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A B S T R A C T

Nanoscale multilayered TiN/SiC films are of great importance in many electronic and industrial fields. The
careful control over the structure of the laminates, nanocrystalline or amorphous, is crucial for their further
applicability and study. However, several limitations in their fabrication have revealed important gaps in the
understanding of this system. Here, we study influence of temperature on the physico-chemical and functional
properties of TiN/SiC multilayers. We will show the clear increment on hardness of the samples, while the
nanocomposite structure of the layers is maintained with no increment in crystal size. We will investigate the
interstitial effects and rearrangements, between the TiN/SiC phases and their role in the enhanced mechanical
response. Our experiments will clearly show a change in the modulation period of the samples, pointing to
interfacial reactions, diffusion of ions or crystallization of new phases. Full Investigations of the film properties
were carried out using several methods of analysis: XRD, XPS, FTIR, HR-TEM and SIMS Additionally, results
were combined with First Principles MD computations of TiN/SiC heterostructures.

1. Introduction

Nitrides occupy a privilege place in the both the industry and the
academy, because of their unique and versatile properties [1–4].
Nevertheless, in fields that demand high mechanical, thermal and
electrical resilience, the physical, mechanical, and tribological proper-
ties of conventional ceramic hard and wear-resistant protective coat-
ings, such as titanium nitride (TiN), are not sufficient to prevent cata-
strophic failure in extreme mechanical-loading conditions due to
material brittleness (I.e. crack formation and propagation upon loading
single-crystal B1-TiN(001) (Fm3m-225) and VN(001) layers [5]). A
common strategy to address the problem of inherent brittleness in
ceramics, consists in enhancing hardness/toughness by alloy or multi-
layer design [6–9] or via control of the electronic structure [10–13].
This, however, does not guarantee that the protective properties are
maintained at high temperatures, since the hardness and stiffness of a
single-phase compound or solid solution typically decrease

monotonically with increasing temperature [14]. Hot hardness needs to
be combined with improved toughness, which is generally achieved by
controlling solid solution thermal stability, however, this leads to spi-
nodal decomposition at high temperatures [15–19]. Nevertheless, the
hardness achieved in the works listed above typically does not exceed
∼35 GPa. The necessity of improving material protective performances
continuously motivates research toward development of new superhard
(H > 40 GPa) materials with enhanced wear and corrosion resistance
combined with resistance to thermally-induced stresses [20–23]. On the
other hand, nanocomposite coatings have shown improved toughness
and fracture resistance, that although have provided a broad range of
applications to materials, remain below the superhard values [24–30].
Nevertheless, H.W. Hugosson et al. [31] have theoretically shown that
by promoting stacking-fault or multiphase interfaces, the hardness of
the protective coatings can be enhanced, mainly due to the stabilization
of interfacial phases and the major role that coherent interfaces can
play in the stabilization of low-energy interfaces and nanodomains
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[32], these facts show the relevance of interfacial/granular electronic
structure in high performance protective coatings [33,34].

Silicon carbide (SiC) and different composite materials based on it
are currently among the most promising materials for industrial ap-
plications [35–37]. Due to their unique combination of physico-che-
mical properties, such as chemical stability, refractoriness, wear and
radiation resistance, SiC-based protective coatings are widely de-
manded in machine-building, nuclear energy, metallurgical, chemical,
gas, petroleum and petrochemical industries. Intensive studies devoted
to the development of composite materials based on non-oxide com-
pounds, such as carbon, silicon carbide or nitride, in combination with
carbides or nitrides of refractory metals, are carried out actively at
present [38,39]. Such compounds can be used as matrices or as re-
inforcing filler in the form of fibres or plates [40,41]. These composite
materials are characterized by low specific mass, durability and wear
resistance, and demonstrate the possibility of forming complex shapes
with sharp details. Due to their high strength and heat resistance, they
can be used in the aeronautics and space industries as high-temperature
construction materials for gas turbines, petrol engines, heat exchangers
production, etc. SiC is widely used in modern electronics as semi-
conducting material in superfast high-voltage Schottky diodes, MOSFET
transistors and high-temperature transistors. Higher electric strength,
larger band gap, higher permissible operating temperature, thermal
conductivity and resistance to irradiation are among the main ad-
vantages of SiC in comparison with traditional materials, such as Si-
licon, Gallium arsenide, etc [42]. It is also worth mentioning that the
combination of excellent electronic and mechanical properties offers
many opportunities to use SiC as a material for a wide range of devices
and sensors subjected to high temperatures or corrosive media, for
example, regulators of electricity distribution, combustion process
controllers, and uncooled radiation detectors for the new generation of
aerospace materials.

