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Abstract. In this work, the Ritz variational method for solving the flexural problem of Kirchhoff–Love plates un-

der transverse distributed load has been presented systematically in matrix form. An illustrative application of the ma-

trix presentation was done for simply supported rectangular Kirchhoff–Love plate under uniformly distributed load. 

The application used a one term Ritz approximating displacement (coordinate, or basis) function. A one term Ritz ap-

proximate solutions obtained for center displacement of square plates showed a difference of 1.9 % from the exact so-

lution for displacement. Solution obtained for the bending moment at the center showed a difference of 7.9 % from 

the exact solution for bending moment. The one term Ritz approximation for the maximum shear force showed a dif-

ference of –10.7 % from the exact solution. The results obtained for a one term Ritz approximation of the displace-

ment shape function was reasonably close for practical purposes. 

Keywords: Ritz variational method, Kirchhoff–Love plate, shape function, total potential energy, principle of mini-

mization. 

1 Introduction 

Plates are three dimensional structures having one 

transverse dimension that is very small in comparison 

with the other (in-plane) dimension. They are usually 

subjected to forces applied perpendicularly to their plane. 

They therefore resist applied load by the development of 

bending moments in two in-plane directions, and a twist-

ing moment. They can also be submitted to forces in the 

plane of the plate. They are thus commonly encountered 

structural forms used in floor slabs, bridge decks, founda-

tions, and naval and aerospace structural panels. 

The mathematical problems of plate analysis belongs 

to the three dimensional theory of elasticity governed by 

the simultaneous satisfaction of the requirements of the 

material stress-strain laws, the kinematic (geometric) 

relations between strain and displacements, the differen-

tial equations of equilibrium and the loading and restraint 

boundary conditions [1–4]. 

However, the full three dimensional theory of elasticity 

problem has often been approximated to two dimensional 

idealizations owing to the disparity in the scale of the 

dimensions, especially in thin plates. The analysis and 

theories of plates have been broadly categorized into two 

using the thickness to breadth ratios, namely thick plate 

theories (analysis) and thin plate theories (analysis). The 

ratio of the maximum deflection to the thickness has 

also been used as criterion in the classification of 

plates as plates with small deflection, and plates with 

large deflection. 

This study uses the Kirchhoff–Love plate theory 

also called the classical thin plate theory. The Kirch-

hoff–Love plate theory, is based on three assumptions 

(Kirchhoff’s hypothesis) which reduce the equations 

of the three dimensional theory of elasticity to two 

dimensions. They are [5–7]: 

1. Cross-sections that are perpendicular to the neu-

tral surface of the plate before bending remain 

straight and normal after bending deformation. 

2. The normal stress in the transverse (thickness) 

direction is so small as to be insignificant, and is ne-

glected. Thus σzz = 0. This simplifies the three dimen-

sional stress-strain relations into a two dimensional 

problem. 

3. The transverse shearing strains γxz and γyz are as-

sumed to be zero. Thus the thickness of the plate does 

not change during flexural deformation. 

Apart from the Kirchhoff–Love plate theory, other 

plate theories commonly used in the literature to ana-

lyse plates are: Mindlin plate theory [8], Reissner 

plate theory [9], Levinson plate theory, shear defor-

mation plate theories, and Reddy’s plate theory. 
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Methods used in the analysis of plates are broadly clas-

sified as: analytical (or mathematical) methods, and nu-

merical (or approximate) methods. The analytical meth-

ods, which seek to obtain closed form mathematical solu-

tions to the plate problem at every point in the plate do-

main include: Eigen function expansion methods, integral 

transform methods, separation of variables methods, etc. 

The numerical methods seek to obtain approximate solu-

tions to the plate problem. Some of the numerical meth-

ods are: variational methods [10], finite element methods, 

finite difference methods [11], finite grid methods, resid-

ual methods, and boundary collocation methods. 

