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GEOMETRIC MODELLING OF PORTFOLIO AND RISK IN MARKET EQUILIBRIUM 

 
The developing of the financial market contributes to paying attention to analyses its dynamics and quality of 

properties of the variables. The results of the analysis showed that among the complex technical applications the 
geometry approach in this area is an advanced method to explain the financial market behaviour. This paper expands 
the idea that the portfolio is balanced for quotation in marketing is equivalent to the number of points that lie on the 
quotation hyperplane in projective geometry has been extended in geometric concepts. In this paper, the new 
geometric approach was proposed to estimate the number of times the portfolio is balanced for quotation. In fact, the 
calculations were made in terms of the volume of the Halmos-Thomson (as the bridge between Feinsler geometry, 
integral geometry, and symplectic geometry). The highest number of risks in market equilibrium was mentioned in the 
geometric concepts mentioned. In this way, the proposed geometric approach allows to analyse situations with a 
portfolio under different conditions: financial market equilibrium, reduce the risk of investment risk, and others 
developments in the stock market. The author calculates the parameters through the surface area of a convex body 
of the corresponding projective spaces and Holmes-Thompson volume in notions of integral geometry (Radon and 
Fourier transform), Finsler Geometry (and Minkowski spaces) and symplectic geometry. Contrary to existing numerical 
methods, this approach allows one to reach the analytic solution and also, concludes that the highest number of risks 
in market equilibrium can be obtained by minimality of the introduced volume. 

Keywords: financial market, risk, Minkowski space, Finsler metric, Fourier transform. 

 
 
Introduction. Today, in the financial market it is important to pay attention to the dynamics and quality 

of properties of the variables. Among the complex technical applications of geometry in this area is an 
advanced approach to explaining the financial market behaviour [1-5]. A branch of geometry that is most 
closely associated with marketing concepts is projective geometry whose main notions of the financial 
market such as baskets, portfolios and the level of risk taking in market equilibrium can be translated in 
this framework [4], [6-7]. 

On the other hand, many problems in geometry and physics can be easily solved by a change of 
viewpoint. For example, if one considers the line, or the plane, instead of the point as the basic object of 
geometry, the outlook changes completely. This change in viewpoint leads naturally to integral geometry. 
This paper is concerned with some analogy of various classical formulas from integral geometry and its 
relation with Finsler geometry and symplectic geometry. 

This deep connection between these three geometries takes place by the type of volume named as 
Holmes-Thompson volume, [8], which its ties to convex geometry, integral geometry, and Finsler 
geometry. The other advantage of working with Holmes-Thompson definition is that there is a remarkably 
simple formula for the Holmes-Thompson area density of a Minkowski space in terms of the Fourier 
transform of its norm [9-11], which is the main object in this paper. 

The first step of this paper contains some preliminaries about Minkowski spaces, Finsler geometry 
and Integral geometry to cover all the key concepts in its entirety. In the sequel, the application of the triple 
chain of three geometries in financial markets has been proposed.  

The proposed methodology results in the calculation of the number of times that the portfolio is 
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balanced for quotation in marketing using the surface area of the convex body and Holmes-Thompson 
which has been proved in Theorem 1. Contrary to existing numerical methods, this theorem enables one 
to reach the analytic solution and also, concludes that highest number of risks in market equilibrium can 
be obtained by minimality of the introduced volume explained in Corollary 1. 

Basic geometric concepts. An 𝑛-dimensional manifold is a set 𝑀, together with a countable 

collection of subsets 𝑈𝛼 ⊂ 𝑀 called coordinate charts, and one-to-one functions 𝜒𝛼: 𝑈𝛼 → 𝑉𝛼  onto 
connected open subsets 𝑉𝛼 ⊂ ℝ𝑛, called local coordinate maps, which the coordinate charts cover 

𝑀; ⋃ 𝑈𝛼𝛼 = 𝑀, on the overlap of any pair of coordinate charts 𝑈𝛼 ∩ 𝑈𝛽  the composite map                        

𝜒𝛽 ∘ 𝜒𝛼
−1: 𝜒𝛼(𝑈𝛼 ∩ 𝑈𝛽) → 𝜒𝛽(𝑈𝛼 ∩ 𝑈𝛽) is a smooth (infinitely differentiable) function and distinct 

points of 𝑀 separates with distinct open subsets.  

