theme into input param-

eters and output parameters. We have to optimise the 

transmittance and the sheet resistance of our G-TE by 

controlling the layer number and the work function of 

graphene. 

 

3.1 ANN Model Designing 
 

The ANN model of our design process can be sum-

marised in these stages [14-15-16]: 
 Collecting a database characterised by the input 
and output parameters. 
 Separation of the database into three subsets 
(training base, validation base and test base). 
 The choice of the architecture of the ANN (Selec-
tion of inputs, outputs, number of hidden layers, 
number of neurons per layer, the activation func-
tions ...). 
 Training the neural network on the bases of 
Training and validation. 
 Measurement of neural network performance on 
the test base. 

Our study focuses on the recent research on G-TE 

and all the graphene involved in this highlights are 

synthesized by the CVD method on copper foils. 

3.2 Collecting the Database 
 

The database includes the ANN inputs and associ-

ated outputs, and therefore it determines both network 

size (and hence the simulation time) and performance. 

For our training, we have used different curves, associ-

ating each value of N and WF of graphene an Rsh or T 

value of G-TE. 

To realize our ANN model the database is composed 

of 1390 elements divided into 03 sub-base: training 

base, validation base and test base. 

It should be noted here that there are no specific 

rules concerning this separation, however, in general 

the training set must include a significant percentage 

of the given base that can exceed 60 %, for validation 

base it represents between 20 % and 30 % of the data-

base, and finally the test base is between 10 % and 

25 % of the database, depending on the problem at 

hand [15-16]. In our work the training base is composed 

of 834 elements (60 %), the validation base is composed 

of 417 elements (30 %) and the test base is composed of 

139 elements (10 %). It is important to not use any el-

ement of the test base during the training. This data-

base is available only to the final performance meas-

urement.  

 

3.3 Choice of the Architecture of the ANN 
 

We can make a classification for an ANN according 

to its architecture, training selected and the activation 
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function used. The simplest and most known of ANN 

and most used for approximation and prediction prob-

lems is the multilayer perceptron (MLP) [15]. It con-

sists of several neural layers generally connected in a 

feed forward structure. The calculation of the output is 

done by propagating the calculations from left to right, 

with a supervised training. The activation function 

used is primarily the Sigmoïd function [15-16]. To drive 

the MLP, the training algorithm used is usually the 

algorithm of back propagation. According to [15-16] an 

MLP with two hidden layer having a Sigmoïdal activa-

tion function in the first layer and a linear function in 

the output layer, allows one to approximate the func-

tion studied with acceptable accuracy, provided you 

have enough neurons on hidden layers (Fig. 4). 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 – Architecture of the MLP used 
 

The structure of our MLP network is mainly deter-

mined by experiment, since the number of nodes in the 

input layer and the output layer is based on the num-

ber of input and output parameters, respectively. The 

case is not easy for the number of neurons in the hid-

den. In fact, with a limited number of neurons, the 

network will not be performing on training, and with a 

number of excessive weight, the network may have 

poor generalisation properties (phenomenon of over-

training).The solution to remedy to this problem is to 

build multiple architectures and select the most suita-

ble model for our application. We retain the architec-

ture that gives the minimum mean square error (MSE). 

 

4. RESULTS AND DISCUSSION 
 

Once all training steps are performed, our MLP is 

formed and performance measures compared to exper-

imental data is needed to test the reliability of our 

ANN model, for this we cross to the test phase. 

 

4.1 Test Phase and Measuring the Performance 

of the ANN Model 
 

In this phase, it is necessary to carry out tests to es-

timate the quality of the generalisation. Figure 5 shows 

the performance of the ANN model obtained for the 

curves used, the solid lines plot the experimental data 

and the dashed lines present our simulation interpret-

ed by our ANN model. The layer number N is an im-

portant parameter that influences both the transmit-

tance T and the sheet resistance Rsh of graphene, and 

thus determines the G-TE performance. Figure 5a and 

5b plot T and Rsh of intrinsic graphene as a function of 

N, respectively, using the experimental values and our 

simulation. As the layer number increases, the sheet  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 – ANN Model Performance for the different training curves 
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resistance decreases dramatically, which improves the 

G-TE performance, but the graphene film becomes less 

transparent, which in turn offsets the gains in G-TE 

performance. Figure 5c shows the analysis of the de-

pendence of Rsh on the WF, Rsh decreases upon a tiny 

shift of WF from its intrinsic value (4.66e V). Figure 5d 

summarizes the Rsh-T curves of both the reported ex-

perimental data and our simulation results. The com-

parison between the original database and that ob-

tained after training the ANN model indicates that the 

data obtained by the MLP are very close to the experi-

mental values and our ANN model expresses faithfully 

the behaviour of the G-TE. 

