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Abstract. Reliability measurement and estimation of an industrial system is a difficult and essential problematic
task for control engineers. In this context reliability can be described as the probability that machine network will im-
plement its proposed functions under the observing condition throughout a specified time period of running machine
system network. In this study single sensor method is applied for fault diagnosis depending on identification of single
parameter. At early stages it is hard to diagnose machine fault due to ambiguities in modeling environment. Due to
these uncertainties and ambiguities in modeling, decision making become difficult and lead to high financial loss. To
overcome these issues between the machine fault symptoms and estimating the severity of the fault; a new method of
artificial intelligence fault diagnosis based approach Dempster—Shafer theory has been proposed in this paper. This
theory will help in making accurate decision of the machine condition by fusing information from different sensors.
The experimental results demonstrate the efficient performance of this theory which can be easily compared between
unsurpassed discrete classifiers with the single sensor source data.

Keywords: Dempster—Shafer theory, data fusion, fault diagnosis, artificial neural network, fast Fourier transform.

1 Introduction

In fault detection of source related to machine condi-
tion monitoring, its diagnosis and information gathering
are the key steps before it goes into failure. It is also a
fact that without availability of prior information machine
fault cannot be recognized timely. Condition of fault is
mainly dependent on time and available spectrum signa-
ture. It is always a difficult task to diagnose the machine
fault at preliminary phase due to uncertainties in its mod-
eling. In this context a method of single sensor based on
signature of single parameter for diagnosis is suggested in
this paper. But sometimes decision goes wrong and may
cause loss of throughput and significant financial losses
[1].

Yen et al, [2] have advocated the use of data fusion in
CBM, since decision making using more than one sensor
increases the accuracy of decision. In this scenario,
Dempster-Shafer evidence combination or neural nets or
fuzzy logic decision making may be used to determine
the identity of fault by combining identity declaration
from individual sensors.

Fan et. al in [3], studied the features extraction method
from raw data, reasoning of faults and decision making
derived from diagnostic knowledge. But practically, fault
characteristics may be uncertain and inaccurate owing to
sensor faults and some restrictions of the feature extrac-
tion approaches. Some features may not be visible when
any faults are in the initial phase of development. This
research introduced an improved membership function,
importance of features, evidence capability issues, evi-
dence significance, and conflicting evidences into D-S
combination rule in practical application to avoid the
important information loss and precision in decision
making.

The Dempster-Shafer evidence theory was applied to
image segmentation in a Markov field context [4]. The
parameter estimation problem was considered as a classi-
cal mixture estimation problem. A generalized mixture
estimation method was then applied to solve the parame-
ter estimation problem in the context of the multisensory
evidential Markov field model. The research shows that
the estimated parameter based estimation is close to the
true parameter estimation.
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According to the Denoeux [5], D-S evidence theory
differentiates between uncertainty and probability func-
tions. These probability functions can be sub class of
belief functions and the evidence theory decreases the
probability theory when the probability values are well-
known. Denoeux work’s further extended by Yang et al
in [6]. They modified the method for 3-phase induction
motor system, based on current and vibration signal. To
increase the performance and precision of fault diagnosis
in system, they combined NN algorithm with D-S evi-
dence theory and decision level approach. First of all,
features extraction (mean, skewness, kurtosis etc) is man-
aged by one-dimensional (1-D) discrete wavelet trans-
form. Secondly, the extracted data are used for vibration
and current inputs of the NN based on D-S theory. Final-
ly, approximated basic belief assignment (BBA) outputs
from classifiers are merged by D-S theory for improving
the fault diagnosis accuracy.

In this paper, Fault diagnosis based approach Demp-
ster—Shafer theory has been proposed to make an accurate
decision of the machine condition by fusing information
from different sensors. The experimental results demon-
strate the efficient performance of this theory which can
be easily compared between unsurpassed discrete classi-
fiers with the single sensor source data.