A smooth curve 𝐶 on a manifold 𝑀 is parametrized by 𝜙: 𝐼 → 𝑀, where 𝐼 is a subinterval of ℝ. In 

local coordinates 𝑥 = (𝑥1, … , 𝑥𝑛), 𝐶 is given by n  smooth functions 𝜙(𝜀) = (𝜙1(𝜀), … , 𝜙𝑛(𝜀)) of 

the real variable 𝜀. At each point 𝑥 = 𝜙(𝜀) of 𝐶 the curve has a tangent vector, namely the derivative 

𝜙̇(𝜀) =
𝑑𝜙

𝑑𝜀
= (𝜙̇1(𝜀), … , 𝜙̇𝑛(𝜀)).  

The collection of all tangent vectors to all possible curves passing through a given point 𝑥  in 𝑀 is 

called the tangent space to 𝑀 at 𝑥, and is denoted by 𝑇𝑀|𝑥 .  

For an 𝑛-dimensional manifold 𝑀, 𝑇𝑀|𝑥  is an 𝑛-dimensional vector space, with {
𝜕

𝜕𝑥1 , … ,
𝜕

𝜕𝑥𝑛} 

providing a basis for 𝑇𝑀|𝑥  in the given local coordinates. The collection of all tangent spaces 

corresponding to all points 𝑥 in 𝑀 is called the tangent bundle of 𝑀, denoted by 𝑇𝑀 = ⋃ 𝑇𝑀|𝑥𝑥∈𝑀 . A 

vector field 𝑣 on 𝑀 assigns a tangent vector 𝑣|𝑥 ∈ 𝑇𝑀|𝑥  to each point 𝑥 ∈ 𝑀, with 𝑣|𝑥  varying smoothly 

from point to point.  

The space ⋀𝑘𝑇∗𝑀|𝑥  of differential 𝑘-forms at 𝑥 is the set of all 𝑘-linear alternating functions 

𝜔: 𝑇𝑀|𝑥 × … × 𝑇𝑀|𝑥 → ℝ. A (smooth) differential 𝑘-form 𝜔 on 𝑀 is a collection of smoothly varying 

alternationg 𝑘-linear maps 𝜔|𝑥 ∈ ⋀𝑘𝑇∗𝑀|𝑥  for each 𝑥 ∈ 𝑀, where for all smooth vector fields    

𝑣1, … , 𝑣𝑘 , 〈𝜔; 𝑣1, … , 𝑣𝑘〉(𝑥) ≡ 〈𝜔|𝑥 , 𝑣1|𝑥
, … , 𝑣𝑘|𝑥

〉 is a smooth real-valued function of 𝑥. For a 

collection of differential one-forms 𝜔1, … , 𝜔𝑘 , It can be formed a differential 𝑘-form 𝜔1 ∧ … 𝜔𝑘, using 

the determinantal formula 〈𝜔1 ∧, … , 𝜔𝑘; 𝑣1, … , 𝑣𝑘〉(𝑥) = 𝑑𝑒𝑡(〈𝜔𝑖; 𝑣𝑗〉), where the right-hand side 

being the determinant of a 𝑘 × 𝑘 matrix with indicted (𝑖, 𝑗) entry.  

Let 𝜋: 𝑇∗𝑀 → 𝑀 be the standard projection and let 𝑑𝜋: 𝑇(𝑇∗𝑀) → 𝑇𝑀 be its differential. The 

canonical 1-form 𝛼 on 𝑇∗𝑀 is defined by the equation 𝛼(𝑉𝑃𝑚
) = 𝑃𝑚(𝑑𝜋(𝑉𝑃𝑚

)), where 𝑃𝑚 ∈ 𝑇𝑚
∗ 𝑀 

and 𝑉𝑃𝑚
∈ 𝑇𝑃𝑚

(𝑇∗𝑀).  