 

4.2 Prediction of G-TE Behaviour with the ANN 

Model 
 

The performance of our ANN model is tested for in-

puts that have not been confronted by our system when 

training. In this phase the ANN model predict the be-

haviour of the G-TE with different input values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 – ANN model prediction of G-TE behaviour 
 

Once the validity of the proposed method for G-TE 

behaviour has been verified, this methodology has been 

used to obtain different curves Rsh(WF) for different N 

values as shown in Figure 6a and Rsh(T) for different 

WF values as shown in Figure 6b. Our simulation are 

presented in dashed lines. The solid lines plot the ex-

perimental data.  
The engineering of work function WF and layer 

number N of graphene plays an important role to affect 

the final device performance. As shown in figure 6 the 

proposed model with the artificial neural networks pro-

vide an accurate prediction for the curves Rsh(WF) for 

different N values and Rsh(T) for different WF values of 

the G-TE. Our MLP was correctly trained; it tends to 

give reasonable responses. In table1, we selected input 

values who lead to output parameters close to ITO per-

formance (resistivity of 30-80 Ω/sq and a transmittance 

of 90 %). 
 

Table 1 – Description of the selected parameters 
 

Input Parameters  Output Parameters 

N WF (eV)  T (%) Rsh (Ω/sq) 

1 4.90  97.1 50 

1 5.10  97.1 16 

2 4.75  94.2 80 

2 4.80  94.2 45 

2 4.90  94.2 18 

2 5.10  94.2 7 

3 4.70  91.4 100 

3 4.75  91.4 50 

3 4.80  91.4 28 

3 4.90  91.4 12 

3 5.10  91.4 4 

4 4.70  88.7 70 

4 4.75  88.7 38 

4 4.80  88.7 20 

4 4.90  88.7 8 

4 5.10  88.7 3 

 

5. CONCLUSION 
 

The work presented in this article relates to the  

G-TE modelling with artificial neural networks is a 

very useful tool for PV system designers, because it 

gives a useful combination of the properties of gra-

phene as transparent conducting electrodes in Si 

Schottky solar cells, which provides high electrical con-

ductivity and good optical transparency. 

In comparison to similar solar cell devices using 

ITO as electrodes, G-TE solar cells can deliver compa-

rable photovoltaic performance. It is found that with 

three layers of graphene and a work function of 4.75 eV 

leads to a sheet resistance of 50 Ω/sq and transmittance 

of 91.4 %. 

The theoretical predictions with the ANN model 

suggest that several recombination of input parameters 

are validated, however a compromise between this in-
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puts and the G-TE production cost is an important 

point to study. With the projected predictions, the G-TE 

can be expected to pass the industry requirement for 

the next generation of TCO, including application in 

solar cells. 

 

 

REFERENCES 
 

1. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, 

J. alakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, 

K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, 

Nat. Nanotechnol. 5 No 8, 574 (2010). 

2. K. Tvingstedt, O. Inganäs, Adv. Mater. 19 No 19, 2893 

(2007). 

3. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S.R. Forrest, 

J. Narayan, J. Appl. Phys. 102 No 2, 023501 (2007). 

4. B.O’Connor, C. Haughn, K.H. An, K.P. Pipe, M. Shtein, 

Appl. Phys. Lett. 93 No 22, 223304 (2008). 

5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, 

Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Sci-

ence 306 No 5696, 666 (2004). 

6. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 No 5887, 

385 (2008). 

7. R. R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, 

T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 

320 No 5881, 1308 (2008). 

8. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, 

L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, 

E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, 

T. Seyller, Nat. Mater. 8 No 3, 203 (2009). 

9. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, 

A. Kleinhammes, Y. Jia, Y. Wue, S.B.T. Nguyen, 

R.S. Ruoff, Carbon 45, 1558 (2007). 

10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, 

M.S. Dresselhaus, J. Kong, Nano. Lett. 9 No 1, 30 (2009). 

11. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Pho-

ton. 4, 611 (2010). 

12. M. Biron, Croissance et transfert de graphène pour la 

fabrication d’électrodes transparentes (Canada: Univ. of 

Montreal: 2013). 

13. Y.C. Lai, B.S. Wu, S.C. Yu, P.Yu, G.C. Chi, IEEE 978, 

2436 (2013). 

14. F. Junod, M. Bornoz, A la découverte des réseaux de 

neurones. (Switzerland: Univ of Yverdon : 2002). 

15. M. Parizeau, Réseaux de neurones. (France: Univ of Laval:  

2006). 

16. Z. Meziani, Z. Dibi, Afr. J. Sci. Tech. Innov. Develop. 8 

No 4, 331 (2016). 

 

https://doi.org/10.1038/nnano.2010.132
https://doi.org/10.1002/adma.200602561
https://doi.org/10.1063/1.2750410
https://doi.org/10.1063/1.3028046
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1156965
https://doi.org/10.1126/science.1156965
https://doi.org/%2010.1038/nmat2382
https://doi.org/10.1016/j.carbon.2007.02.034
https://doi.org/10.1021/nl801827v
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186

