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The crystallographic sites available for the point defects in the unit cells of the Ti-Ni, Au-Cd, Heusler 

alloys and vanadium crystals have been considered. Two different effects have been analyzed: i) spatial re-

distribution of point defects during the ferroelastic phase transitions (such as martensitic transformations 

in the Ti-Ni, Au-Cd and Heusler alloys); ii) deformation of crystal lattice caused by the hydrogen ordering 

in the course of hydrogen absorption in vanadium. The configurational order parameters describing the 

spatial symmetry of defect or hydrogen system have been constructed from the probabilities of crystallo-

graphic sites occupation by the defects or hydrogen atoms, respectively. 
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1. INTRODUCTION 
 

It is of common knowledge that the existence of 

crystal defects and their spatial reconfiguration due to 

the diffusion process can drastically change the physi-

cal characteristics of crystalline solids. As so, the theo-

ry of phase transitions in the real crystalline solids 

should take into account the symmetry of crystal cells 

and positions of point defects in them. The physical 

effects caused by reconfiguration of defects system are 

especially pronounced in the case of ferroelastic phase 

transitions, which are the first-order phase transitions 

accompanied by the "spontaneous" deformation of crys-

tal lattice and lowering of its symmetry. The martensit-

ic transformations (MTs) of shape memory alloys 

(SMAs) are the most studied ferroelastic phase transi-

tions [1, 2] and the Landau theory of phase transitions 

is used for theoretical description of MTs in the ideal 

crystals [3]. The MTs in the Heusler alloys attract spe-

cial attention of researches because these alloys exhibit 

not only MTs, but different types of magnetic phase 

transitions as well [2]. The Ti-Ni alloys are widely 

known due to their medical applications [4]. Martensit-

ic transformations of Au-Cd alloys are interesting in 

the academic aspect [5]. 

The SMAs undergo MTs from the high-symmetry 

(austenitic) phase to the low-symmetry (martensitic) 

phase [1]. The MTs of shape memory alloy are charac-

terized by the “spontaneous” deformation of cubic crys-

tal lattice, which arises on cooling of the alloy, or so-

called “superelastic” deformation caused by the me-

chanical stressing. (These kinds of deformational be-

havior of SMAs are referred to as the temperature-

induced and stress-induced MTs.) The spatial distribu-

tion of crystal defects in the high-temperature phase 

conforms with the cubic symmetry of crystal lattice and 

corresponds to zero value of configurational order pa-

rameter, while the deformation of crystal lattice during 

MT leads to the spatial reconfiguration of crystallo-

graphic defects [6-8] and appearance of non-zero value 

of this parameter. Numerous technical and medical 

applications of SMAs demands thorough theoretical 

analysis of defect influence on the characteristics of 

these alloys. 

The Landau theory of ferroelastic phase transitions 

in the crystals with defects was developed in Refs. [7, 8]. 

This theory is referred to as the symmetry-conforming 

theory. The basic conception of this theory is the intro-

duction of configurational order parameter, which is 

composed of the probabilities of occupation of certain 

crystallographic positions by crystal defects. This order 

parameter appeared to be transformationally equiva-

lent to the multicomponent order parameter of ferroe-

lastic phase transition, which, as commonly known, is 

composed of the strain tensor components.  

In Refs. [7, 8] the cubic-tetragonal and cubic-

rhombohedral phase transitions in SMAs were consid-

ered. The point defects were assumed to be located in 

the face centers and corners of cubic unit cell of the 

simple crystal lattice, respectively, to enable the con-

struction of configurational order parameters, which 

are transformationally equivalent to the order parame-

ters of phase transitions. It should be emphasized, 

however, that the atomic structure of the crystal cells 

of real SMAs and the types of point defects existing in 

these alloys were not specified.  

Another kind of widely studied phase transitions of 

ferroelastic type are the phase transitions in the sys-

tem of hydrogen atoms absorbed by metals [9, 10]. 