The symplectic 2-form is defined as 𝜔 = −𝑑𝛼. A symplectic manifold (𝑀, 𝜔) is a smooth manifold 

𝑀 of even dimension 2𝑛 equipped with a non-degenerate closed 2-form 𝜔. Note that 2-form 𝜔 on every 
2𝑛-vector space is non-degenerate if and only if 𝜔𝑛 is a volume form.   

Let 𝑉 be a vector space and 𝜑: 𝑉 → [0, ∞[ be a norm that is smooth outside the origin. Set 𝐿 =
𝜑2

2
  

and consider the exterior derivative of 𝐿, 𝑑𝐿, as a map from 𝑉\{0} to 𝑉∗\{0}. The norm 𝜑 is said to be 

a Minkowski norm if 𝑑𝐿 is a diffeomorphism.  

For any nonzero vector 𝑣 ∈ 𝑉, there is an invertible linear map 𝐷(𝑑𝐿)(𝑣): 𝑇𝑣𝑉 → 𝑇𝑑𝐿(𝑣)𝑉∗. In fact, 

using the natural identification of  𝑇𝑣𝑉 with 𝑉, and 𝑇𝑑𝐿(𝑣)𝑉∗ with 𝑉∗, it may be think of  𝑔𝜑(𝑣) ≔

𝐷(𝑑𝐿)(𝑣) as a (symmetric) bilinear form on  𝑉: 𝑔𝜑(𝑣)(𝜔1, 𝜔2) ≔ (𝐷(𝑑𝐿)(𝑣)(𝜔1))(𝜔2).  

The norm 𝑔𝜑 is a Minkowski norm if and only if 𝑔𝜑 is positive definite. When the vector 𝑣 belongs to 

the unit sphere, structure 𝑔𝜑(𝑣) denoted as the osculating Euclidean structure at 𝑣 and the ellipsoid 
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𝐸𝑣 ≔ {𝑤 ∈ 𝑉: 𝑔𝜑(𝑣)(𝑤, 𝑤) = 1}, as the osculating ellipsoid at 𝑣. A smooth hypersurface in a finite-

dimensional real vector space 𝑉 is said to be quadratically convex if its osculating quadrics are all 
ellipsoids.  A vector space 𝑉 provided with a norm ‖. ‖ such that the unit sphere is quadratically convex 
is called a Minkowski space. 

A Finsler metric on a manifold 𝑀 is a continuous function defined on its tangent bundle such that 
𝜑: 𝑇𝑀\{0} → ℝ is smooth (away from the zero section) and its restriction to each tangent space is a 

Minkowski norm, means that the hypersurface 𝑆𝑚𝑀 ≔ {𝑣 ∈ 𝑇𝑚𝑀: 𝜑(𝑣) = 1} is quadratically convex 

and encloses the origin, (𝑀, 𝜑) is called a Finsler manifold. 
Throughout this paper, 𝑀 is a compact manifold and for every 𝑚 ∈ 𝑀 and any compact hypersurface 

𝐻 ⊂ 𝑇∗𝑀, the intersection 𝐻 ∩ 𝑇∗𝑀 is a convex hypersurface of 𝑇𝑚
∗ 𝑀 enclosing the origin and in each 

cotangent space 𝑇𝑚
∗ 𝑀 the intersection 𝐻 ∩ 𝑇∗𝑀 is a quadratically convex hypersurface enclosing the 

origin. In this way, it can be defined the Holmes-Thompson volume: 
 

The Holmes-Thompson volume of a 𝑛-dimensional Finsler manifold (𝑀, 𝜑), 𝑣𝑜𝑙𝑛(𝑀, 𝜑), is the 
symplectic volume of its unit co-disc bundle divided by the volume of the Euclidean 𝑛-dimensional unit 
ball  

 

𝑣𝑜𝑙𝑛(𝑀, 𝜑) =
1

𝜀𝑛𝑛
∫ 𝛼 ∧ (𝑑𝛼)𝑛−10

𝑆𝐻
∗ 𝑀

, (1) 

 

where 𝜀𝑛 is the volume of the Euclidean unit ball of dimension 𝑛. 
 