2 Research Methodology

2.1 Mathematical modeling of Dempster—
Shafer (D-S) evidence theory

2.1.1 Frame of discernment (Fod)

The Dempster-Shafer evidence theory employs proba-
bility theory to explain the practical uncertainty prob-
lems. The Dempster-Shafer evidence method is regarded
as a generalized Bayesian theory [1]. The theory can
demonstrate support not only for an object but also for
the union of objects.

To compute the credibility of distribution from all
kinds of faults, let assume 6 be a fixed set of elements
and N independent evidence element. We refer the 6 like
the FoD [22]; it consists all groups with the subsets of 6
is known as the power of set of #, and denoted by 26,
when 6 has n elements, 2% has 2" elements.

Suppose 6 = {F,, F,, ..., F,}, if there is N autonomous
reliable distribution function in the identical recognition
framework, so m;, m,, ..., m,, the combine result is [23]:

) 0

1 Fi#¢
i=1

Once the combination, the whole credit assignment
function (CAF) is as given below:

1 n
N, ]1_:[ mj<Fj)' @
1

F=F

m(F)=(m ®m,®..&m \F)=

The reliability distribution function’s m,(F;) of the first
i sensor at current state F; and reliability distribution
function R is as follows [24]:

m(F)= C(F,) , 3)

NZCCi(Fnz)+NS(1_Ri)(1_aiﬂi)

where a;, f; are correlation coefficients.
And reliability distribution function m,(6) is in the evi-
dence body E as given below:

m(@) — Ns (l _Ri)(l _aiﬁi) ) (4)
> C(E,)+Ny(1-R)1-a,8)

Jj=1

So, the largest correlation coefficients ¢; as follows:

a; = maxj{Ci(F )} &)

m

And distribution correlation coefficient f; is:

(6)

B = 1 N.o, 1l

Ne=llsoe(r)
j=1

Sensor reliability coefficient R; could be uncertainty of
the CAF:

R=ap13 ap. (7)

Jj=1

Before going to calculate the confidence period, com-
pute the belief proposition function (Bel) and likelihood
function (Pls) as follows [23]:

Bel(A)= %m(B); )
PIs(A)=1- Bei(A)= Y m(B).

ANB

Where Bel(A) and Pls(A) are the proposition of A’s the
confidence level.

2.1.2 Dempster’s rule of combination

As discussed above, Dempster’s theory has been sug-
gested for the evidence combination when the evidence
from dissimilar sources has diminutive difference. Demp-
ster’s rule joins many belief functions (Bel) through their
respective BPAs. These all belief functions are described
on the identical FoD. Although, these are derived from
autonomous evidence sources. This theory is based on
conjunctive operation. The result of belief function com-
bination consists of conjunctive pooled evidence [4].

Suppose sensor S; observes parametric data and as-
signs mass probabilities [mp(Aq), mp (A1), mp(Ay)] to
the 3 propositions and sensor S, assigns the mass proba-
bilities [mpy(Ag), mpr(A;), mpr(A,)] respectively. The
following Table 1 summarizes the D-S combination rule
for the fault diagnosis.
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Table 1 — D-S combination rule’s

S
[mp1(Ap)] [mp,(A1)] [mp1(A2)]
S»
[mpa(Ag)] mp(Ag) = mp(Ag)mp,(Ag) ko7 = mp1(Ag)mpa(Ag) mp(Ao) = mp(Ag)mps(Ao)
[mpa(A)] ko = mp1(Ag)mps(Ag) mp(Ag) = mp(Ag)mp,(Ag) mp(Ao) = mp(Ag)mps(Ao)
[mpa(Ar)] mp(Ag) = mp(Ag)mp,(Ag) k1o = mp1(Ag)mpa(Ag) mp(Ao) = mp(Ag)mps(Ao)

The matrix elements shown in Table 1, are the joint
the evidences of two sensors which assigned as per the
combination rule. The joint probability for equal proposi-
tions, products of the masses are given by each of sensor.

Dempster’s rule of combination [24] calculates a nor-
malization factor nf which is the total of the masses given
by the divergence propositions (Figure 1).