In the present article the general basis of sym-

metry-conforming theory is supplemented by considera-

tion of real positions of point defects in the crystal cell 

of Ni-Mn-Ga Heusler alloy, Ti-Ni and Au-Cd alloys. The 

configurational order parameters corresponding to the 

diffusion of point defects between these positions are 

constructed. The order parameter, which describes the 

phase transition caused by the diffusion of hydrogen 

atoms in the body-centered cubic lattice of metal, is 

constructed. 

 

2. ORDER PARAMETERS OF FERROELASTIC 

PHASE TRANSITIONS 
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The free energy of the deformed ideal crystal can be 

expressed in terms of the multicomponent order pa-

rameter of ferroelastic phase transition. The ferroelas-

tic phase transitions in different solids are always the 

first-order phase transitions because the Landau ex-

pansion of the free energy in terms of the multicompo-

nent order parameter u  contains the third-power 

terms 3u  and 2u u  . The order parameter components 

of cubic-tetragonal and cubic-rhombohedral phase 

transitions are the linear combinations of strain tensor 

components ik  ( , , ,i k x y z ). The value 

 

 1 ( ) / 3xx yy zzu      , (1) 

 

describes the isotropic expansion or contraction of the 

crystal lattice, 
 

2 3( )xx yyu    ,      3 2 zz yy xxu      , (2) 

 

and 
 

 4 5 6, ,yz xz xyu u u      (3) 

 

are the order parameter components of the cubic-

tetragonal and cubic-rhombohedral phase transitions, 

respectively. From the mathematical point of view, the 

values (2) and (3) are the basic functions of two- and 

three-dimensional irreducible representations of the 

cubic group, respectively. 

To describe the spatial redistribution (diffusion) of 

point defects between the different crystallographic 

positions, the configurational order parameter must be 

introduced in consideration. As it was shown in 

Refs. [7, 8], the multicomponent configurational order 

parameters  , which are transformationally equiva-

lent to the order parameters of cubic-tetragonal and 

cubic-rhombohedral ferroelastic phase transitions, can 

be presented as the linear combinations of probabilities 

of occupation of certain crystallographic sites by point 

defects. The procedure of “construction” of these order 

parameters is explained below for the intensively stud-

ied crystalline solids. 

 

3. CONFIGURATIONAL ORDER PARAMETERS 

COMPOSED FOR REAL SHAPE MEMORY 

ALLOYS 
 

3.1 Heusler Alloy 
 

The Ni-Mn-Ga alloy, which undergoes cubic-

tetragonal MT, is probably the most widely studied 

Heusler SMA. The crystallographic cell of Ni2MnGa 

alloy is shown in the Figure 1(a). Four types of sym-

metric crystallographic positions can be marked out in 

this cell: Mn1, located in cubic face centres, Mn2, locat-

ed in cubic cell corners, Ga, located in centres of cubic 

edges, and positions of Ni atoms, which form the cube 

of smaller size, with the center situated at the center of 

crystallographic cell. 

After MT the cubic lattice appears to be tetragonal, 

so let us consider how tetragonal deformation will 

change the symmetry of spatial distribution of defects 

(probabilities of their location at the certain crystallo-

graphic sites). 

For the sake of simplicity let’s consider the point de-

fects (vacancies, substitutional atoms or antisite de-

fects) located in the crystallographic positions of one 

type, for example Mn1. Figure 1(b) shows the symmet-

ric Mn1 positions and  probabilities Px, Py and Pz of 

occupation of these positions by point defects. It is easy 

to conclude, that the nonzero values of deformations 

Eq. (2) appeared after MT mandatory induce the non-

zero values of two-component order parameter 
 

 2 3 ( )A x yr P P   , 3 (2 )A z y xr P P P    , (4) 