Let 𝐾 is a convex body. Then it admits at least one supporting hyperplane 𝐻 (affine here) for any point 

𝑥 of its boundary. The dual convex body 𝐾∗ of a given convex body 𝐾 is either the convex hull of the 

poles of the supporting hyperplanes of 𝐻.  
If the convex body 𝐾 be star-shaped with respect to origin in ℝ𝑛 and the boundary of 𝐾 is continuous 

in the sense that the Minkowski functional of 𝐾 defined by ‖𝑥‖𝐾 = 𝑚𝑖𝑛{𝑎 ≥ 0: 𝑥 ∈ 𝑎𝐾} is a 

continuous function on ℝ𝑛, then the Minkowski functional is a homogeneous function of degree 1 on ℝ𝑛 
is strictly positive outside of the origin, and K={𝑥 ∈ ℝ𝑛: ‖𝑥‖𝐾 ≤ 1}.  

The radial function of a star body K is defined by 𝜌𝐾(𝑥) = ‖𝑥‖𝐾
−1, 𝑥 ∈ ℝ𝑛. If 𝑥 ∈ 𝑆𝑛−1., then 

𝜌𝐾(𝑥) is the radius of K in the direction of 𝑥, i.e., the distance from the origin to the boundary of 𝐾 in the 

direction of 𝑥.  
 

Lemma 1 [12]. Let 𝐾 be an origin-symmetric star body in ℝ𝑛. Then, for 0 < 𝑝 < 𝑛, the function 

‖. ‖𝐾
−𝑝

 is locally integrable on ℝ𝑛. Also, if 𝑓 is a bounded integrable function on ℝ𝑛, then the function 

‖. ‖𝐾
−𝑝

𝑓(. ) is integrable on ℝ𝑛.    

In this way, for 𝜉 ∈ 𝑆𝑛−1  can be defined the parallel section function of 𝐾 in the direction of 𝜉  as a 

function on  ℝ given by 𝐴𝐾,𝜉(𝑡) = 𝑣𝑜𝑙𝑛−1(𝐾 ∩ {𝜉⊥ + 𝑡𝜉}) where {𝜉⊥ + 𝑡𝜉} is the hyperplane 

perpendicular to 𝜉  at distance 𝑡 from the origin and  can be stated as the following:  

𝐴𝐾,𝜉(𝑡) = ∫ 𝜒(‖𝑥‖𝐾)
0

〈𝑥,𝜉〉=𝑡
𝑑𝑥 which 𝜒(‖. ‖𝐾) is the indicator function of the body 𝐾. For 𝑡 = 0, 

writing the integral in the right-hand side of the function 𝐴𝐾,𝜉(𝑡) in the polar coordinates of the hyperplane 

〈𝑥, 𝜉〉 = 0, result in the polar formula for the volume of central hyperplane sections 
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𝐴𝐾,𝜉(0) = 𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝜉⊥) =

∫ 𝜒(‖𝑥‖𝐾)
0

〈𝑥,𝜉〉=𝑡
𝑑𝑥=∫ (∫ 𝑟𝑛−2𝜒(𝑟‖𝜃‖𝐾)𝑑𝑟)

∞

0

0

𝑆𝑛−1∩𝜉⊥ 𝑑𝜃 

= ∫ (∫ 𝑟𝑛−2𝑑𝑟)