Superhard heterostructures based on transition metal compounds
have been thoroughly investigated during the last decade due to their
exceptional applicability in electronics [43–46] and protective coatings
[47]. Among them, TiN/SiNx, ZrN/SiNx and TiN/AlN heterostructures
(nanoscale multilayers) are among the most studied systems [48–55]. It
has been shown that a thin interfacial layer of B1 (rocksalt structure)
SiNx and B1-AlN can be formed between TiN layers [54]. TiN/SiC
heterostructures have been studied to a lesser extent. To our knowl-
edge, only three previous investigations have been devoted to the ex-
perimental and theoretical studies of the structural and mechanical
properties of TiN/SiC nanolayered systems [56–58]. The authors
[56,57] deposited nanoscale multilayer TiN/SiC films by r.f. magnetron
sputtering at room temperature. They showed that the epitaxial B1-SiC
(Fm3m-225) interfacial layers were formed between TiN slabs when the
thickness of the SiC layers was less than 0.6–0.8 nm [56]. However, in
subsequent investigations [57] the same authors revised the conclu-
sions of their previous work [56], stating that the interfacial layer had
the B3-SiC (F43m-216) Zinc blende structure. According to these re-
ports [56,57] the crystallization of SiC (for the exact thickness of
0.6 nm, not less or greater) and the epitaxial growth between TiN and
SiC layers are responsible for high hardness, which reached the value of
60 GPa. At the same time, in Ref. [57] authors presented the de-
pendencies of hardness HV (GPa) on thickness of the TiN layers, which
changed from 2.5 to 19.8 nm, while thickness of SiC remained fixed to
0.6 nm. Hardness of the coatings remained around 40 GPa for various
thicknesses of the TiN layers (from 9.5 to 19.8 nm), while nanohardness
reaches the values around 18 GPa. The dependencies of the universal
hardness (HU) on the indenter penetration depth are provided, when
the thickness of SiC changes from 0.4 to 2.4 nm, while the thickness of
TiN layers remains fixed [56,57]. The theoretical study of the TiN
(001)/monolayer B1-SiC heterostructure showed that it was thermally
stable up to 600 K [58], whereas the interface in the TiN(111)/mono-
layer B1-SiC heterostructure transformed to the B3-SiC structure even
at low temperatures [58]. Nevertheless, possibility of recrystallizing

thicker SiC layers has not yet been addressed. This issue remains as one
of the most restrictive parameters for further implementation of SiC
heterostructures in electronics and protective coatings [59–61].

Taking into account the remarkable experimental results achieved
for the TiN/SiC nanolayered films deposited at room temperature
[56,57], we deposited TiN/SiC nanoscale multilayers to establish the
role of substrate temperature in the structural and mechanical proper-
ties of the films. In our study we have increased the thickness of SiC to
≈5 nm, in order to provide a fresh perspective on the crystallization
dynamics of thicker layers. The aim of the present study is to investigate
the influence of substrate temperature during deposition on the struc-
ture and properties of the fabricated TiN/SiC coatings via detailed ex-
perimental analyses based on XRD, XPS, FTIR, STEM, HRTEM and
SIMS, which provide complementary information. Correspondingly,
atomic-scale understanding of phenomena responsible for the improved
properties is achieved via ab initio molecular dynamics (MD) simula-
tions [62]. Here, we show that thicker layers of SiC are not amorphous,
but show a nanocomposite structure, with small crystals embedded in
amorphous phase, and that by a rather low temperature process, it is
possible to improve the physico-chemical interactions between SiC and
TiN layers, leading to an improved mechanical response of the samples,
comparable to the response observed in super hard composites. Our
results provide several novel insights for clarifying key mechanisms
governing the formation and mechanical properties of modern multi-
layered nanoscale protective coatings.

