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Abstract. In this work, the Ritz variational method for solving the flexural problem of Kirchhoff-Love plates un-
der transverse distributed load has been presented systematically in matrix form. An illustrative application of the ma-
trix presentation was done for simply supported rectangular Kirchhoff-Love plate under uniformly distributed load.
The application used a one term Ritz approximating displacement (coordinate, or basis) function. A one term Ritz ap-
proximate solutions obtained for center displacement of square plates showed a difference of 1.9 % from the exact so-
lution for displacement. Solution obtained for the bending moment at the center showed a difference of 7.9 % from
the exact solution for bending moment. The one term Ritz approximation for the maximum shear force showed a dif-
ference of —10.7 % from the exact solution. The results obtained for a one term Ritz approximation of the displace-
ment shape function was reasonably close for practical purposes.

Keywords: Ritz variational method, Kirchhoff-Love plate, shape function, total potential energy, principle of mini-

mization.

1 Introduction

Plates are three dimensional structures having one
transverse dimension that is very small in comparison
with the other (in-plane) dimension. They are usually
subjected to forces applied perpendicularly to their plane.
They therefore resist applied load by the development of
bending moments in two in-plane directions, and a twist-
ing moment. They can also be submitted to forces in the
plane of the plate. They are thus commonly encountered
structural forms used in floor slabs, bridge decks, founda-
tions, and naval and aerospace structural panels.

The mathematical problems of plate analysis belongs
to the three dimensional theory of elasticity governed by
the simultaneous satisfaction of the requirements of the
material stress-strain laws, the kinematic (geometric)
relations between strain and displacements, the differen-
tial equations of equilibrium and the loading and restraint
boundary conditions [1-4].

However, the full three dimensional theory of elasticity
problem has often been approximated to two dimensional
idealizations owing to the disparity in the scale of the
dimensions, especially in thin plates. The analysis and
theories of plates have been broadly categorized into two
using the thickness to breadth ratios, namely thick plate
theories (analysis) and thin plate theories (analysis). The

ratio of the maximum deflection to the thickness has
also been used as criterion in the classification of
plates as plates with small deflection, and plates with
large deflection.

This study uses the Kirchhoff-Love plate theory
also called the classical thin plate theory. The Kirch-
hoff-Love plate theory, is based on three assumptions
(Kirchhoff’s hypothesis) which reduce the equations
of the three dimensional theory of elasticity to two
dimensions. They are [5—7]:

1. Cross-sections that are perpendicular to the neu-
tral surface of the plate before bending remain
straight and normal after bending deformation.

2. The normal stress in the transverse (thickness)
direction is so small as to be insignificant, and is ne-
glected. Thus o,, = 0. This simplifies the three dimen-
sional stress-strain relations into a two dimensional
problem.

3. The transverse shearing strains y,, and y,, are as-
sumed to be zero. Thus the thickness of the plate does
not change during flexural deformation.

Apart from the Kirchhoff-Love plate theory, other
plate theories commonly used in the literature to ana-
lyse plates are: Mindlin plate theory [8], Reissner
plate theory [9], Levinson plate theory, shear defor-
mation plate theories, and Reddy’s plate theory.
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Methods used in the analysis of plates are broadly clas-
sified as: analytical (or mathematical) methods, and nu-
merical (or approximate) methods. The analytical meth-
ods, which seek to obtain closed form mathematical solu-
tions to the plate problem at every point in the plate do-
main include: Eigen function expansion methods, integral
transform methods, separation of variables methods, etc.
The numerical methods seek to obtain approximate solu-
tions to the plate problem. Some of the numerical meth-
ods are: variational methods [10], finite element methods,
finite difference methods [11], finite grid methods, resid-
ual methods, and boundary collocation methods.

The research aim is to present systematically, the Ritz
variational method for the flexural analysis of simply
supported Kirchhoff plates under transverse distributed
load. The objectives include:

a) to present the flexural problem of Kirchhoff plates
under transverse distributed load as a variational problem,
and state the problem in variational form;

b) to apply the principle of minimization of the total
potential energy functional for the plate and find the equa-
tions of static equilibrium in equivalent variational form
as the minimum total potential energy functional.

c¢) to find suitable coordinate shape functions for the
simply supported ends of the plate.