1
‖𝜃‖𝐾

0

0

𝑆𝑛−1∩𝜉⊥ 𝑑𝜃 =
1

𝑛−1
∫ ‖𝜃‖𝐾

−𝑛+10

𝑆𝑛−1∩𝜉⊥ 𝑑𝜃 =
1

𝑛−1
∫ 𝜌𝐾

𝑛−1(𝜃)
0

𝑆𝑛−1∩𝜉⊥ 𝑑𝜃  
 

 

(2) 
 

 

 
 

If 𝜙 be an integrable function on ℝ𝑛, which is also integrable on every hyperplane, then the Radon 

transform of the function 𝜙 is defined as a function of (𝜉; 𝑡), ℛ𝜙(𝜉; 𝑡) = ∫ 𝜙(𝑥)
0

〈𝑥,𝜉〉=𝑡
𝑑𝑥, 𝜉 ∈ 𝑆𝑛−1, 

𝑡 ∈ ℝ.  
Using (2), one can express the volume of central hyperplane sections in terms of the spherical Radon 

transform: 
 

𝐴𝐾,𝜉(0) = 𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝜉⊥) =
1

𝑛 − 1
ℛ(‖. ‖𝐾

−𝑛+1)(𝜉), (3) 

 
for every origin-symmetric star body 𝐾 in ℝ𝑛 and every 𝜉 ∈ 𝑆𝑛−1. Furthermore, for  

(𝑛 − 1) – dimensional linear subspaces of ℝ𝑛, instead of 𝜉⊥, the spherical Radon transform is self-dual, 

means that for any function 𝑓, 𝑔 ∈ 𝐶(𝑆𝑛−1); 
 

∫ ℛ𝑓(𝜉)𝑔(
0

𝑆𝑛−1 𝜉)𝑑𝜉 = ∫ 𝑓(𝜉)ℛ𝑔(
0

𝑆𝑛−1 𝜉)𝑑𝜉, (4) 

 
There is a well-known connection between the Radon and Fourier transform,   
 
Lemma 2 [12]. For a fixed 𝜉, the Fourier transform of the function 𝑔(𝑡) = ℛ𝜙(𝜉; 𝑡), 𝑡 ∈ ℝ is equal 

to the function 𝑧 → 𝜙̂(𝑧𝜉), 𝑧 ∈ ℝ. 
The Fourier transform of distributions is the main tool used the proof of Theorem 1 in the sequel. For 

more details about the concepts mentioned in this sections can be referred to the refrences [12-20]. 
 
Applications of geometry in financial markets. 
The market determines what goods are made and what products are bought and sold. It is assumed 

that the objects of investors’ interest span a (𝑛 + 1) – dimensional vector space 𝑉 over the reals. 
Elements of this vector space are called baskets.  

For any basket, there is a unique representation in elements of the basis of the vector space 𝑉 which 
coefficients are called as assets of the basket. A portfolio is defined as an equivalence class of non-empty 
baskets.  

A Market quotation is a functional on the vector space 𝑉 which associates with a given portfolio, its 
current value in units of the coefficients of its representation in elements of the basis.  It has been said that 
a portfolio is balanced for some quotation if there is an asset, so that the value of the portfolio in units of 
the asset is zero.  

Equivalently, in more specialized concepts of financial recourse, it can be said that a portfolio is 
balanced if the corresponding point belongs to the hyperplane representing quotation. The 
correspondence between the parameters discussed can be seen in Table 1. 
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Table 1 – Correspondence between financial market parameters and projective geometry [7] 

Market Projective Geometry 

portfolio point 

quotation hyperplane 

portfolio is balanced for quotation point lies in quotation hyperplane 

 

In completing Table 1, the following statement can be proved. 
 
Theorem 1. The number of times that portfolio is balanced for quotation in marketing (which has been 

assessed by the point lies in quotation hyperplane in projective geometry) can be calculated by the surface 
area of the convex body and (symplectic) Holmes-Thompson volume in notions of Fourier transform, 
Finsler metrics and Minkowski spces. 