 

where Ar  is the defect concentration, the value 1  is de-

fined as 1 ( )A x y z Ar P P P r     . This conclusion follows 

from the Table 1, which shows the transformation of 

probabilities and strain tensor components by the generat-

ing elements of the cubic symmetry group (Î is the inver-

sion operation, 4y  and 4z  are the fourth-fold rotations 

around y- and z-axes, respectively). The generating ele-

ments of the cubic symmetry group interchange the atom-

ic sites shown in Figure 1(b), and therefore, renumber the 

probabilities as it is shown in Table 1. As it is seen, the 

transformational properties of probabilities Pi are similar 

to those of strain tensor components εii, and therefore, not 

only u2, u3, but η2, η3 as well, are the basic functions of 

two-dimensional irreducible representation of cubic sym-

metry group. According to the Curie principle, the trans-

formationally equivalent physical values are linearly in-

terrelated with each other. In the given case it means that 

the deformation described by the nonzero value u2 or u3, 

immediately leads to the appearance of nonzero compo-

nent η2 or η3 (respectively), and vise versa, spatial redis-

tribution of point defects, which result in the nonzero val-

ues η2 or η3, must be accompanied by the deformation of 

crystal lattice characterized by the nonzero  value u2 or u3, 

(respectively). 
 

Table 1 – Transformation of probabilities and strain tensor 

components by the generating symmetry operations of the 

cubic group. 
 

 Px Py Pz εxx εyy εzz 

Î Px Py Pz εxx εyy εzz 

4y Pz Py Px εzz εyy εxx 

4z Py Px Pz εyy εxx εzz 
 

The formal conclusion about the strict interrelation-

ship between the deformation of crystal lattice and redis-

tribution of crystal defects can be explained physically. 

Indeed, it is obvious that all faces of the cubic cell are 

physically equivalent, and therefore, the probabilities Px, 

Py and Pz are equal to each other. The rectangular side 

faces of tetragonal cell are not physically equivalent to its 

square bases, and therefore, for the tetragonal crystallo-

graphic cell with the principal axis  Oz the relationships 

zyx PPP   must take place. 

It is easy to see that the considerations presented 

above for Mn1 spatial positions are true also for the 

point defects located at Ga sites. This statement is il-

lustrated by the Figure 1(c), which shows the Ga posi-

tions located in the centres of the edges of cubic cell. 
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Fig. 1 – The Heusler lattice of Ni2MnGa alloy (a). The Mn1 positions in the tetragonal crystallographic cell received after MT (b). 

The Ga positions in the tetragonal crystallographic cell (c) 
 

After MT, the cubic cell appears to be tetragonal, and so, 

the probabilities of occupation of long and short edges of 

the cell by point defect must be different, while in cubic 

phase these probabilities were equal. There are four at-

oms in one of the symmetric positions and Px, Py, Pz are 

the probabilities of occupation of these positions (see 

Fig. 1(c)). Like in Mn1 case, the configurational order 

parameter is composed from the probabilities of defects 

occupation of Ga crystallographic sites and is described 

by Eq. (4). It can be concluded, therefore, that the cubic-

tetragonal MT characterized by the tetragonal defor-

mation of crystal lattice u2, u3, is followed by the spatial 

reconfiguration of crystal defects located in Ga positions, 

and this reconfiguration is described by the configura-

tional order parameter components but η2, η3. 

As it was shown in Ref. [11], the reconfiguration of 

point defects located in the corners of cubic crystallo-

graphic cell is interrelated with cubic-rhombohedral 

MTs. The Mn2 and Ni positions coincide with the cor-

ners of big and small cubes depicted in Fig. 1(a), but 

the cubic-rhombohedral MT was never observed in 

Ni2MnGa alloy. However, this kind of MTs is peculiar 

to Au-Cd and Ti-Ni alloys considered below. 
 

3.2 Au-Cd and Ti-Ni Alloys 
 

The cubic-rhombohedral martensitic transformation 

in Au-Cd and Ti-Ni alloys are very similar from the crys-

tallographic point of view [12]. In both alloys the cubic 

(so-called B2 phase) austenitic phase is transformed to 

the rhombohedral (so-called R phase) martensitic phase. 