2. Experimental and computational details

2.1. Preparation of the coatings

TiN/SiC nanoscale multilayered films were deposited by con-
secutive DC magnetron sputtering steps from TiN and SiC targets
(72mm diameter and 4mm thick disks with purity of 99.9%) at dif-
ferent substrate temperatures, TS= 25, 100, 200 and 350 °C (samples S-
25, S-100, S-200 and S-350, respectively). In addition, single-layer TiN
and SiC 700 nm films were deposited at TS= 350 °C. The distance be-
tween the targets and the substrate holder was kept constant at 8 cm.
The substrates were polished Si (100) wafers. Before the deposition, the
silicon wafers were cleaned in a bath with a 5% HF solution to remove
the native oxide. Afterwards, the substrates were rinsed in de-ionized
water and dried in nitrogen. Finally, they were sputter-etched in argon
plasma in the reaction chamber prior to deposition. The substrate bias
was −50 V. The argon flow rate and working pressure were 60 sccm
and 0.2 Pa, respectively. The DC power density (discharge power) va-
lues at the TiN and SiC targets were 1.72W/cm2 and 0.86W/cm2, re-
spectively. In the case of the nanoscale multilayered films, the TiN and
SiC layers were deposited for 2min and 1min, respectively. The total
number of layers was 116. The working pressure was 10−3 Pa.

2.2. Experimental analyses and procedures

X-ray diffraction (XRD) investigations of the films were performed
with a diffractometer “PANanalytical” using Cu Kα radiation. Low angle
XRD (LAXRD) was used to analyse the layer structure of the multilayer
films (Ultima IV “Rigaku”, Cu Kα radiation). X-ray reflectometry (XRR)
measurements were performed on the X'pert3 MRD (XL) from
PANalytical with a Cu Kα radiation source (wavelength of 1.54 Å) op-
erating at 45 kV and 40mA. The chemical bonding was studied by
Fourier transform infrared spectroscopy (FTIR) (with a “FSM 1202” LLC
“Infraspek” spectrometer). The chemical states were studied by an EC
2401 X-ray photoelectron spectroscopy (XPS) system using Mg Kα X-ray
radiation (E=1253.6 eV). The Au 4f7/2 and Cu 2p3/2 peaks with
binding energies of 84.0 ± 0.1 eV and 932.66 ± 0.05 eV, respec-
tively, were used as a reference. The pass energy was 50 eV and re-
solution of 0.1 eV. The films were etched for 5min with 1.8 keV Ar+

ions to remove surface contaminations. The structural properties of the
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films were investigated by transmission electron microscopy (TEM)
(JEOL ARM 200 F high-resolution transmission electron microscope
(200 kV) with an EDX analyser). The cross sections and lamellae for
TEM investigations were prepared by a focused ion beam (FIB) method.
The FIB milling was carried out with a JEOL JIB-4000. A broad carbon
thin film was deposited on the sample surface to protect the area of
interest from damage during the FIB milling and observation with the
Ga+ ion beam. The Ga+ ion beam of adjustable acceleration voltage
(5–30 kV) was used to prepare lamellae down to electron transparency.
Secondary ion mass spectroscopy (SIMS) measurements were carried
out on a SAJW-05 analyser [63] equipped with a Physical Electronics
06-350E ion gun and QMA-410 Balzers quadrupole mass analyser. We
used an argon ion beam of 1.72 keV at a 45° incidence angle, digitally
scanned over a 1mm×1mm area. For depth profile analysis, we se-
lected positive secondary ion currents emitted from the central part of
the scanned area (15% electronic gate). The selected masses were 12,
14, 16 and 48 D. The masses of 12, 16 and 48 represent secondary ions,
12C+, 16O+ and 48Ti+ respectively, while the mass of 14 represents
12CH2

+ or 28Si++ ions rather than 14N+.
The nanoindentation of the films was carried out under continuous

stiffness measurements (CSM) mode using a Nano Indenter-G200
system (Agilent Technologies) and Triboindenter TI-950 (Hysitron).
This mode allows one to perform a continuous measurement of the
contact stiffness via a superimposed alternating current signal during
loading, which, in turn, provides a continuous measurement of the
elastic modulus (E) and hardness (H) as functions of indenter dis-
placement (L) during a single loading segment [64]. All nanoindenta-
tion measurements were performed using a Berkovich diamond tip with
a nominal radius of ∼340 nm. The area function was calibrated from
indentation on a standard fused silica specimen. Eight indentations
were made on each sample. The load and displacement were con-
tinuously recorded up to a maximum displacement of 200 nm at a
constant indentation strain rate of 0.05 s−1. The CSM frequency was
45 Hz, and the amplitude of oscillation was 2 nm. The nanohardness
and elastic modulus were determined as the maximum values in the H
(L) and E(L) dependences, respectively, in the range of 0 < L < 0.1 D
(where D is the thickness of the films). Knoop hardness (HK) was de-
termined by a MICROMET 2103 Microhardness Tester device
(BUEHLER, USA) at a load of 100mN, and the hardness value for each
specimen was an average of at least 10 measurements. The thickness of
the films was estimated by a Micron-alpha optical profilometer (Uk-
raine). The film thicknesses were approximately 1.0 μm, and slightly
decreased with increasing TS. The scratch tests were performed with a
Micron-gamma scratch tester (Ukraine) using a Vickers diamond pyr-
amidal tip with a linear scan rate of 9 μm/s and a ramping load from 0
to 0.3 N.

