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GEOMETRIC MODELLING OF PORTFOLIO AND RISK IN MARKET EQUILIBRIUM

The developing of the financial market contributes to paying attention to analyses its dynamics and quality of
properties of the variables. The results of the analysis showed that among the complex technical applications the
geometry approach in this area is an advanced method to explain the financial market behaviour. This paper expands
the idea that the portfolio is balanced for quotation in marketing is equivalent to the number of points that lie on the
quotation hyperplane in projective geometry has been extended in geometric concepts. In this paper, the new
geometric approach was proposed to estimate the number of times the portfolio is balanced for quotation. In fact, the
calculations were made in terms of the volume of the Halmos-Thomson (as the bridge between Feinsler geometry,
integral geometry, and symplectic geometry). The highest number of risks in market equilibrium was mentioned in the
geometric concepts mentioned. In this way, the proposed geometric approach allows to analyse situations with a
portfolio under different conditions: financial market equilibrium, reduce the risk of investment risk, and others
developments in the stock market. The author calculates the parameters through the surface area of a convex body
of the corresponding projective spaces and Holmes-Thompson volume in notions of integral geometry (Radon and
Fourier transform), Finsler Geometry (and Minkowski spaces) and symplectic geometry. Contrary to existing numerical
methods, this approach allows one to reach the analytic solution and also, concludes that the highest number of risks
in market equilibrium can be obtained by minimality of the introduced volume.
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Introduction. Today, in the financial market it is important to pay attention to the dynamics and quality
of properties of the variables. Among the complex technical applications of geometry in this area is an
advanced approach to explaining the financial market behaviour [1-5]. A branch of geometry that is most
closely associated with marketing concepts is projective geometry whose main notions of the financial
market such as baskets, portfolios and the level of risk taking in market equilibrium can be translated in
this framework [4], [6-7].

On the other hand, many problems in geometry and physics can be easily solved by a change of
viewpoint. For example, if one considers the line, or the plane, instead of the point as the basic object of
geometry, the outlook changes completely. This change in viewpoint leads naturally to integral geometry.
This paper is concerned with some analogy of various classical formulas from integral geometry and its
relation with Finsler geometry and symplectic geometry.

This deep connection between these three geometries takes place by the type of volume named as
Holmes-Thompson volume, [8], which its ties to convex geometry, integral geometry, and Finsler
geometry. The other advantage of working with Holmes-Thompson definition is that there is a remarkably
simple formula for the Holmes-Thompson area density of a Minkowski space in terms of the Fourier
transform of its norm [9-11], which is the main object in this paper.

The first step of this paper contains some preliminaries about Minkowski spaces, Finsler geometry
and Integral geometry to cover all the key concepts in its entirety. In the sequel, the application of the triple
chain of three geometries in financial markets has been proposed.

The proposed methodology results in the calculation of the number of times that the portfolio is
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balanced for quotation in marketing using the surface area of the convex body and Holmes-Thompson
which has been proved in Theorem 1. Contrary to existing numerical methods, this theorem enables one
to reach the analytic solution and also, concludes that highest number of risks in market equilibrium can
be obtained by minimality of the introduced volume explained in Corollary 1.

Basic geometric concepts. An n-dimensional manifold is a set M, together with a countable
collection of subsets U, M called coordinate charts, and one-to-one functions y,: U, — V, onto
connected open subsets V, ¢ R", called local coordinate maps, which the coordinate charts cover
M; U, U, = M, on the overlap of any pair of coordinate charts U, N Ug the composite map
Xp © Xa': Xa(Ug N Ug) = x5(U, NUp) is a smooth (infinitely differentiable) function and distinct
points of M separates with distinct open subsets.

A smooth curve C on a manifold M is parametrized by ¢: 1 — M, where [ is a subinterval of R. In
local coordinates x = (x?, ..., x™), C is given by N smooth functions ¢ () = (¢ (), ..., p"(¢)) of
the real variable €. At each point x = ¢ (&) of C the curve has a tangent vector, namely the derivative

. d . .
$(e) =L = (¢(2), ... $"(®)).