The crystal lattice of Au-Cd or Ti-Ni is shown in Figure 

2. This lattice is similar to the body-centered cubic, but 

the centered atoms and cornered atoms are not identical. 

As so, it is so-called simple lattice. 

Figure 2 shows the symmetric crystal sites in the 

corners of cubic cell of Au-Cd or Ti-Ni lattice ( 41P  are 

the probabilities of occupation of these sites by defects). 

These probabilities form the basic functions of three-

dimensional irreducible representation of the cubic 

symmetry group 
 

 

4 1 2 3 4

5 1 2 3 4

6 1 2 3 4

( )

( )

( )

A

A

A

r P P P P

r P P P P

r P P P P







   

   

   

. (5) 

 

 
 

Fig. 2 – The symmetric crystal sites in cubic crystallographic 

cell of Au-Cd or Ti-Ni alloy 
 

The Table 2 shows the transformation rules for the 

probabilities 1 4P   and non-diagonal strain tensor com-

ponents εik. As it follows from the Table 2, and analogy 

between the Equations (3), and (5), the transformation-

al rules for 1 4P   and εik are the same, and therefore, 

the order parameters 4,5,6  and 4,5,6u  are transforma-

tionally equivalent. 
 

Table 2 – Transformation of probabilities and strain tensor com-

ponents by the generating symmetry operations of the cubic group 
 

 P1 P2 P3 P4 εyz εxz εxy 

Î P1 P2 P3 P4 εyz εxz εxy 

4y P4 P3 P1 P2 -εxz εyz -εyx 

4z P2 P3 P4 P1 εyx -εzx -εzy 

 

It can be concluded that the configurational order 

parameter, which characterizes the symmetry of spa-

tial distribution of the crystal defects, can be composed 

of the probabilities of occupation of the crystallographic 

positions by defects [7, 11]. The deformation of crystal 

lattice during MT initiates the diffusion of crystal de-

fects, which conforms the spatial distribution of defects 

to the symmetry of crystal cells. The opposite situation, 

where the diffusion of point defects causes the defor-

mation of crystal lattice, is considered below for the 

metal-hydrogen system. 
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4. HYDROGEN ABSORPTION AND DIFFUSION 

IN METALS 
 

The hydrogen absorption in metals is an example of 

interstitial point defects in the crystal lattice. It is in-

teresting that the hydrogen system undergoes the or-

der-disorder phase transition in the vanadium crystal 

lattice [9, 10]. In this case the hydrogen atoms firstly 

occupy tetrahedral sites in the vanadium crystal cells, 

and after that hydrogen atoms start ordering at octa-

hedral sites. The hydrogen ordering in the octahedral 

sites results in the tetragonal deformation of crystal 

lattice [10]. It means that the phase transition in the 

system of absorbed hydrogen atoms causes the defor-

mation of crystal lattice. This case is opposite to the 

case of shape memory alloys, where the deformation of 

crystal lattice results in the spatial reconfiguration of 

crystal defects. 

The tetrahedral sites, which hydrogen can occupy in 

the base-centered crystal cell of metal, are shown in 

Figure 3(a). As it is seen from this figure the fourth-fold 

rotations around x-, y- and z-axes (the elements 4x, 4y 

and 4z of cubic symmetry group, respectively) render 

the defect system in the state, which is equivalent to 

the initial state. It means that the defects/hydrogen 

atoms appeared in the tetrahedral sites do not reduce 

the crystal symmetry. As so, the strains induced by the 

hydrogen atoms are equal to each other xx yy zz    . 

Therefore, the configurational order parameter compo-

nents are equal to zero, and only the scalar value 1 , 

which corresponds to the trivial group representation, 

arises. This value is equal to the defect/hydrogen con-

centration. 