2.3. Computational details

To investigate the structure of the TiN(001)/SiC interface, we con-
sidered the initial (2× 2×3) 96-atom supercell constructed of the 8-
atom B1(NaCl)-TiN cubic unit cells. The interfacial B1-SiC layers were
introduced by replacing Ti and N atoms with Si and C atoms, respec-
tively, in the three central lattice planes perpendicular to the c-axis.
Thus, our heterostructures are formed of alternating 48-atom B1
SiC(001)/96-atom B1 TiN(001) layers.

The calculations were performed using the first-principles pseudo-
potential DFT MD method as implemented in the quantum ESPRESSO
code [65] with periodic boundary conditions [54,66]. The generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof [67]
was used to evaluate the electronic exchange-correlation energy, and
the Vanderbilt ultra-soft pseudo-potentials were used to describe the
electron-ion interaction [68]. The non-linear core corrections were
taken into account as described in the literature [65]. The criterion of
convergence for the total energy was 10−6 Ry/formula unit
(1.36·10−5 eV). To speed up the convergence, each eigenvalue was

convolved with a Gaussian of a width of δ=0.02 Ry (0.272 eV). The
cut-off energy for the plane-wave basis Ecut was 30 Ry (408 eV) and the
Monkhorst-Pack [69] mesh of 2×2×2 k-points was used for Brillouin
zone sampling.

All the structures were optimized by simultaneously relaxing the
atomic basis vectors and the atomic positions inside the unit cells using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [70]. The re-
laxation of the atomic coordinates and of the unit cell is considered to
be complete when the atomic forces are less than 1.0mRy/Bohr
(25.7 meV/Å), the stresses are smaller than 0.05 GPa, and the total
energy during the structural optimization iterative process changed by
less than 0.1 mRy (1.36meV).

The initial relaxed TiN(001)/SiC heterostructure was: i) equili-
brated at 300 K and then relaxed (denoted B1); ii) equilibrated at
1200 K, slowly cooled to 300 K and then relaxed (denoted B3). We
carried out molecular dynamics (MD) simulations with a 48 atom B1-
SiC sample to generate amorphous silicon carbide. To do this, the
sample was heated up to 4500 K, equilibrated, cooled to 300 K and then
relaxed (denoted a-SiC). This layer was inserted into the initial 96 atom
TiN(001)/SiC heterostructure instead of the 48 atom B1-SiC layer. Two
samples of the TiN(001)/a-SiC heterostructure were generated. The
initial relaxed TiN(001)/a-SiC heterostructure was: i) equilibrated at
300 K and then relaxed (denoted A0); equilibrated at 1200 K, slowly
cooled to 300 K and then relaxed (denoted A1). The quantum MD
(QMD) equilibration of all the structures at each temperature was
performed for 2 ps in the NPT ensemble (with the number of particles,
pressure, and temperature all held constant). An exception was made
for the a-SiC sample: this structure was generated in the NVT ensemble
(with the number of particles, volume, and temperature all held con-
stant). The system temperature is kept constant by rescaling the velo-
city. In all the MD calculations, the time step was 20 atomic units (a.u.,
approximately 10−15 s). The variation of the total energy during each
QMD time step was controlled. During the initial 1.2–1.5 ps, all struc-
tures reached close to their equilibrium state and, at later times, the
total energy and the supercell volume oscillate around the equilibrium
values.

The pseudo-potential procedure was used to study the phonon dis-
persion curves for the two atom B1-SiC unit cell at various lattice
parameters in the framework of the density-functional perturbation
theory (DFPT) described in Refs. [65,71].

