JOURNAL OF ENGINEERING SCIENCES 1) e

DOI:

KYPHAJ IHZKEHEPHUX HAVYK
KYPHAJ MHXKEHEPHBIX HAYK

Web site: http://jes.sumdu.edu.ua
Volume 5, Issue 2 (2018)

10.21272/jes.2018.5(2).e5

UDC 681.5.09

Kalman Filter Based Controlled Online System Identification
Ganesh E. N.

Saveetha Engineering College, Kuthambakkam, 600124 Tamil Nadu, Chennai, India

*Corresponding Author’s Address:
enganesh50@gmail.com

Article info:

Paper received:

The final version of the paper received:
Paper accepted online:

July 13,2018
September 24, 2018
October 3, 2018

Abstract. In the development of model predictive controllers a significant amount of time and effort is necessary
for the development of the empirical control models. Even if on-line measurements are available, the control models
have to be estimated carefully. The payback time of a model predictive controller could be significantly reduced, if a
common identification tool would be available which could be introduced in a control scheme right away. In this
work it was developed a control system which consists of a neural network (NN) with external recurrence only,
whose parameters are adjusted by the extended Kalman filter in real-time. The output of the neural network is used in
a control loop to study its accuracy in a control loop. At the moment this control loop is a NN-model based minimum
variance controller. The on-line system identification with controller was tested on a simulation of a fed-batch peni-
cillin production process to understand its behaviour in a complex environment. On every signal process and meas-
urements noise was applied. Even though the NN was never trained before, the controller did not diverge. Although it
seemed like the on-line prediction of the NN was quite accurate, the real process was not learned yet. This was
checked by simulating the process with the NN obtained at the end of the batch. Nevertheless the process was main-
tained under control near the wanted set-points. These results show a promising start for a model predictive controller

using an on-line system identification method, which could greatly reduce implementation times.

Keywords: Kalman filter, neural network, on-line training, variance control.

1 Introduction

Most companies have limited resources as most of the
large central research departments have shrunken down.
Advanced control projects have to compete with other
cost saving projects and therefore need to have a typical
payback time of two years. Once a control system is in-
troduced, it has to be maintained as the process configu-
ration or process conditions can change willingly or un-
wanted, for example catalyst decoking. If it would be
possible to have a general control tool with self-tuning
capabilities for system identification and control, imple-
mentation time and thus payback times could be greatly
reduced.

The proposed control and system identification system
consist of a neural network with external recurrence,
whose weights are adjusted by the extended Kalman fil-
ter. The neural network’s prediction is fed to a second
extended Kalman filter which tries to obtain the set-point
at the next sampling point. This system identification
scheme and control structure can be seen as an adaptive
non-linear minimum variance control (Astrom and Wit-
tenmark, 1984).

2 Research Methodology
2.1

Neural networks are known to be non-linear fitters in a
certain domain. A neural network with external recur-
rence is normally sufficient for chemical processes as
they show slow dynamics compared with electrical
(Haykin, 1999).

Various neural network configurations can be seen as
the non-linear correspondent of known linear models
such as the models NARX, ARMAX, CARMA and state
space models (Haykin, 1999; Rivals and Personnaz,
1998).

The neural network weights are adapted by the extend-
ed Kalman filter, which is implemented as the MEKA
algorithm as first introduced by Shah and Palmiero in
1990, as well as later by Puskoris and Feldkamp in 1991
as the decoupled Kalman filter algorithm. In this case
every neuron has its own extended Kalman filter
(Figure 1).

System identification
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Figure 1 — Global extended Kalman Filter (a) and non-linear Kalman filtering per neuron (b)

The network weights are updated in real-time by a
Multiple Extended Kalman filter algorithm to account for
changes in the process, whose implementation can be
found in Scheffer et al. in 2000-2001.

New development have taken place in improving de
Kalman filter by replacing the derivatives for mean and
variance calculations (Julier and Uhlmanm, 1997) and
applying this concept to neural networks (Wan and van
der Merwe, 2000).

2.2  The control system

The estimate of the recurrent neural network is fed to
an extended Kalman filter to estimate the controller pa-
rameters or directly the manipulated variables. Here, the
latter approach is chosen and the manipulated variable is
directly estimated by the following dynamical system:

m(k + 1) = m(k) + w(k); (1)

YelK) = Yann, (k) + v(k), 2

where m is the manipulated variable; y, — the con-
trolled variable; w and v are variables with a Gaussian
distribution of (0, Q) and (0, R) respectively.