2 Research Methodology

The total potential energy functional IT of a Kirchhoff
plate under distributed transverse load is the sum of the
strain energy and the potential energy of the distributed
lozad, and is given by the integral over the plate domain
R

2
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where w(x, y) — the deflection of the plate middle sur-
face; u — the Poisson’s ratio of the plate; D — the flexural
rigidity of the plate; g(x, y) — the intensity of distributed
transverse load on the plate; V? — the Laplacian operator
in the x-y coordinates; R — the plate domain defined as 0
<x<a,0<y<bh.

Let the deflection be approximated in terms of a linear
combination of n basis (or coordinate or shape) functions
of the space coordinates that apriori satisfy the end sup-
port conditions thus:

w, (%, ¥) = D ¢0,(x, y) (M

i=1
w, (%, y) = 0, (X, ¥) + .0, (X, ¥) +... + ¢, 0,(x, y) (2)

where c¢; are the n undetermined parameters of the dis-
placement function ¢,(x, y) are the coordinate, shape or
basis functions that are chosen to satisfy the boundary
conditions at the ends.

The total potential energy functional can be expressed
in general as follows:
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The principle of minimization of the total potential
energy functional leads to the Ritz variational equa-
tion:

at_, 6)
Oc;
for i =1, 2, ..., n. In matrix form, the Ritz varia-

tional equations become the system of nxn equations

in ¢; given by:
811¢1 + 0156, ... +8y,0, — A, =0
85161 + 056y +... +8,,C, — Ay, =0 (7)
M

8¢ +8,000 +... 48,6, =4, =0

or in matrix form,

d; 6, L §,)¢q Arp

8 8» L &, | _ A2p (8)
M

6nl 6r12 L 8nn Cn A

np

A rectangular Kirchhoff-Love plate simply supported
on the edges x =0, x =a, y =0, and y = b and carrying
uniformly distributed transverse load of intensity g was
considered in this study. A one unknown deflection pa-
rameter assumption was considered as the simplest case
of representation of the deflection function given in gen-
eral as the equation (2). Thus, y(x,y)= 0, (x,¥) >

w(x,y) = ¢,F(x)G,(y) » Where Fi(x) and G(y) are the co-

ordinate shape functions of the plate in the x and y coor-
dinate directions respectively. The displacement and
loading boundary conditions are:
Fx=0)=FK(x=a)=0
Gi(y=0)=G(y=b=0

o o
axizFi(x:O):aiji(x :ll):O
o* o?
?Gl()’ =0) =§G1()’ =b)=0
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Suitable coordinate (basis or shape) functions that sat-
isfy the boundary conditions can be obtained using the
polynomial shape functions as:

R(x)= =20 +a’x
G(y) =" =20y + b’y

The Ritz variational equation then simplifies to

81101 =4y, where
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By differentiation,
F(x) = 43> —6ax’ +a°
F'(x) =12x% —12ax = 12(x* — ax)
G|(y) =4y’ —6by* +b*
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The integrals are evaluated to yield:
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Deflection at the centre (x = a/2; y = b/2):

-1 4
w, = E(E(] Yy ﬁoﬁj qa_ (10)
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where a = a/b.
3 Results

3.1 Square Kirchhoff-Love plates
For square Kirchhoff-Love plates, a = b, a = 1:

10
8,=0944Da"; A =92 ;
P25
(14 a4
¢, =0.03782% 5 v =0.004 2% .
D D

3.2 Bending moment and shear force

Using the bending moment-deflection relations and
the shear deflection relations, the maximum bending
moments occur at the plate centre, and is given for
square plates by:

M, =0.0517ga”. (11)

The exact solutions obtained by Timoshenko and
Woinowsky—Krieger [12] is:

=0.0479ga” - (12)

max
Similarly,

0, =0.420ga- (13)
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4 Discussion

