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Abstract. In the development of model predictive controllers a significant amount of time and effort is necessary 

for the development of the empirical control models. Even if on-line measurements are available, the control models 

have to be estimated carefully. The payback time of a model predictive controller could be significantly reduced, if a 

common identification tool would be available which could be introduced in a control scheme right away. In this 

work it was developed a control system which consists of a neural network (NN) with external recurrence only, 

whose parameters are adjusted by the extended Kalman filter in real-time. The output of the neural network is used in 

a control loop to study its accuracy in a control loop. At the moment this control loop is a NN-model based minimum 

variance controller. The on-line system identification with controller was tested on a simulation of a fed-batch peni-

cillin production process to understand its behaviour in a complex environment. On every signal process and meas-

urements noise was applied. Even though the NN was never trained before, the controller did not diverge. Although it 

seemed like the on-line prediction of the NN was quite accurate, the real process was not learned yet. This was 

checked by simulating the process with the NN obtained at the end of the batch. Nevertheless the process was main-

tained under control near the wanted set-points. These results show a promising start for a model predictive controller 

using an on-line system identification method, which could greatly reduce implementation times. 

Keywords: Kalman filter, neural network, on-line training, variance control. 

1 Introduction 

Most companies have limited resources as most of the 

large central research departments have shrunken down. 

Advanced control projects have to compete with other 

cost saving projects and therefore need to have a typical 

payback time of two years. Once a control system is in-

troduced, it has to be maintained as the process configu-

ration or process conditions can change willingly or un-

wanted, for example catalyst decoking. If it would be 

possible to have a general control tool with self-tuning 

capabilities for system identification and control, imple-

mentation time and thus payback times could be greatly 

reduced. 

The proposed control and system identification system 

consist of a neural network with external recurrence, 

whose weights are adjusted by the extended Kalman fil-

ter. The neural network’s prediction is fed to a second 

extended Kalman filter which tries to obtain the set-point 

at the next sampling point. This system identification 

scheme and control structure can be seen as an adaptive 

non-linear minimum variance control (Astrom and Wit-

tenmark, 1984). 

2 Research Methodology 

2.1 System identification 

Neural networks are known to be non-linear fitters in a 

certain domain. A neural network with external recur-

rence is normally sufficient for chemical processes as 

they show slow dynamics compared with electrical 

(Haykin, 1999). 

Various neural network configurations can be seen as 

the non-linear correspondent of known linear models 

such as the models NARX, ARMAX, CARMA and state 

space models (Haykin, 1999; Rivals and Personnaz, 

1998). 

The neural network weights are adapted by the extend-

ed Kalman filter, which is implemented as the MEKA 

algorithm as first introduced by Shah and Palmiero in 

1990, as well as later by Puskoris and Feldkamp in 1991 

as the decoupled Kalman filter algorithm. In this case 

every neuron has its own extended Kalman filter  

(Figure 1). 
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Figure 1 – Global extended Kalman Filter (a) and non-linear Kalman filtering per neuron (b) 

 

The network weights are updated in real-time by a 

Multiple Extended Kalman filter algorithm to account for 

changes in the process, whose implementation can be 

found in Scheffer et al. in 2000–2001. 

New development have taken place in improving de 

Kalman filter by replacing the derivatives for mean and 

variance calculations (Julier and Uhlmanm, 1997) and 

applying this concept to neural networks (Wan and van 

der Merwe, 2000). 

2.2 The control system 

The estimate of the recurrent neural network is fed to 

an extended Kalman filter to estimate the controller pa-

rameters or directly the manipulated variables. Here, the 

latter approach is chosen and the manipulated variable is 

directly estimated by the following dynamical system: 

 m(k + 1) = m(k) + w(k); (1) 

 yc(k) = yann,c(k) + v(k), (2) 

where m is the manipulated variable; yc – the con-

trolled variable; w and v are variables with a Gaussian 

distribution of (0, Q) and (0, R) respectively. 

The measurement d of the controlled variable is the 

desired set-point of the controlled variable. The manipu-

lated variable is one of the inputs of the recurrent neural 

network. In the application of the Kalman filter, the ob-

servation equation has to be linearised every sampling 

instance. Thus the derivative of the controlled variable to 

the manipulated variable has to be calculated, which is 

the derivative to the recurrent neural network. The deriva-

tive of a neural network can be calculated by applying the 

chain rule, which results for a two layer neural network 

in: 
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The controlled variable can now be updated by the 

Kalman filter: 
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2.3 The penicillin production process 

Fed-batch processing is a typical example of a process 

exhibiting non-linear process dynamics. Especially, bio-

chemical processes are known to have a lot of interaction 

between their state variables and are sensible to minor 

changes in pH, dissolved oxygen concentration, and tem-

perature due to the sensitivity of the biochemical cata-

lysts. PID control behaves well in case of continuous 

processing but in batch processing the control parameters 

will never maintain optimal values due to the changing 

process conditions. Therefore this seems to be a challeng-

ing study case as it exhibits non-linear process dynamics 

and a need for a self-tuning controller (Figure 2). 