The collection of all tangent vectors to all possible curves passing through a given point x in M is
called the tangent space to M at x, and is denoted by TM,.

For an n-dimensional manifold M, TM,, is an n-dimensional vector space, with {%, ...,%}
providing a basis for TM,, in the given local coordinates. The collection of all tangent spaces
corresponding to all points x in M is called the tangent bundle of M, denoted by TM = U,y TM)y. A
vector field v on M assigns a tangent vector v, € TM, to each point x € M, with v, varying smoothly
from point to point.

The space A,T"M, of differential k-forms at x is the set of all k-linear alternating functions
w:TM, X ... X TM,, » R. A (smooth) differential k-form w on M is a collection of smoothly varying
alternationg k-linear maps w,, € A,T*M;, for each x € M, where for all smooth vector fields
Vg, s Vg (@501, 00, Vi) (X) = (@), V10 ...,vklx) is a smooth real-valued function of x. For a
collection of differential one-forms w;, ..., wy, It can be formed a differential k-form w; A ... wy, using
the determinantal formula (w; A, ..., g; vy, ..., v ) (x) = det({w;; v;)), where the right-hand side
being the determinant of a k x k matrix with indicted (i, j) entry.

Let m: T*M — M be the standard projection and let dm: T(T*M) — TM be its differential. The
canonical 1-form a on T*M is defined by the equation a(V;,_ ) = Py (dn(Vs, ), where P, € TM
and Vp, € Tp, (T*M).

The symplectic 2-form is defined as w = —da. A symplectic manifold (M, w) is a smooth manifold
M of even dimension 2n equipped with a non-degenerate closed 2-form w. Note that 2-form w on every
2n-vector space is non-degenerate if and only if w™ is a volume form.

Let V be a vector space and ¢: V' — [0, oo[ be a norm that is smooth outside the origin. Set L =

and consider the exterior derivative of L, dL, as a map from V\{0} to V*\{0}. The norm ¢ is said to be
a Minkowski norm if dL is a diffeomorphism.

For any nonzero vector v € V, there is an invertible linear map D (dL) (v): T,V = Tgy,)V ™. Infact,
using the natural identification of T,V with V, and Tg;, V™ with V™, it may be think of g, (v) :=
D(dL)(v) as a (symmetric) bilinear formon V: g, (v) (wq, w,) = (D(dL)(v)(w1)) ().

The norm g, is a Minkowski norm if and only if g, is positive definite. When the vector v belongs to
the unit sphere, structure g, (v) denoted as the osculating Euclidean structure at v and the ellipsoid

9?
2
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E, = {w EV:ig,()(w,w) = 1}, as the osculating ellipsoid at v. A smooth hypersurface in a finite-
dimensional real vector space V is said to be quadratically convex if its osculating quadrics are all
ellipsoids. A vector space I/ provided with a norm ||. || such that the unit sphere is quadratically convex
is called a Minkowski space.

A Finsler metric on a manifold M is a continuous function defined on its tangent bundle such that
¢@: TM\{0} — R is smooth (away from the zero section) and its restriction to each tangent space is a
Minkowski norm, means that the hypersurface S,,M = {v € T,,M: ¢ (v) = 1} is quadratically convex
and encloses the origin, (M, ¢) is called a Finsler manifold.

Throughout this paper, M is a compact manifold and for every m € M and any compact hypersurface
H c T*M, the intersection H N T*M is a convex hypersurface of T,;, M enclosing the origin and in each
cotangent space T,;, M the intersection H N T*M is a quadratically convex hypersurface enclosing the
origin. In this way, it can be defined the Holmes-Thompson volume:

The Holmes-Thompson volume of a n-dimensional Finsler manifold (M, @), vol,, (M, ¢), is the
symplectic volume of its unit co-disc bundle divided by the volume of the Euclidean n-dimensional unit
ball

vol,(M, @) = s,%nfSi,M aA(da)* 1, (1)

where &, is the volume of the Euclidean unit ball of dimension n.