The measurement d of the controlled variable is the
desired set-point of the controlled variable. The manipu-
lated variable is one of the inputs of the recurrent neural
network. In the application of the Kalman filter, the ob-
servation equation has to be linearised every sampling
instance. Thus the derivative of the controlled variable to
the manipulated variable has to be calculated, which is
the derivative to the recurrent neural network. The deriva-
tive of a neural network can be calculated by applying the
chain rule, which results for a two layer neural network
in:

dy, .
% = f'(Vk,j )'Z;\:‘ [Wk,ji ’ Wk—l,ihf'(vk—l,i )] 3)
Yi-2.n

The controlled variable can now be updated by the
Kalman filter:

m(k) = m(k)+ K1Y, e )= Ve () )

2.3  The penicillin production process

Fed-batch processing is a typical example of a process
exhibiting non-linear process dynamics. Especially, bio-
chemical processes are known to have a lot of interaction
between their state variables and are sensible to minor
changes in pH, dissolved oxygen concentration, and tem-
perature due to the sensitivity of the biochemical cata-
lysts. PID control behaves well in case of continuous
processing but in batch processing the control parameters
will never maintain optimal values due to the changing
process conditions. Therefore this seems to be a challeng-
ing study case as it exhibits non-linear process dynamics
and a need for a self-tuning controller (Figure 2).
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Figure 2 — The proposed non-linear
self-tuning controller scheme

The emphasis is put on the production phase and not
on the growing phase where an optimal feeding strategy
is essential in obtaining a high concentration of penicillin.
But it is essential to keep the dissolved oxygen concentra-
tion above 30 % to ensure life conditions to the fungi. In
this work the feeding strategy determined by Rodrigues
in 1999 is used and the control objective is to maintain
the dissolved oxygen concentration at about 55 %. The
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dissolved oxygen concentration is controlled by manipu-
lating the rotation speed through the mentioned non-
linear self-tuning controller.

An essential part of the non-linear self-tuning control-
ler is the recurrent neural network identification. Three
input and four state variables were taken to identify the
process and are the substrate feed flow, the rotation speed
and the air flow as input variables and the bio-mass con-
centration, the substrate concentration, the penicillin con-
centration and the dissolved oxygen concentration as state
variables. The mentioned Kalman filter algorithm will be
compared to the standard backpropagation algorithm.

3 Results

The system identification is an important part of the
control structure. It is necessary to have a good prediction
of the dissolved oxygen concentration of the next meas-
urement as this is used by the minimum variance control.
Therefore the on-line prediction was studied also without
the control structure to understand its prediction capabili-
ties. The standard back-propagation algorithm (SBP) is
one of the few algorithms was used as a comparison as it
is one of the few other recurrent algorithms. The parame-
ters of the standard back propagation and the Kalman
filter algorithms were tuned and a selection was made by
ranking them on the training error or on the simulation
error of all the state variables as mentioned in the former
paragraph. The simulation error was obtained by simulat-
ing again after the on-line training, which is the showing
of every data-point only one time to the neural network.
We would like to note that it was also tried to use the
standard backpropgation algorithm with momentum, but
that did not result in smaller errors than with the standard
backpropagation algorithm. The results are presented in
Figures 3-6.

From the Figures 3 and 4 it can be seen the known
fact, that the best training errors is no assurance for a
good generalization error and is clearly seen the larger
discrepancy between the data and the prediction in the
simulation with the one-time trained neural network. But
it is interesting to see that the usage of the Kalman filter
algorithm results indeed in a better general learning. Ad-
ditionally it can be seen that the simplification of the
global extended Kalman filter to multiple local Kalman
filters in the MEKA algorithm penalizes the general
learning. Additionally, the MEKA algorithm shows more
instability in the simulation (Figure 4).

If we turn to the tuning of the parameters, which lead
to the best simulation error (Figures 5, 6) the situation
becomes even more pronounced. During the training the
prediction of the dissolved oxygen concentration with the
backpropagation algorithm would not be suitable for
control as the concentration prediction during the predic-
tion is not good enough.

It is interesting to see that the instability in the MEKA
algorithm has been transferred from the simulations error
(Figure 4) to the training error for this case (Figure 5).
Still the MEKA algorithm’s prediction during the training
follows the real concentration.
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Figure 3 — Dissolved oxygen prediction of NN during the
on-line training (best training error and normalized data)
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Figure 4 — Simulation of the same dissolved oxygen data
with the on-line trained NN (best training error)
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Figure 5 — Dissolved oxygen prediction of NN during the
on-line training (best simulation error
and normalized data)
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Figure 6 — Simulation of the same dissolved oxygen data

with the on-line trained NN (best simulation error)
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The GEKF algorithm outperforms in this case very
much both algorithms. Therefore there is encouragement
to implement the unscented Kalman filter (Julier et al.,
1997) also, as this is an improvement over the extended
Kalman filter.

In Table 1 it is shown the errors for both cases. The er-
ror summed over all the state variables (bio-mass concen-
tration, the substrate concentration, the penicillin concen-
tration and the dissolved oxygen concentration. From the
table, it seems that the MEKA algorithm performs better

than the GEKF, but that is not true due to the instabilities
as shown in Figures 4, 5.

In Table 2 it is shown the calculation times of the dif-
ferent algorithms. Although it seems that the GEKF has a
much higher computational costs, it still means that the
calculation per data point is done in less than 1 second.
The data is probably not faster available from the on-line
measurements and therefore the GEKF would be a good
candidate also for on-line control scheme or even be the
favourite on-line neural network training algorithm.