The research aim is to present systematically, the Ritz 

variational method for the flexural analysis of simply 

supported Kirchhoff plates under transverse distributed 

load. The objectives include: 

a) to present the flexural problem of Kirchhoff plates 

under transverse distributed load as a variational problem, 

and state the problem in variational form; 

b) to apply the principle of minimization of the total 

potential energy functional for the plate and find the equa-

tions of static equilibrium in equivalent variational form 

as the minimum total potential energy functional. 

c) to find suitable coordinate shape functions for the 

simply supported ends of the plate. 

2 Research Methodology 

The total potential energy functional ɉ of a Kirchhoff 

plate under distributed transverse load is the sum of the 

strain energy and the potential energy of the distributed 

load, and is given by the integral over the plate domain 

R
2
: 
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where w(x, y) – the deflection of the plate middle sur-

face; μ – the Poisson’s ratio of the plate; D – the flexural 

rigidity of the plate; q(x, y) – the intensity of distributed 

transverse load on the plate; 2  – the Laplacian operator 

in the x-y coordinates; R
2
 – the plate domain defined as 0 

≤ x ≤ a, 0 ≤ y ≤ b. 

Let the deflection be approximated in terms of a linear 

combination of n basis (or coordinate or shape) functions 

of the space coordinates that apriori satisfy the end sup-

port conditions thus: 
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where ci are the n undetermined parameters of the dis-

placement function φi(x, y) are the coordinate, shape or 

basis functions that are chosen to satisfy the boundary 

conditions at the ends. 

The total potential energy functional can be expressed 

in general as follows: 

 (3) 

where 

 (4) 
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The principle of minimization of the total potential 

energy functional leads to the Ritz variational equa-

tion: 

 0
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



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for i = 1, 2, …, n. In matrix form, the Ritz varia-

tional equations become the system of n×n equations 

in ci given by: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... 0

... 0

... 0

n n p

n n p

n n nn n np

c c c

c c c

c c c

        

        

        
M

 (7) 

or in matrix form, 
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A rectangular Kirchhoff-Love plate simply supported 
on the edges x = 0, x = a, y = 0, and y = b and carrying 
uniformly distributed transverse load of intensity q was 
considered in this study. A one unknown deflection pa-
rameter assumption was considered as the simplest case 
of representation of the deflection function given in gen-
eral as the equation (2). Thus, 

1 1( , ) ( , )w x y c x y  , 

1 1 1( , ) ( ) ( )w x y c F x G y , where F1(x) and G1(y) are the co-

ordinate shape functions of the plate in the x and y coor-
dinate directions respectively. The displacement and 
loading boundary conditions are: 

1 1( 0) ( ) 0F x F x a     

1 1( 0) ( ) 0G y G y b     

2 2

1 12 2
( 0) ( ) 0F x F x a

x x

 
   

 
 

2 2

1 12 2
( 0) ( ) 0G y G y b

y y

 
   

 
 



 

Journal of Engineering Sciences, Volume 5, Issue 2 (2018), pp. D 1–D 5 D 3 

 

Suitable coordinate (basis or shape) functions that sat-
isfy the boundary conditions can be obtained using the 
polynomial shape functions as: 

4 3 3
1( ) 2F x x ax a x    

4 3 3
1( ) 2G y y by b y    

The Ritz variational equation then simplifies to 

11 1 1pc   , where 

(9) 

where 
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By differentiation, 
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Deflection at the centre (x = a/2; y = b/2): 

 
1 4
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(1 )

256 126 49
c

qa
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D


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where α = a/b. 

3 Results 

3.1 Square Kirchhoff–Love plates 

For square Kirchhoff-Love plates, a = b, α = 1: 
 

14

11 944.0 Da ;   
10

1
25

p

qa
  ; 

D

qa
c

4

1 0378.0 ;   
D

qa
wc

4

004.0 . 