Proof. Using of Lemma 1, Lemma 2 and self-duality of spherical Radon-transform, relation (4), it can 
be achieved the connection between the volume of sections of symmetric star bodies and the Fourier 
transform:   

If 𝑓 be an even homogeneous function of degree −𝑛 + 1 on ℝ𝑛 and continuous on the sphere 𝑆𝑛−1, 

then the Fourier transform of 𝑓 is even homogeneous of degree −1 and continuous on ℝ𝑛\{0} function 

such that, for every 𝜉 ∈ 𝑆𝑛−1, ℛ𝑓(𝜉) = ∫ 𝑓(𝜃)𝑑(𝜃) =
1

𝜋

0

𝑆𝑛−1∩𝜉⊥ (𝑓(𝜉)).  

In this way, and by relation (3), it can be concluded that if 𝐾 is an origin-symmetric star body in ℝ𝑛, 

then the Fourier transform of the function ‖. ‖𝐾
−𝑛+1 is homogeneous of degree −1 function on ℝ𝑛 and 

continuous on ℝ𝑛\{0} such that, for every 𝜉 ∈ 𝑆𝑛−1, 

𝐴𝐾,𝜉(0) = 𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝜉⊥) =
1

𝜋
(𝑛 − 1)(ℱ(‖. ‖𝐾

−𝑛+1)(𝜉)). 

If (𝑉, 𝜙) is an 𝑛-dimensional Minkowski space and 𝑁 ⊂ 𝑉 is an immersed submanifold of dimension 

𝑘, 1 ≤ 𝑘 < 𝑛, then the formula for the Holmes-Thompson 𝑘-area of 𝑁 will be 𝑣𝑜𝑙𝑘(𝑁) =
1

𝜀𝑘
(∫ 𝜙𝑘)

0

𝑁
, 

where 𝜀𝑘 denotes the volume of the Euclidean unit ball of dimension 𝑘,  

𝜙𝑘(𝑣1 ∧ … ∧ 𝑣𝑘) ≔ ∫ |𝜉1 ∧ … ∧ 𝜉𝑘 . 𝑣1 ∧ … ∧ 𝑣𝑘|𝜙̌𝑘0

(𝜉1∧…∧𝜉𝑘)∈𝑆∗𝑘 , 𝑆∗ is any closed hypersurface in 

𝑉∗\{0} that is star-shaped with respect to the origin and 𝜙̆𝑘 = −
1

4
(2𝜋)𝑛−1(𝜙𝑑𝜉1 ∧ … ∧ 𝑑𝜉𝑛)  𝑋𝐸  is 

the contraction of standard (distributional) Fourier transform of 𝜙 with the Euler vector field 
 𝑋𝐸(𝜉) = 𝜉 in 𝑉∗. 

In effect, there exists a smooth, translation-invariant, and possibly signed measure Φ𝑛−𝑘  on the 

manifold H𝑛−𝑘 of (𝑛 − 𝑘)-flats of 𝑉 such that if 𝑁 ⊂ 𝑉 is an immersed k -dimensional submanifold. 
Then  

 

𝑣𝑜𝑙𝑘(𝑁) =
1

𝜀𝑘
(∫ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁 ∩ 𝜆)Φ𝑛−𝑘

0

𝜆∈𝐻𝑛−𝑘
, [21-22] (5) 

where 𝜀𝑘 is the volume of the Euclidean unit ball of dimension 𝑘. 
 

Eventally, for a projective Finsler metric 𝜑 on an open convex domain 𝐷 ⊆ ℝ𝑃𝑛 and a natural 

number k , 1 ≤ 𝑘 ≤ 𝑛 − 1, equation (5) is satisfied with 𝐷 instead of (𝑉, ‖. ‖), that means 
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𝑣𝑜𝑙𝑘(𝑁) =
1

𝜀𝑘
(∫ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁 ∩ 𝜆)Φ𝑛−𝑘

0

𝜉∈𝐻𝑛−𝑘(𝐷)
,.  