 

 

Figure 2 – The proposed non-linear  

self-tuning controller scheme 

The emphasis is put on the production phase and not 

on the growing phase where an optimal feeding strategy 

is essential in obtaining a high concentration of penicillin. 

But it is essential to keep the dissolved oxygen concentra-

tion above 30 % to ensure life conditions to the fungi.  In 

this work the feeding strategy determined by Rodrigues 

in 1999 is used and the control objective is to maintain 

the dissolved oxygen concentration at about 55 %. The 
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dissolved oxygen concentration is controlled by manipu-

lating the rotation speed through the mentioned non-

linear self-tuning controller. 

An essential part of the non-linear self-tuning control-

ler is the recurrent neural network identification. Three 

input and four state variables were taken to identify the 

process and are the substrate feed flow, the rotation speed 

and the air flow as input variables and the bio-mass con-

centration, the substrate concentration, the penicillin con-

centration and the dissolved oxygen concentration as state 

variables. The mentioned Kalman filter algorithm will be 

compared to the standard backpropagation algorithm. 

3 Results 

The system identification is an important part of the 

control structure. It is necessary to have a good prediction 

of the dissolved oxygen concentration of the next meas-

urement as this is used by the minimum variance control. 

Therefore the on-line prediction was studied also without 

the control structure to understand its prediction capabili-

ties. The standard back-propagation algorithm (SBP) is 

one of the few algorithms was used as a comparison as it 

is one of the few other recurrent algorithms. The parame-

ters of the standard back propagation and the Kalman 

filter algorithms were tuned and a selection was made by 

ranking them on the training error or on the simulation 

error of all the state variables as mentioned in the former 

paragraph. The simulation error was obtained by simulat-

ing again after the on-line training, which is the showing 

of every data-point only one time to the neural network. 

We would like to note that it was also tried to use the 

standard backpropgation algorithm with momentum, but 

that did not result in smaller errors than with the standard 

backpropagation algorithm. The results are presented in 

Figures 3–6. 

From the Figures 3 and 4 it can be seen the known 

fact, that the best training errors is no assurance for a 

good generalization error and is clearly seen the larger 

discrepancy between the data and the prediction in the 

simulation with the one-time trained neural network. But 

it is interesting to see that the usage of the Kalman filter 

algorithm results indeed in a better general learning. Ad-

ditionally it can be seen that the simplification of the 

global extended Kalman filter to multiple local Kalman 

filters in the MEKA algorithm penalizes the general 

learning. Additionally, the MEKA algorithm shows more 

instability in the simulation (Figure 4). 

If we turn to the tuning of the parameters, which lead 

to the best simulation error (Figures 5, 6) the situation 

becomes even more pronounced. During the training the 

prediction of the dissolved oxygen concentration with the 

backpropagation algorithm would not be suitable for 

control as the concentration prediction during the predic-

tion is not good enough. 

It is interesting to see that the instability in the MEKA 

algorithm has been transferred from the simulations error 

(Figure 4) to the training error for this case (Figure 5). 

Still the MEKA algorithm’s prediction during the training 

follows the real concentration. 

 
Figure 3 – Dissolved oxygen prediction of NN during the 

on-line training (best training error and normalized data) 

 
Figure 4 – Simulation of the same dissolved oxygen data 

with the on-line trained NN (best training error) 

 
Figure 5 – Dissolved oxygen prediction of NN during the 

on-line training (best simulation error  

and normalized data) 

 
Figure 6 – Simulation of the same dissolved oxygen data 

with the on-line trained NN (best simulation error) 
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The GEKF algorithm outperforms in this case very 

much both algorithms. Therefore there is encouragement 

to implement the unscented Kalman filter (Julier et al., 

1997) also, as this is an improvement over the extended 

Kalman filter. 

In Table 1 it is shown the errors for both cases. The er-

ror summed over all the state variables (bio-mass concen-

tration, the substrate concentration, the penicillin concen-

tration and the dissolved oxygen concentration. From the 

table, it seems that the MEKA algorithm performs better 

than the GEKF, but that is not true due to the instabilities 

as shown in Figures 4, 5. 