Let K is a convex body. Then it admits at least one supporting hyperplane H (affine here) for any point
x of its boundary. The dual convex body K* of a given convex body K is either the convex hull of the
poles of the supporting hyperplanes of H.

If the convex body K be star-shaped with respect to origin in R™ and the boundary of K is continuous
in the sense that the Minkowski functional of K defined by ||x||x = min{a = 0:x € aK} is a
continuous function on R™, then the Minkowski functional is a homogeneous function of degree 1 on R™
is strictly positive outside of the origin, and K={x € R™: ||x||, < 1}.

The radial function of a star body K is defined by px(x) = ||x||zt, x € R™. If x € S™"1, then
pk (x) is the radius of K in the direction of x, i.e., the distance from the origin to the boundary of K in the
direction of x.

Lemma 1 [12]. Let K be an origin-symmetric star body in R™. Then, for 0 < p < n, the function
Il IIz” is locally integrable on R™. Also, if £ is a bounded integrable function on R™, then the function
II. IzP £(.) is integrable on R™.

In this way, for & € S™ 1 can be defined the parallel section function of K in the direction of £ as a
function on R given by A ¢(t) = vol,_;(K N {&* + t&}) where {&* + &} is the hyperplane
perpendicular to é at distance t from the origin and can be stated as the following:
Age(t) = f(x,f):t)((”x”K) dx which x(]|.|lx) is the indicator function of the body K. For t = 0,

writing the integral in the right-hand side of the function A ¢(t) in the polar coordinates of the hyperplane
(x, &) = 0, result in the polar formula for the volume of central hyperplane sections
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Agg(0) =vol,_;(KN&H) =
Jixr=e Xl dx= o (7 722 16N ) ) d6 @)

— 1 _
= finaner(Jy KT 2dr) d6 = — [ 01 A6 =
1 —
Efsn—lan. p% 1(9) do

If ¢ be an integrable function on R™, which is also integrable on every hyperplane, then the Radon
transform of the function ¢ is defined as a function of (¢; t), Rp(&;t) = |, ¢(x)dx, & € ST,

(x.§)=t
teR
Using (2), one can express the volume of central hyperplane sections in terms of the spherical Radon
transform:

1
Akg(0) = vol, (KN §Y) = 7 Rl k"), ()

for every origin-symmetric star body K in R™ and every & € S™!. Furthermore, for
(n — 1) —dimensional linear subspaces of R", instead of ¢+, the spherical Radon transform is self-dual,
means that for any function f, g € C(S™1);

Jsn-1 RF(©)g(dE = [nr f(EIRG(§)dE, )

There is a well-known connection between the Radon and Fourier transform,

Lemma 2 [12]. For a fixed &, the Fourier transform of the function g(t) = R¢(&;t), t € Ris equal
to the function z — ¢ (z£), z € R.

The Fourier transform of distributions is the main tool used the proof of Theorem 1 in the sequel. For
more details about the concepts mentioned in this sections can be referred to the refrences [12-20].

Applications of geometry in financial markets.

The market determines what goods are made and what products are bought and sold. It is assumed
that the objects of investors’ interest span a (n + 1) — dimensional vector space V over the reals.
Elements of this vector space are called baskets.

For any basket, there is a unique representation in elements of the basis of the vector space V which
coefficients are called as assets of the basket. A portfolio is defined as an equivalence class of non-empty
baskets.

A Market quotation is a functional on the vector space V which associates with a given portfolio, its
current value in units of the coefficients of its representation in elements of the basis. It has been said that
a portfolio is balanced for some quotation if there is an asset, so that the value of the portfolio in units of
the asset is zero.

Equivalently, in more specialized concepts of financial recourse, it can be said that a portfolio is
balanced if the corresponding point belongs to the hyperplane representing quotation. The
correspondence between the parameters discussed can be seen in Table 1.
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Table 1 - Correspondence between financial market parameters and projective geometry [7]

Market Projective Geometry
portfolio point
quotation hyperplane
portfolio is balanced for quotation point lies in quotation hyperplane

In completing Table 1, the following statement can be proved.