The tensile stress-strain relations were calculated by: 1) elongating
the supercells along the c-axis [(001)-direction] in an incremental step,
2) fixing of the c basis cell vector and 3) simultaneously relaxing the a-
and b-basis cell vectors and the positions of the atoms within the su-
percell. The structural parameters at a previous step were used to cal-
culate the Hellmann-Feynman stress for the next step.

3. Results and discussion

3.1. Experimental results

We carried out the deposition of TiN and SiC monolayer films as
well as TiN/SiC multilayer films under the same conditions. In Fig. 1,
we show the FTIR spectra of SiC films deposited at 25 °C and 350 °C
substrate temperatures. Given this finding, and taking into account the
fact that the main areas of absorption are caused by vibrations at
770 cm−1 (Si-C vibrations) and at 1000 cm−1 (Si-O vibrations) [72], we
aim at a conclusion that the bonding configuration of the SiC films
represents the amorphous Si-C-O network. The absorption band at
1000 cm−1 decreases with increasing TS. It follows that a moderate
increase in substrate temperature promotes a reduction of the number
of Si-O bonds.

Grazing Incident XRD diffractograms of the nanoscale multilayered
films deposited at various substrate temperatures are shown in Fig. 2 in
comparison with the XRD diffractogram of the single-layered TiN film.
The XRD patterns of the low temperature multilayered films deposited
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at TS= 25 and 100 °C demonstrate a weak reflex at 2Θ=36.5°, which
can be attributed to small crystallites of TiN rapidly appearing with the
temperature increment. There are no crystallites related to silicon car-
bide in these films. Thus, one can suppose that the low temperature
films represent the sequence of the nanocrystalline TiN layers with tiny
grains separated by amorphous silicon carbide layers. High-tempera-
ture nanolayered films, however, deposited at TS= 200 and 350 °C,
particularly XRD patterns of these films, indicate the formation of na-
nocrystalline TiN layers with larger grains than in the low-temperature
films. In the XRD spectrum of the nanolayered film deposited at 350 °C,
the small peaks at 2Θ=35.6°, 40.5°, 41.5°and 65.8° are attributed to
the reflexes related to the small crystallites of hexagonal and cubic (3C-
SiC) silicon carbides [PDF files 073–2082, 029–1131, 074–2307,
082–2845]. The reflections at 2Θ=36.4° and 42.3° in the high-angle
XRD spectra of this film and the TiN film indicate the presence of the
B1-TiN phase in these films [PDF file 001–2272]. Both films demon-
strate slight (001) textures (cf. Fig. 2). These findings allow us to as-
sume that the high temperature film should be regarded as nc-TiN/nc-
SiC (nc-nanocrystalline) multilayers. This leads to the conclusion that
the substrate temperature of 350 °C, under the experimental conditions
of this work, is a threshold temperature at which the amorphous SiC
layers begin to crystallize. It should be noted, however, that monolayer
SiC films deposited at TS= 350 °C are highly amorphous (cf. Fig. 1),
whereas the SiC layers in the multilayers are nanocrystalline due to the
presence of the crystalline structure of the TiN layers. Additionally, by
using the Scherrer equation ( =τ Kλ βcosθ/ ), the overall grain size can be
estimated. K is the shape factor, λ is Cu wavelength, β is the experi-
mental FWHM and θ the Bragg angle. Grain size is estimated as
3.35 ± 0.5 nm, which suggest that temperature does not promote
crystal growth but atom mobility or new nucleation.

The XRR patterns of the high temperature multilayered films, shown

in Fig. 3, clearly indicate the existence of a compositional layered
structure of multilayers. From the Θ/2Θ position of the superlattice
peaks, the modulation periods Λ were determined by a modified form
of Bragg's law: Sin(Θm)=mλ/2Λ, where m is the order of the reflec-
tion, and λ is the X-ray wavelength [73]. The values of Λ for the films
deposited at 200 °C and 350 °C were calculated to be between 17.42 nm
and 16.58 nm, respectively, which means that the modulation period
slightly decreases with increasing substrate temperature. This could be
an effect from the increase in the portion of nanocrystalline phases in
SiC layers in the high temperature film. As a result, the modulation
period expands from 11.50 nm (m=1) to 14.89 nm (m=2) for the S-
200 film, and from 11.41 nm (m=1) to 14.53 nm (m=2) for the S-350
film. For m > 3, the modulation period oscillates approximately
17.42 nm and 16.58 nm for the S-200 and S-350 films, respectively.