 
The results are summarized in Table 2. 
 

Table 2 – Computation of corresponding financial market parameters and projective geometry 

Market Projective Geometry 

portfolio point 

quotation hyperplane 

portfolio is balanced for quotation point lies in quotation hyperplane 

number of times that portfolio is 
balanced for quotation 

surface area of convex body and (symplectic) 
Holmes-Thompson volume in notions of Fourier 
transform, Finsler metrics and Minkowski spces 

 
Corollary 1. The highest number of risks in market equilibrium can be obtained by the minimality of 

the volume in corresponding notions of geometry. 
Proof. As the proof of Theorem 1, formula (5) for the Holmes-Thompson volume implies that the 

tangent spaces of a projective Finsler metric are hypermetric if and only if the measures Φ𝑛−𝑘 ,  
𝑘 = 1, … , 𝑛, are projective. Then, just like in the case of the standard Riemannian metric on ℝ𝑃𝑛, 
projective subspaces are area-minimizing. By adding risk calculations, Table 2 can be completed in 
Table 3. 

 
Table 3 – Computation of risk and the other corresponding financial market parameters and 

projective geometry 

 
Conclusions. In this paper, a new geometric approach was presented to calculate the number of 

times hat portfolio is balanced for quotation. In fact, the calculations were made in terms of the volume of 
the Halmos-Thomson (as the bridge between Feinsler geometry, integral geometry, and symplectic 
geometry). The highest number of risks in market equilibrium was mentioned in the geometric concepts 
mentioned. In this way, the proposed geometric approach can provide an appropriate answer to many 
marketing issues such as financial market equilibrium, reduce the risk of investment risk, and other 
developments in the stock market. 

Market Projective Geometry 

portfolio point 

quotation hyperplane 

portfolio is balanced for quotation point lies in quotation hyperplane 

number of times that portfolio is balanced for 
quotation 

surface area of convex body and (symplectic) 
Holmes-Thompson volume in notions of Fourier 
transform, Finsler metrics and Minkowski spces 

highest number of risks in market equilibrium 
minimality of the volume in corresponding notions of 

geometry 



 
 
A. Hasan-Zadeh. Geometric Modelling of Portfolio and Risk in Market Equilibrium 

216  Marketing and Management of Innovations, 2018, Issue 2 
http://mmi.fem.sumdu.edu.ua/en 

 
 
 

Henry-Labordère, P., Analysis, Geometry, and Modeling in Finance Advanced Methods in Option Pricing, CRC 
Press, Taylor & Francis Group, 2009.  

Swishchuk, A. and Islam, S., Random Dynamical Systems in Finance, Taylor and Francis Group, 2013. 
Farinelli, S., Geometric arbitrage theory and market dynamics, American Institute of Mathematical Sciences, 7(4), 

2015, 431-471.  
Zabreiko, P.P. and Lebedev, A.V., Banach geometry of financial market models. Doklady Mathematics, 95(2), 

2017, 164-167. 
Chile, S., Random Geometric Analysis in the Stochastic Volatility: Financial Markets States Degeneracy, Analysis 

and Computations Journal, Forthcoming, 2017, SSRN: https://ssrn.com/abstract=2968295. 
Piotrowski, E.W. and Stankowski, J., Geometry of Financial Markets – Towards Information Theory Model of 

Markets, Physica A: Statistical Mechanics and its Applications, 382(1), 2007, 228-234. 
Piotrowski, E.W. and Stankowski, J., The merchandising mathematician model: profit intensities, Physica A: 

Statistical Mechanics and its Applications, 318(3-4), 2003, 496-504. 
Holmes, R.D. and Thompson, A.C., N-dimensional area and content in Minkowski spaces, Pacific Journal of 

Mathematics, 85(1), 1979, 77-110. 
Paiva, J.C.A. and Fernandes, E., Fourier transforms and Holmes-Thompson volume of Finsler 

manifolds,  International Mathematics Research Notices, 1999(19), 1999, 1031-1042. 
Paiva, J.C.A. and Thompson, A.C., Volumes on normed and Finsler spaces, Chapter book of a Sampler of 