3.2 Bending moment and shear force 

Using the bending moment-deflection relations and 

the shear deflection relations, the maximum bending 

moments occur at the plate centre, and is given for 

square plates by: 

 20.0517xxM qa . (11) 

The exact solutions obtained by Timoshenko and 

Woinowsky–Krieger [12] is: 

 
max

20.0479xxM qa . (12) 

Similarly, 

 0.420xQ qa . (13) 
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4 Discussion 

The Ritz variational method which is based on the 

principle of minimization of the total potential energy 

functional for a structure has been presented in a system-

atic way for the flexural problem of Kirchhoff–Love 

plates under distributed load. The presentation relied on 

the approximation of the unknown deflection function 

w(x, y) using approximating displacement shape functions 

with unknown displacement parameters, and constructed 

from basis (shape) functions that satisfied apriori the 

boundary conditions of the loading and the deformation. 

This yielded the total potential energy functional given in 

general as equation (3). Application of the extremum 

condition gave the system characteristic equations in ma-

trix form as equation (8). The use of the method was illus-

trated for rectangular Kirchhoff–Love plates with simply 

supported edges using a one term displacement approxi-

mation. For a square thin plate, the centre deflection was 

obtained as equation (10) giving a relative error of 1.9 %. 

The bending moment at the centre was obtained using the 

bending moment-deflection relations as equation (11) 

giving a relative error of 7.9 %. The maximum shear force 

was obtained from the shear force-deflection relation as 

equation (13), giving a relative error of –10.7 %. 

5 Conclusions 

The following conclusions are made from this study. 

1. The Ritz variational method can be presented in sys-

tematic form using matrices in a displacement based pro-

cedure. 

2. The stiffness influence coefficients are determined 

from the shape function by integration. 

3. The unknown displacement parameters of the de-

flection function are evaluated by solving the matrix al-

gebraic equation. 

4. A one unknown parameter choice of the deflection 

function that satisfied the geometric and force boundary 

conditions yielded seasonally accurate prediction of the 

maximum deflection at the center with a relative error of 

1.9 %. This is reasonable considering the ease of compu-

tation offered by the method. 

5. A one parameter choice of the deflection function 

that satisfied the natural and force boundary conditions 

was less accurate in the estimation of the maximum bend-

ing moments and shear force, yielding relative errors of 

7.9 % for maximum bending moment and –10.7 % for the 

shear force. 
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ɋɢɫɬɟɦаɬɢɱɧɟ ɜɢɤɥаɞɟɧɧɹ ɜаɪɿаɰɿɣɧɨɝɨ ɦɟɬɨɞɭ Ɋɿɬɰа ɞɥɹ аɧаɥɿɡɭ ɠɨɪɫɬɤɨɫɬɿ  
ɲаɪɧɿɪɧɨ ɨɩɟɪɬɨʀ ɩɪɹɦɨɤɭɬɧɨʀ ɩɥаɫɬɢɧɢ Ʉɿɪɯɝɨɮа–Ʌɹɜа 

Іɤɟ Ч. Ч. 

Ⱦɟɪɠɚɜɧɢɣ ɭɧɿɜɟɪɫɢɬɟɬ ɧɚɭɤɢ ɿ ɬɟɯɧɨɥɨɝɿʀ ɦ. ȿɧɭґɭ , ɉ.M.Б. 01660, ɦ. ȿɧɭґɭ, ɇɿɝɟɪɿɹ 

Аɧɨɬаɰɿɹ. ɍ ɪɨɛɨɬɿ ɭ ɦɚɬɪɢɱɧɿɣ ɮɨɪɦɿ ɩɪɟɞɫɬɚɜɥɟɧɢɣ ɭɡɚɝɚɥьɧɟɧɢɣ ɫɩɨɫɿɛ ɡɚɫɬɨɫɭɜɚɧɧɹ ɜɚɪɿɚɰɿɣɧɨɝɨ 
ɦɟɬɨɞɚ Ɋɿɬɰɚ ɞɥɹ ɪɨɡɜ’ɹɡɚɧɧɹ ɡɚɞɚɱɿ ɩɪɨ ɜɢɝɢɧ ɧɚɜɚɧɬɚɠɟɧɨʀ ɩɥɚɫɬɢɧɢ Ʉɿɪɯɝɨɮɚ-Ʌɹɜɚ. ɇɚɜɟɞɟɧɨ ɩɪɢɤɥɚɞɢ 