The Ritz variational method which is based on the
principle of minimization of the total potential energy
functional for a structure has been presented in a system-
atic way for the flexural problem of Kirchhoff-Love
plates under distributed load. The presentation relied on
the approximation of the unknown deflection function
w(x, y) using approximating displacement shape functions
with unknown displacement parameters, and constructed
from basis (shape) functions that satisfied apriori the
boundary conditions of the loading and the deformation.
This yielded the total potential energy functional given in
general as equation (3). Application of the extremum
condition gave the system characteristic equations in ma-
trix form as equation (8). The use of the method was illus-
trated for rectangular Kirchhoff-Love plates with simply
supported edges using a one term displacement approxi-
mation. For a square thin plate, the centre deflection was
obtained as equation (10) giving a relative error of 1.9 %.
The bending moment at the centre was obtained using the
bending moment-deflection relations as equation (11)
giving a relative error of 7.9 %. The maximum shear force
was obtained from the shear force-deflection relation as
equation (13), giving a relative error of —10.7 %.
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5 Conclusions

The following conclusions are made from this study.

1. The Ritz variational method can be presented in sys-
tematic form using matrices in a displacement based pro-
cedure.

2. The stiffness influence coefficients are determined
from the shape function by integration.

3. The unknown displacement parameters of the de-
flection function are evaluated by solving the matrix al-
gebraic equation.

4. A one unknown parameter choice of the deflection
function that satisfied the geometric and force boundary
conditions yielded seasonally accurate prediction of the
maximum deflection at the center with a relative error of
1.9 %. This is reasonable considering the ease of compu-
tation offered by the method.

5. A one parameter choice of the deflection function
that satisfied the natural and force boundary conditions
was less accurate in the estimation of the maximum bend-
ing moments and shear force, yielding relative errors of
7.9 % for maximum bending moment and —10.7 % for the
shear force.
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CucremaTuyHe BUKJIaJeHHs BapianiiiHoro merony Pitua s anasisy sKopcTKoCTi
HapHipHO oneprtoi npssMoKyTHOI i1actTunu Kipxroga-Jlssa
Ixe 4. Y.

Jlep>kaBHUI yHiBepcuTeT Hayku 1 TexHonorii M. Exyry , [ILM.b. 01660, m. Enyry, Hirepis

Anoranist. Y poboti y mMarpuuHiii (opmi IpencTaBieHHH y3araJbHEHHH croci® 3acTocyBaHHS BapialliifHOTO
MeTona Pitma mms po3B’s3aHHA 3a4adi PO BUTMH HaBaHTakeHO! miacTuHU Kipxroda-Jlssa. HaBeneno mpukiagu
3aCTOCYBaHHSA INAPHIPHO OMNEPTOi NPSIMOKYTHOI IUTACTMHU IMiJA PIBHOMIPHO PpO3MOAUICHUM HAaBaHTAXKCHHSM,
BUKOPUCTOBYIOUH (QYHKIIT Gopmu y 6a3uci mpsMOKyTHOI cucTeMH KoopauHar. OIuH 3 IMpUKIANB HaOJIKEHOTO
PO3B’SI3Ky 3a MeToIoM PiTIia oTpuMaHO 11 epeMillieHHs [IeHTpa KBaIpaTHOI IIacTHHY IHT. [1py 1iboMy, BiHOCHA
moxnOKa BiJHOCHO TOYHOTO 3Ha4eHHs ckiamae 1,9 %. OtpuMaHe 3HAUCHHS U1l 3TMHAJIBHOTO MOMEHTY y IEHTpi
IUTACTUHYU BiAPI3HAETHCS BiA ICHYIOYOTO TOYHOTO pilieHHS Ha 7,9 %. 3HaueHHS NepepizyBajbHOTO 3YCHIUIA JIa€
MOXHOKY
—10,7 %. Takum YuHOM, OAep>KaHI Pe3yNbTaTH IS anpokcuMmamii QyHKIIl ¢GopMH i3 MOJANBIINM 3aCTOCYBaHHSAM
Mertony Pitia, € ToCTaTHBO ONMM3BKUMU U1 MPAKTUYHHX IIICH.

Kawuosi cioBa: Bapiariiiauit meron Pitia, mnactuna Kipxroga-Jlssa, gyHkiis ¢popMu, 3araibHa MOTCHIIATEHA
€Hepris, IPUHINI MiHiMi3awil.
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