The symmetric octahedral sites, which can be occu-

pied by hydrogen with probabilities Px, Py and Pz, are 

presented in Figure 3(b). This figure shows the octahe-

dral sites located in the centres of edges of cubic cell. 

The introduction of hydrogen atom in some of these 

symmetric positions results in the axial deformation 

( ,xx yy   or zz ) of crystal lattice. As an example, Fig-

ure 3(c) shows the case when the hydrogen location at 

the edges parallel to z-axis is favored, the small and big 

open circles show the “mostly empty” and “mostly occu-

pied” sites. The two-side arrows show the direction of 

axial deformation of unit cell caused by the adsorbed 

hydrogen atoms. In this case the configurational order 

parameter is described by the functions 2,3  (see 

Eq. (4)), similarly to the case of Mn1 positions in Ni-

Mn-Ga alloy. The only difference is that the configura-

tional order parameter is expressed through the value 

Hr , which is the relative number of octahedral sites 

occupied by hydrogen atoms, and Hc  is the total hydro-

gen concentration [13] 
 

1 Hc  , 2 3 ( )H x yr P P   , 3 (2 )H z y xr P P P    .  (6) 

 

It can be concluded that the introduction of hydro-

gen atoms in the octahedral sites (Fig. 3(c)) leads to the 

symmetry lowering: symmetry operations 4x, 4y trans-

form to the 2x, 2y, while 4z remains in the symmetry 

group of the crystal cell. The symmetry lowering re-

sults in the appearance of configurational order param-

eter components 2  and 3 , which originate the de-

formations 2u  and 3u . (As it was argued in Ref. [7], 

every deformation of the crystal triggers the reconfigu-

ration of the point defects and, vice versa, the reconfig-

uration of defects results in the deformation of crystal 

lattice.) It means that the hydrogen diffusion from the 

tetrahedral to octahedral sites results in the change of 

local environment of hydrogen atoms and interacting 

forces of hydrogen atoms with metal atoms. 

 
 

Fig. 3 – A unit cell of the cubic crystal lattice (closed circles) with the tetrahedral, (a),  and octahedral, (b), interstitial sites. The 

tetragonal unit cell with the favorable (large open circles) and unfavorable sites for the hydrogen atoms (c). The favorable sites 

are “mostly occupied” by the hydrogen atoms while the unfavorable sites are “mostly empty”. Two-side arrows show the direction 

of axial extension of unit cell caused by the adsorbed hydrogen atoms 
 

Figures 3(b) and (c) also shows that the defects dif-

fusion between the sites located at the physically 

equivalent edges of crystal cell does not induce the de-

formation of crystal lattice, while the defects diffusion 

between two differently oriented edges leads to the 

straining of crystal lattice. This statement is also valid 

for the defects diffusion between the physically equiva-

lent/different face centers.  

 

5. SUMMARY 
 

In present article the different crystallographic 

sites available for i) point defects in the Heusler, Ti-Ni 

and Au-Cd alloys; ii) hydrogen atoms in vanadium are 

considered. The configurational order parameters de-

scribing the reduction of the spatial symmetry of defect 

system are constructed for all symmetric positions of 

point defects in the cubic crystal cell using the similari-
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ty between the transformation of strain tensor compo-

nents and permutation of crystallographic sites by the 

elements of cubic symmetry group. The interrelation 

between the ferroelastic phase transitions in the Heu-

sler, Ti-Ni and Au-Cd alloys and spatial reconfigura-

tion of point defects is described.  

The system of hydrogen atoms adsorbed by vanadi-

um is considered. The influence of the phase transition 

observed in the hydrogen system on the vanadium 

crystal lattice is described qualitatively using the con-

figurational order parameter constructed for this sys-

tem. 

It is emphasized that the defects diffusion between 

the sites located at the physically equivalent fac-

es/edges of crystal cell does not induce the deformation 

of crystal lattice, while the defects diffusion between 

two differently oriented faces/edges leads to the strain-

ing of crystal lattice. 
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