ɡɚɫɬɨɫɭɜɚɧɧɹ ɲɚɪɧɿɪɧɨ ɨɩɟɪɬɨʀ ɩɪɹɦɨɤɭɬɧɨʀ ɩɥɚɫɬɢɧɢ ɩɿɞ ɪɿɜɧɨɦɿɪɧɨ ɪɨɡɩɨɞɿɥɟɧɢɦ ɧɚɜɚɧɬɚɠɟɧɧɹɦ, 
ɜɢɤɨɪɢɫɬɨɜɭɸɱɢ ɮɭɧɤɰɿʀ ɮɨɪɦɢ ɭ ɛɚɡɢɫɿ ɩɪɹɦɨɤɭɬɧɨʀ ɫɢɫɬɟɦɢ ɤɨɨɪɞɢɧɚɬ. Ɉɞɢɧ ɡ ɩɪɢɤɥɚɞɿɜ ɧɚɛɥɢɠɟɧɨɝɨ 
ɪɨɡɜ’ɹɡɤɭ ɡɚ ɦɟɬɨɞɨɦ Ɋɿɬɰɚ ɨɬɪɢɦɚɧɨ ɞɥɹ ɩɟɪɟɦɿɳɟɧɧɹ ɰɟɧɬɪɚ ɤɜɚɞɪɚɬɧɨʀ ɩɥɚɫɬɢɧɢ ɩɥɢɬ. ɉɪɢ ɰьɨɦɭ, ɜɿɞɧɨɫɧɚ 
ɩɨɯɢɛɤɚ ɜɿɞɧɨɫɧɨ ɬɨɱɧɨɝɨ ɡɧɚɱɟɧɧɹ ɫɤɥɚɞɚє 1,9 %. Ɉɬɪɢɦɚɧɟ ɡɧɚɱɟɧɧɹ ɞɥɹ ɡɝɢɧɚɥьɧɨɝɨ ɦɨɦɟɧɬɭ ɭ ɰɟɧɬɪɿ 
ɩɥɚɫɬɢɧɢ ɜɿɞɪɿɡɧɹєɬьɫɹ ɜɿɞ ɿɫɧɭɸɱɨɝɨ ɬɨɱɧɨɝɨ ɪɿɲɟɧɧɹ ɧɚ 7,9 %. Зɧɚɱɟɧɧɹ ɩɟɪɟɪɿɡɭɜɚɥьɧɨɝɨ ɡɭɫɢɥɥɹ ɞɚє 
ɩɨɯɢɛɤɭ  
–10,7 %. Ɍɚɤɢɦ ɱɢɧɨɦ, ɨɞɟɪɠɚɧɿ ɪɟɡɭɥьɬɚɬɢ ɞɥɹ ɚɩɪɨɤɫɢɦɚɰɿʀ ɮɭɧɤɰɿʀ ɮɨɪɦɢ ɿɡ ɩɨɞɚɥьɲɢɦ ɡɚɫɬɨɫɭɜɚɧɧɹɦ 
ɦɟɬɨɞɭ Ɋɿɬɰɚ, є ɞɨɫɬɚɬɧьɨ ɛɥɢɡьɤɢɦɢ ɞɥɹ ɩɪɚɤɬɢɱɧɢɯ ɰɿɥɟɣ. 

Ʉɥɸɱɨɜɿ ɫɥɨɜа: ɜɚɪɿɚɰɿɣɧɢɣ ɦɟɬɨɞ Ɋɿɬɰɚ, ɩɥɚɫɬɢɧɚ Ʉɿɪɯɝɨɮɚ-Ʌɹɜɚ, ɮɭɧɤɰɿɹ ɮɨɪɦɢ, ɡɚɝɚɥьɧɚ ɩɨɬɟɧɰɿɚɥьɧɚ 
ɟɧɟɪɝɿɹ, ɩɪɢɧɰɢɩ ɦɿɧɿɦɿɡɚɰɿʀ. 
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