Riemann-Finsler Geometry, Cambridge University Press, 2004, 1-48 
Paiva, J.C.A., Some problems on Finsler geometry, Handbook of Differential Geometry, vol. 2, 2006, 1-33 
Koldobsky, A., Fourier Analysis in Convex Geometry, American Mathematical Society, vol. 116, 2006.  
Benjani, A.A., Finsler geometry and applications, Ellis Horwood, 1996. 
Besse, A., Manifolds of all whose geodesics are closed, Springer-Verlag, New York, 1978. 
Gelfand, I.M and Smirnov, M., Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal 

differentials, Advances in Mathematics, 109(2), 1994, 188-227. 
Gromov, M., Filling Riemannian manifolds, Journal of Differential Geometry, 18(1), 1998, 1-147. 
Rudin, W., Functional Analysis, Mc Graw-Hil. New York, 1973. 
McDuff, D. and Salamon, D., Introduction to symplectic topology, Oxford Mathematical Monographs, Clarendon 

Press, 1998. 
Dym, H. and McKean H.P., Fourier series and Integrals, Academic Press, New York, 1972. 
Schneider, R., On integral geometry in projective Finsler spaces, Izvestiya Natsional'noĭ Akademii Nauk Armenii. 

Matematika, 37, 2002, 34-51. 
Schneider, R. and Wieacker, J.A., Integral geometry in Minkowski spaces, Advances in Mathematics, 129(2), 

1997, 222-260. 
Paiva, J.C.A. and Fernandes, E., Crofton formulas in Projective Finsler spaces, Electronic Research 

Announcements of the American Mathematical Society, 4, 1998, 91-100. 
 
 
 
A. Хасан-Задех, Ph.D., Технічний інститут, Тегеранський університет (Гуйлан, Іран). 
Геометричне моделювання ризику інвестиційного портфелю в умовах ринкової рівноваги 
Стрімкий розвиток фінансового ринку обумовлює необхідність пошуку інноваційних інструментів аналізу його 

динаміки та основних параметрів функціонування. Результати аналізу показали, що серед складних технічних підходів 
пояснення поведінки фінансового ринку перспективним методом є геометричний. Автор розширює традиційні підходи 
до аналізу фінансового ринку, пропонуючи власну інновацію: він стверджує, що оцінювання збалансованості 
інвестиційного портфелю в умовах рівноважної ринкової економіки можливе в рамках геометричних понять. У даній 
роботі запропоновано інноваційний геометричний підхід до оцінювання рівня збалансованості та ризикованості 
інвестиційного портфелю в умовах ринкової рівноваги. Розрахунки проводились за допомогою методу Галмоша-Томсона 
(як перехідного методу між геометрією Фейнслера, інтегральною геометрією та симплектичною геометрією). 
Найбільша кількість ризиків у ринковій рівновазі описується саме в геометричних концепціях. Таким чином, 
запропонований геометричний підхід дозволяє аналізувати ситуації з інвестиційним портфелем в різних умовах: 
рівновага фінансового ринку, зменшення інвестиційного ризику та інші події на фондовому ринку. Автор розраховує 
параметри фондового ринку через площу поверхні випуклого тіла відповідних проективних просторів та об'єму Холмса-
Томпсона в поняттях інтегральної геометрії (перетворення Радона і Фур'є), Фінслерової геометрії (і просторів 
Мінковского) та симплектичної геометрії. На відміну від існуючих чисельних методів, даний підхід дозволяє отримати 
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аналітичне рішення, а також висновок про те, що найбільшу кількість ризиків при ринковій рівновазі можна отримати 
при мінімальному обсязі інвестиційного портфелю. 

Ключові слова: фінансовий ринок, ризик, простір Мінковського, метрика Фінслера, перетворення Фур'є. 
 