The cross-sectional transmission electron microscope (TEM) images
and the selected area diffraction patterns (SAED) taken from the S-350
film are shown in Fig. 4. The film shows a composition modulated
structure, comprising the light TiN(12± 0.5 nm) and dark SiC(3±0.5nm)

layers, which contrast with the S-25 sample and its TiN(7.3±0.5 nm) and
SiC(4.5±0.5 nm), clearly correlating with the modulation changes due to
substrate temperature. The film has a total thickness of 0.96 μm with
excellent periodicity. The self-correlation analysis (cf. inset in Fig. 4)
shows that Λ is approximately equal to 16.7 nm, in good agreement
with the modulation period of 16.58 nm obtained from the XRR dif-
fractograms.

In Fig. 5, we demonstrate the diffraction patterns collected over a
200 nm2 area of the Si substrate for the S-350 film and the S-200 film.
The diffraction lines of the film show polycrystallinity very small na-
nocrystals containing both SiC and TiN diffraction peaks. The silicon
patterns are presented on the left side of Fig. 5 to investigate the pos-
sibility of any ordering or textured growth; however, the samples do not
show such features. Nevertheless, the SAED patterns from the films
show an inverse trend in nanocrystalline size with temperature; well
defined spots are present in each ring of diffraction from the sample
200 °C, in contrast with the featureless 300 °C sample, supporting the
XRD observations, in which higher temperature does not promote the
crystallization of larger nanoparticles but increases their surface diffu-
sion.

According to the EDX quantification, the elemental composition of
the S-350 film is: C=17.91 at. %, N=21.13 at. %, Si= 18.77 at. %
and Ti= 42.19 at. %. This elemental distribution clearly shows that the
SiC layers have a composition close to the stoichiometric ratios.

SIMS analysis is shown in Fig. 6 and shows the entire structure of
the S-350 film, with all the fifty eight bilayers sequentially separated.
Sputtering with a 1.72 keV Ar+ beam allows the removal of all the
successive layers and registering ionic currents of characteristic sec-
ondary ions. Visible oscillations of the 48Ti+, 28Si+ and 12C+ positive

Fig. 1. FTIR spectra of SiC films deposited at different substrate temperatures (TS).

Fig. 2. GI-XRD difractograms of TiN/SiC nanolayered, SiC and TiN monolayer films de-
posited at different substrate temperatures (TS). Red lines correspond to SiC and black to
TiN, * shows a hexagonal phase. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. X-ray reflectometry (XRR) patterns of compositional layered structure of TiN/SiC
nanolayered films deposited at given substrate temperatures: 25 °C, 100 °C, 200 °C and
350 °C.
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ion currents result from the ion etching of the successive layers of TiN
and SiC. When the sputtering front approaches the Si substrate, the
48Ti+ ion current gradually increases. This effect results from the in-
creased oxygen concentration in the vicinity of the substrate. Residual
oxygen contamination across the analysed structure is depicted by the
16O+ ion current plot. Nitrogen detection in SIMS analysis is difficult,
since the positive ion current of mass 14 D represents 12CH2

+ and
28Si++ ions rather than the 14N+ ion current. In fact, the plot of mass
14 D does not show as clearly resolved oscillations as the plots of 12 D
(12C+), 28 D (28Si+) and 48 D (48Ti+).

The XPS core level spectra and their fitting for the high temperature
S-350 film are shown in Fig. 7. We performed the fitting of all the XPS
spectra by GAUSSIAN software. The Ti 2p spectrum shows two main
peaks. It is established that the Gaussian peak at 455.2 eV can be as-
signed to Ti 2p3/2 in TiN (455.1 eV [74], 455.2); the peak at 456.5 eV
can be associated with TiNO (456.8 eV [74]); the peak at 458.3 eV is
assigned to TiO2 (458.3 eV [74]); the Gaussian peak at 461.0 eV cor-
responds to Ti 2p1/2 in TiN (460.6 eV [74], 460.9); the peak at 462.7 eV
can be assigned to TiNO (462.5 eV [74]) and the peak at 464.7 eV –
TiO2 (464.0 eV [74], 464.7 eV). The N 1s spectrum is presented by two
Gaussian curves with the peaks at 397.0 eV and 398.6 eV which can be

assigned to TiN (397.0 eV) and to N – sp3C (398.6 eV [75]), respec-
tively. The Si 2p spectrum from the S-350 film exhibits one peak at
101.7 eV that can be assigned to Si-C bonds (101.8 eV [76]). The C 1s
spectrum exhibits three features: the peak at 286.1 eV assigned to C
bonded to N (C-N bonds, 286.1 eV [77]), the peak at 284.7 eV assigned
to C bonded to C (C-C bonds, 284.6 eV [75]) and the peak at 282.5 eV
assigned to C bonded to Si (Si-C bonds, 282.5 eV [76]). The fitted O 1s
spectrum acquired from the S-350 film shows two peaks at 530.4 eV
and 531.4 eV which are assigned to TiO2 (530.4) and TiNO (531.3 eV),
respectively.