Theorem 1. The number of times that portfolio is balanced for quotation in marketing (which has been
assessed by the point lies in quotation hyperplane in projective geometry) can be calculated by the surface
area of the convex body and (symplectic) Holmes-Thompson volume in notions of Fourier transform,
Finsler metrics and Minkowski spces.

Proof. Using of Lemma 1, Lemma 2 and self-duality of spherical Radon-transform, relation (4), it can
be achieved the connection between the volume of sections of symmetric star bodies and the Fourier
transform:

If £ be an even homogeneous function of degree —n + 1 on R™ and continuous on the sphere S™~1,
then the Fourier transform of f is even homogeneous of degree —1 and continuous on R™\{0} function
such that, for every & € S™%, Rf (§) = [gn- 0 f(6)d(6) = %(f(s)).

In this way, and by relation (3), it can be concluded that if K is an origin-symmetric star body in R™,
then the Fourier transform of the function ||. ||z™*? is homogeneous of degree —1 function on R™ and
continuous on R™\{0} such that, for every fesnt
Ak g(0) = vol, (K N¢H) = %(n = DEUIF*HE).

If (V, ¢) is an n-dimensional Minkowski space and N c V is an immersed submanifold of dimension
k,1 < k < n, then the formula for the Holmes-Thompson k-area of N will be vol, (N) = i(fN b)),

where ¢, denotes the volume of the Euclidean unit ball of dimension k,
Oy A L AYY) = f(gl/\.../\fk)es*”fl A NEe. vy A AV |@¥, S* is any closed hypersurface in
V*\{0} that is star-shaped with respect to the origin and ¢* = — i Qo)™ Y(pdé A ... AdEY) | Xz is

the contraction of standard (distributional) Fourier transform of ¢ with the Euler vector field
Xg(§) =&inV™.
In effect, there exists a smooth, translation-invariant, and possibly signed measure ®,,_, on the

manifold H,,_, of (n — k)-flats of V such that if N c V is an immersed K _dimensional submanifold.
Then

vol, (N) = =( fren,_, Cardinality(N 0 )y, [21-22] (5)

€k

where g is the volume of the Euclidean unit ball of dimension k.

Eventally, for a projective Finsler metric ¢» on an open convex domain D € RP™ and a natural
number k, 1<k <n-—1, equation (5) is satisfied with D instead of (V,]|.]), that means
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1 . .
vol, (N) = ;(ffEHn—k(D) Cardinality(N N A)®,_g,.

The results are summarized in Table 2.

Table 2 — Computation of corresponding financial market parameters and projective geometry

Market Projective Geometry
portfolio point
quotation hyperplane
portfolio is balanced for quotation point lies in quotation hyperplane

surface area of convex body and (symplectic)
Holmes-Thompson volume in notions of Fourier
transform, Finsler metrics and Minkowski spces

number of times that portfolio is
balanced for quotation

Corollary 1. The highest number of risks in market equilibrium can be obtained by the minimality of
the volume in corresponding notions of geometry.

Proof. As the proof of Theorem 1, formula (5) for the Holmes-Thompson volume implies that the
tangent spaces of a projective Finsler metric are hypermetric if and only if the measures @,,_,,
k =1, ...,n, are projective. Then, just like in the case of the standard Riemannian metric on RP™,
projective subspaces are area-minimizing. By adding risk calculations, Table 2 can be completed in
Table 3.

Table 3 — Computation of risk and the other corresponding financial market parameters and
projective geometry