Combine
these BPAs

]
1}
]
1
|
\ first.

Figure 1 — Classification of evidences [1]

The Dempster’s combination rule subsequently may be
inscribed for two autonomous sources as:

Z mp, (A, )mpz (B j )

mp(A,) = e o ; 9)
nf = Zmpl(Ai)mp2<Bj>’
AlB;=¢

where @ represent the empty set and A; defined as a
general proposition.

3 Results

We suppose the three evidences to perform the online
monitoring of induction motors in MATLAB and Demp-
ster—Shafer Engine 1.0 (DSE) is used for the fusing sen-
sors data. For that, an enormous number of different sig-
nals exist in production line to detect the three hypotheses
were chosen as faults types. Three evidences sources
against these fault types in healthy and faulty motors and
mass probabilities functions are shown in the following
Table 2.

Table 2 — Sources of mass probabilities functions in Healthy
machine

Evidences Sensor number Diagnosis
sources 1 2 3 result
Evidence 1 0.011 0.003 | 0.011 uncertainly
Evidence 2 0.001 0.000 | 0.000 healthy
Evidence 3 0.000 | 0.000 | 0.000 healthy

In each case the condition signal provides a qualitative
indication of the sensor fault. The only significant tem-
poral resolution of the method used to estimate the fre-
quency spectrum. Temporal resolution can be improved
by increasing the overlap of blocks but this incurs a sig-
nificant computational penalty.

Figure 2 a shows the effect of a sensor hard over fault
and failure which is initially detected using samples in the
block 94—-150 minutes, however the sensor status value is
only reduced to 0.59 as the first 19 samples in the block
are obtained from a healthy sensor. The status value is
reduced to zero by data in the block 119—175 minutes and
all subsequent blocks. In Figure 2 b, the sensor is unpre-
dictable from 95 minutes. The sensor status output is
reduced appropriately by data in the block 85-145
minutes and all subsequent blocks. Figure 2 ¢ demon-
strates that a sensor point fault at 83 minutes and the
sensor status value is reduced to 0.09 by data in the block
47-139 minutes but returned to unity by data in the block
77—-133 minutes. In response to the sensor fixed fault at
110 minutes the sensor status value is reduced suitably by
data in the block 110-210 minutes and all subsequent
blocks.

The following Tables 3, 4 shows the specification of
features classification and accuracy of each fault class for
network training and data testing with 100 evidence trees,
with splitting one class variable for each split with their
accuracy percentage against each evidence. For features
classification, specific numbers of sample are taken by
each sensor, and train it through proposed theory.

The following Figure 3 presents the performance er-
rors against each targeted class. As we can observed that
in classification of class 1 and 3; the required best epoch
is near 32 and 26, which is not close targeted value which
shows the less accuracy in training. Instead, class 2 is
very adjacent and shows the healthy state of evidence
class.
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Figure 4 shows the error percentage of all the evidenc-  Conclusions

es.
Error Histogram with 20 Bins This paper discussed the machine fault diagnosis using
— T T T T the sensor fusion technique D-S evidence theory.
350 - =;;a”‘;;:%n H{  Through the theoretical and practically, we found this
B Test theory very efficient and realistic in machine fault diag-
30r Zero Error || nosis concept. A critical comparison is also performed
” between the different sensors fusion in respect to time
b which also show the accuracy percentage of D-S. The
E results shows that it effectively enhance the reliability of
o2 machine diagnosis and very much decreased the probabil-
- ity of uncertainty. It also detects the different faults time-
ly to reduce the cause loss of throughput and significant
financial losses among the industries. Therefore, it can be
believed that the fault diagnosis of electric machines is a
T significant investigate topic with great potential for appli-
gé?@é@%ﬁﬁ@i@%%ﬁégi@?% cation in industry.
$9999333aa83°33s5 ©°°
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Figure 4 — Overall error percentage instances The authors would like to thanks to Sajid Brothers En-
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BnpoBamxeHHsi epeKTUBHOI MeTOAMKH KJIacu(pikauii 3JiMTT JaHUX IS BUSHAYEHHSA

HeCNPaBHOCTell ACHHXPOHHOI0 IBUIYHA i3 32CTOCYBAHHAM IUTY4YHOI HelipOHHOI Mepe:xi
Ansrad C.', Mexmya M. C.%, Impan M.