In Table 2 it is shown the calculation times of the dif-

ferent algorithms. Although it seems that the GEKF has a 

much higher computational costs, it still means that the 

calculation per data point is done in less than 1 second. 

The data is probably not faster available from the on-line 

measurements and therefore the GEKF would be a good 

candidate also for on-line control scheme or even be the 

favourite on-line neural network training algorithm. 

 

Table 1 – Training errors for the best training and best simulation cases of the different algorithms 

Algorithm SBP SBP MEKA MEKA GEKF GEKF 

Parameter 
Best  

training 

Best  

simulation 

Best  

simulation  

Best  

training 

Best  

simula-

tion  

Best  

training  

Quality, Q 1.25·10
–2 

1.0·10
–3 

(error·d_error/dwij)
2 

0.20 1.0·10
–8 

1.0·10
–8 

Relative error 5.09·10
6 

2.34·10
6 

1.95·10
5 

2.24·10
5 

1.35·10
6 

7.39·10
5 

 

Table 2 – Calculation times of the different algorithms  

for 1 200 data points 

Algorithm SPB MEKA GEKF 

Calculation time, s 0.08 27 409 

 

In Figures 7 and 8 it is shown the minimum variance 

control of the dissolved oxygen concentration with the 

on-line training of the recurrent neural network at the 

same time. For the moment the MEKA algorithm has 

been used and therefore it can still be gained from using 

the GEKF algorithm. It can be clearly seen that the mini-

mum variance control is better with the MEKA algo-

rithm. The Kalman filter training algorithm assure that 

the neural network training is better which results in the 

much smaller deviations at the end of the batch run. 

4 Conclusions 

The on-line training of recurrent neural networks 

should be done preferably with extended Kalman filter 

algorithms. Localizing the Kalman filter to the neuron 

level (MEKA) affects the learning of the neural network 

and therefore the implementation of the unscented Kal-

man filter algorithm could lead even to further improve-

ments for on-line training of neural networks. However, 

the simulations show that not always a good generaliza-

tion is obtained. The application of the minimum variance 

controller with the on-line training of the neural network 

showed that control could be obtained on the neural net-

works prediction without divergence of the algorithm. 

Therefore, implementation or payback time could be 

reduced by applying on-line training. 

 

 

 
Figure 7 – Estimation and minimum variance control  

of the dissolved oxygen concentration concentration  

(the recurrent neural network is trained  

with the MEKA filter algorithm) 

 

 
Figure 8 – Estimation and minimum variance control  

of the dissolved oxygen concentration concentration  

(the recurrent neural network is trained  

with the backpropagation algorithm) 
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Контрольована онлайн-система ідентифікації на основі фільтра Калмана 

Ганеш Е. Н. 

Інженерний коледж ім. Савеета, м. Кутгембаккем, 600124, Індія 

Анотація. Для розроблення прогностичних моделей контролерів витрачається відносно велика кількість 
часу та зусиль. Час окупності контролера з функцією інтелектуального прогнозування можна суттєво 
зменшити за наявності загальний інструменту ідентифікації, введеного до схеми контролю. У роботі була 
розроблена система керування, яка складається з нейронної мережі (НМ) з виключно зовнішнім повторенням, 
параметри якої регулюються розширеним фільтром Калмана у режимі реального часу. Вихід нейронної 
мережі використовується в контрольній ланці для вивчення точності контуру керування. На даний момент 
цей контур є контролером мінімальної дисперсії на основі НМ-моделі. Ідентифікація он-лайн системи з 
контролером протестована шляхом моделювання процесу виробництва пеніциліну з метою розуміння 
поведінки у складному середовищі. На кожному сигнальному процесі та вимірюванні застосовувався шум. 
Незважаючи на те, що НМ ніколи раніше не навчалась, розходження контролера не спостерігалось. Хоча 
онлайн-прогноз НМ був достатньо точним, реальний процес залишається досі не вивченим. Він був 
перевірений імітацією процесу із застосуванням НМ для отриманого кінцевого продукту. Тим не менш, цей 
процес тримався під контролем поруч із встановленими «розумними» точками. Отримані результати свідчать 
про перспективні спроби моделювання інтелектуальних контролерів із використанням методу он-лайн 
ідентифікації, що значно вкорочує час реалізації. 

Ключові слова: фільтр Калмана, нейронна мережа, онлайн-навчання, варіативний контроль. 
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