Table 1 — Training errors for the best training and best simulation cases of the different algorithms

Algorithm SBP SBP MEKA MEKA GEKF GEKF
Best Best Best Best .Best Best
Parameter .. . . . . .. simula- ..
training | simulation simulation training tion training
Quality, 0 | 1.25-10° | 1.0-10° | (error-d_errorldw;)’ 0.20 1.0-10° | 1.0-10°8
Relative error | 5.09-10° | 2.34-10° 1.95-10° 224100 | 1.35-10° | 7.39-10°

Table 2 — Calculation times of the different algorithms
for 1 200 data points

Algorithm SPB MEKA GEKF

Calculation time, s 0.08 27 409

In Figures 7 and 8 it is shown the minimum variance
control of the dissolved oxygen concentration with the
on-line training of the recurrent neural network at the
same time. For the moment the MEKA algorithm has
been used and therefore it can still be gained from using
the GEKF algorithm. It can be clearly seen that the mini-
mum variance control is better with the MEKA algo-
rithm. The Kalman filter training algorithm assure that
the neural network training is better which results in the
much smaller deviations at the end of the batch run.

4 Conclusions

The on-line training of recurrent neural networks
should be done preferably with extended Kalman filter
algorithms. Localizing the Kalman filter to the neuron
level (MEKA) affects the learning of the neural network
and therefore the implementation of the unscented Kal-
man filter algorithm could lead even to further improve-
ments for on-line training of neural networks. However,
the simulations show that not always a good generaliza-
tion is obtained. The application of the minimum variance
controller with the on-line training of the neural network
showed that control could be obtained on the neural net-
works prediction without divergence of the algorithm.
Therefore, implementation or payback time could be
reduced by applying on-line training.
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Figure 7 — Estimation and minimum variance control
of the dissolved oxygen concentration concentration
(the recurrent neural network is trained
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KontpoansoBana onjiaiiH-cucreMa ifentugikauii Ha ocHoBi ¢piibTpa Kaamana
lanew E. H.

Imxenepruit konemx iM. Caseeta, M. Kyrrembaxkem, 600124, Taais

AHoTauisi. {11 po3poOJieHHS MPOTHOCTHYHUX MOJIENICH KOHTPOJIEPIB BUTPAYA€ThCS BITHOCHO BEJHMKA KiJBbKICTh
yacy Ta 3ycuiab. Yac OKymHOCTI KOHTposiepa 3 (YHKII€I0 IHTEIEKTYalbHOTO IMPOTHO3YBAaHHS MOXKHA CYTTEBO
3MEHIINTH 33 HAsBHOCTI 3arajbHUM IHCTPYMEHTY iJeHTH(iKallil, BBEAEHOTO J0 CXEMH KOHTpoo. Y poboti Oyna
po3poliieHa cucTemMa KepyBaHHs, siKa CKJIAIA€Thes 3 HelpoHHOT Mepexi (HM) 3 BUKITIOYHO 30BHINIHIM TOBTOPEHHSM,
rapaMeTpu sKoi perymoloThesi po3mmpeHuM ¢ineTpom KanMana y pexumi peansHoro uacy. Buxin HelfipoHHOT
Mepexi BUKOPUCTOBYETHCSI B KOHTPOJBHIN JIaHI IS BUBYEHHS TOYHOCTI KOHTYpY KepyBaHHs. Ha naHuii MOMEHT
el KOHTYp € KOHTPOJEepPOM MiHIManbHOI mucriepcii Ha ocHOBI HM-monemi. InmeHTndikamis oH-TallH cucTteMH 3
KOHTPOJIEPOM TPOTECTOBAaHA HUIIXOM MOJETIOBAHHS TPOLECY BUPOOHWITBA MEHINWIIHY 3 METOI PO3yMiHHA
MOBE/IIHKH y CKJIQJHOMY cepefoBuIli. Ha K0)XKHOMY CHrHaJbHOMY Mpolieci Ta BUMipPIOBaHHI 3aCTOCOBYBABCS IIYM.
HesBaxaroun Ha Te, mo HM Hikonu paHimie He HaBYaiach, PO3XOJPKEHHs KOHTpoOJiepa HE CIOCTepiraiock. Xoda
omnaitH-nporno3 HM OyB n1ocTaTHbO TOYHUM, pEaJbHUH TNPOIEC 3aIUINAETHCS JOCi He BHBYEHMM. BiH OyB
TepeBipeHNH IMiTali€lo mporecy i3 3acrocyBaHHAM HM as oTpruMaHOTO KiHIEBOTO MPOAYKTY. THM He MeHII, Hei
MIPOIIEC TPUMABCS ITiJ] KOHTPOJIEM MOPYY i3 BCTAHOBJIEHUMH «PO3yMHUMM» Toukamu. OTpUMaHi pe3yabTaTH CBiquaTh
PO TEPCHEeKTHBHI CHpoOM MOIENIOBAaHHS IHTEJIEKTYAIFHIX KOHTPOJEPIB i3 BUKOPHCTAaHHSAM METOAY OH-JTalH
ineHTUdiKaIlii, 10 3HAYHO BKOPOUYE Yac peaisarii.

Korouosi ciioBa: dinstp Kanmana, HelipoHHa Meperxa, OHIIalH-HaBYaHHS, BapiaTHBHUI KOHTPOJIb.
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