Market Projective Geometry
portfolio point
quotation hyperplane
portfolio is balanced for quotation point lies in quotation hyperplane

surface area of convex body and (symplectic)
Holmes-Thompson volume in notions of Fourier
transform, Finsler metrics and Minkowski spces

number of times that portfolio is balanced for
quotation

minimality of the volume in corresponding notions of

highest number of risks in market equilibrium
geometry

Conclusions. In this paper, a new geometric approach was presented to calculate the number of
times hat portfolio is balanced for quotation. In fact, the calculations were made in terms of the volume of
the Halmos-Thomson (as the bridge between Feinsler geometry, integral geometry, and symplectic
geometry). The highest number of risks in market equilibrium was mentioned in the geometric concepts
mentioned. In this way, the proposed geometric approach can provide an appropriate answer to many
marketing issues such as financial market equilibrium, reduce the risk of investment risk, and other
developments in the stock market.
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FeomeTpnyHe MOAENIOBaHHA PU3NKY IHBECTULIIAHOTO MOPTChHento B yMOBaX PUHKOBOI piBHOBaru

Cmpimkuli po3sumok chiHaHCo8020 PUHKY 00yMOBMIE HEeOOXIOHICMb NOWYKy iHHO8AUItIHUX iHCMpPyMeHmig aHanizy (020
OuHaMiKu ma OCHOBHUX hapamempie hyHKUIOHy8aHHs. Pe3ynbmamu aHanizy nokasanu, wio ceped cknadHux mexHiqHux nidxodis
NOsiCHEeHHs1 N08ediHKU (hiHaHCOB020 PUHKY NEPCNEKMUBHUM MemodoM € eeoMempuyHull. Aemop po3wiuproe mpaduyitiHi nioxodu
00 aHanidy (hiHaHC08020 PUHKY, NPONOHYKYU @nacHy iHHosauito: 8iH cmeeplXye, WO OuiHIoBaHHA 3banaHcosaHOCMi
iH8eCmMuUitiH020 NopmebeTio 8 ymosax PiBHOBaXHOI PUHKOBOI EKOHOMIKU MOXIIUBE 8 paMKkaX 2e0MEempUYHUX NOHSMb. Y daHili
pobomi 3anponoHosaHo iHHosauiliHull eeomempuyHull nidxid 0o ouiHIeaHHs pigHsi 36anaHcogaHoCmi ma pu3uKkogaHocmi
iHeecmuyitiHo20 nopmeerio 8 ymogax pUHKoBoi pisHogaeu. PospaxyHku nposodunucs 3a donomoeor Memody anmowa-TomcoHa
(7K nepexidHozo memody mix eeomempieto DeliHcrepa, iHMe2panbHOKW 2e0MeMpiEd ma CUMNIIEKMUYHOK 2e0Mempiero).
Halibinbwa Kinbkicmb pU3UKI8 y PUHKOBIU pigHOBa3i onucyembCs came 8 2e0MEemPUYHUX KOHUenuisx. TakuM YuHOM,
3anponoHogaHuli eeomempuyHul nidxid 0o3eonsie aHanisysamu cumyauii 3 iHeecmuyiliHuM nopmebeniem 8 pisHUX yMogax:
pigHO8a2a (hiHAHCO8020 PUHKY, 3MEHWEHHS iH8ecmuyiliHo20 pu3uky ma iHwi nodii Ha hoHAogoMy puHKY. Aemop po3paxosye
napamempu ¢hoHA08020 PUHKY Yepe3 niowly NOBePXHi 8UNYKMO20 mina 8i0nogidHUX NpoekmusHUX npocmopie ma o6'emy Xonmca-
TomncoHa & noHsmmsx iHmeepasneHoi eeomempii (nepemeoperHss PadoHa i ®yp'e), DiHcrnepogoi 2eomempii (i npocmopig
MiHkogckoeo) ma cumnnekmuyHoi eeomempii. Ha 8i0MiHy 8id icHyro4ux YucensHUX Memodig, daHuli nidxid 0o3eonsie ompumamu
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aHanimuyHe pileHHs, a Makox 8UCHOBOK NPO me, Wo HalbinbLy KinbKicmb pu3uKig Npu puHKosill pisHo8a3i MoXHa ompumamu
npu midimanbHomy 06¢a3i iHsecmuyitiHoeo nopmaperio.
Kntoyosi criosa: dhiHaHCOBMI PUHOK, PUaiK, NpocTip MiHKOBCbKOro, MeTpuka PiHcriepa, nepeTBopeHHs dyp'e.
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