! JIOCTiTHUTIBKHI TICHTP MEPEkKi TATUUKIB Ta IHTEJIIEKTYaIbHOTO CEPEIOBHUINA,
OKJIeHACHKUHN TeXHOJOT1YHNI yHiBepcuTeT, M. Okiena, Hoa 3enanmis;
? ImxeHepHa KoMmaris “Sajid Brothers”, msix Asaifs Kapni, m. I'ymwkapsaia, [lakncras;
3 MiHicTepcTBO IPOMHUCIOBOCTI Ta BUPOOHHITBA, M. Icnamaban, Ilakucran

AHoTanisi. BuzHaueHHs HamidHOCTI Ta OLIHKA IPOMHCIOBOI CHCTEMH € BaKKMM 1 Ba)KJIMBHM IIPOOIEMHUM
3aBIaHHAM U1 iIH)KeHepil KepyBaHHs. Y IIbOMY KOHTEKCTI HalilHICTh MOXKke OyTH OXapaKTepH30BaHa sIK BipOTiAHICTh
TOTO, III0 MalIMHHA MEpeka peajl3ye CBOi 3aIpoNOHOBaHI (YHKIIi B yMOBaX CIIOCTEPEKEHHS BIIPOJOBXK IMEBHOI'O
4acOBOTO IMPOMIKKY, KOJH IpPALIOE CHCTEMa MAalIMHHOI Mepexi. Y IIbOMY OOCHIIPKEHHI 3aCTOCOBYETHCS METOX
OIMHOYHOTO JaT4YWKa AJs MIarHOCTYBaHHS HECHpPABHOCTEH 3alie)KHO Bin ineHTHdiKkamii oxHoro mapamerpa. Ha
PaHHIX eTamax BaKKO JAIaTHOCTYBAaTH NMOMWJIKY MAIlMHM 4epe3 HEBH3HAUEHICTh y CEpPENOBHUINI MOJIEIIOBAHHA. 3
orysiay Ha i akTH, HEBU3HAUSHOCTI 1 IBO3HAYHOCTI B MOJIEIIFOBAaHHI, IPUHHATTS PIllICHb CTa€ CKJIAJIHUM 3aBIaHHIM
i IPU3BOJUTH 10 3HAYHUX (DiHAHCOBHX BTpAT. J{yIsl mMOJ0NaHHS IIMX MPOOIEM MiX HPOsSBaMH HECHIPABHOCTI MAIIMHU
Ta OI[HKOIO ii CTyNeHs B poOOTi 3alpONOHOBAHO HOBHMH MiJXiA i3 3aCTOCYBAaHHSM ILITYYHOTO iHTENIEKTY HAa OCHOBI
Teopii
Hemncrepa—Iladepa. Lis Teopis 103BosI€ OLIBIT TOYHO BU3HAYATH CTAaH MAIIMHU IIIIXOM 00’ €THAHHA iHpOpMaIii 3
pi3HUX JaT4MKiB. Pe3ynbTaTH YHCIOBOTO EKCIEPHUMEHTY JEMOHCTPYIOTh BHCOKY €(GEKTHBHICTH 3alpPOINOHOBAHOT
METOJHMKH Y MOPIBHSIHHI 3 TUCKPETHUMH Kiacu]ikaTopamy 3 BUXiTHUMH JaHUMHU OJMHOYHUX JIATYHKIB.

Kiwuogi cioBa: teopis Jemncrepa—llladepa, 3MuTTs naHuX, AiarHOCTYBaHHS HECTIPABHOCTEH, IITYYHA HEHPOHHA
Mepeka, MBHIKE MepeTBopeHHs Dyp’e.
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