From the analysis of the XRD (cf. Fig. 2) and XPS (cf. Fig. 7) spectra
it follows that the main bonds in the film are Ti-N and Si-C, which are
related to the TiN and SiC crystallites. Other bonds, such as Ti-N-O, Ti-
O, C-N and C-C, are supposed to form by the atoms located at the in-
terfaces. Results of XPS studies of the coating, which was deposited
under the temperature 350 °C, showed that C-N 286.1 bond was

Fig. 4. Dark field image of the total thickness (∼960 nm) of the 350 °C film (a). Similar image for the sample grown at 200 °C (b). The inset shows a self-correlation analysis for the
estimate of the modulation period, with 200 °C≈ 17 nm and 350 °C≈ 16 nm congruent with the XRR data.

Fig. 5. Diffraction patterns collected over a 200 nm area of both the Si substrate (left) and
the films (right), top 350 °C and bottom 200 °C.

Fig. 6. SIMS depth profile analysis of the S-350 film. Registered are secondary ion cur-
rents of 12C+ (12 D), 16O+ (16 D), 28Si+ (28 D) and 48Ti+(48 D). The mass of 14 re-
presents 12CH2

+ and 28Si++ ions rather than the 14N+ ion current.
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formed, and N bond with sp3 C (398.6 eV) was formed in the TiN layers
(397.0 eV). Thus, high deposition temperature led to interaction of
some C atoms with crystal TiN phase, in its turn it led to forming of C-N
bonds. This correlates with the results from SIMS studies, where some
peaks from C are overlapping the TiN layers, especially when compared
with the coatings, deposited at lower temperature T= 200 °C. Thus, we
can make a conclusion that diffusion of C atoms into TiN layers takes
place, and we can also make a prediction about diffusion of N atoms
into SiC layers. In other words, both SIMS and XPS results indirectly
confirms the forming of N-C bonds, while value content of these state
can reach 12–15%.

We should point, that XPS is a direct method of defining of chemical
bonds between amorphous SiC and nanocrystalline TiN on the inter-
layer boundary, whereas SIMS is an indirect one, allowing to study
chemical bonds using changes in distribution of energy of secondary
ions during sputtering. Displacement of some parts of Carbon profiles
closer to Titanium ones (is not shown in Fig. 7), due to possible ther-
modiffusion when the substrate was heated to 350 °C during deposition,
is an additional confirmation of our assumption.

In Fig. 8, we show the nanohardness (H), Knoop hardness (HK) and

elastic modulus (E) of the deposited films depending on substrate
temperature. One can see that the drastic increase in the values of H,
HK and E occurs at TS > 100 °C. We suppose that this is caused by the
formation of crystallites in both the TiN and SiC layers in the high
temperature films (cf. Figs. 2, 4 and 5). Knoop hardness was equal to
53 GPa and nanohardness reached the values of 32–34 GPa in the case
of dynamic indentation mode, which is much higher, than in the works
[56,57], in which nanohardness reaches the values around 18 GPa in
the case of optimal thickness of the SiC layers (0.6 nm) and dynamic
indentation mode. According to modern trends of forming of superhard
(H≥ 40 GPa) nanocomposite coatings [78], if the grains of one of the
phases with the size around 10 nm are surrounded by an amorphous
material from the other phase, the hardness of such coatings will
achieve the values of 70–100 GPa. Our results clearly correlate with this
theory, although our nanocrystalline phase has much smaller size.

It is clear at this point that the mixture of nanocomposite layers
improves on the mechanical response of the samples, however, the
mechanical increment observed, does not follow well the typical ex-
ample of multi-layered samples, in which crystalline interfaces dissipate
shear stress and allocate strain. Therefore, it is sensible to assume, that

Fig. 7. XPS core level spectra for the S-350 film.
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interstitial effects and rearrangements, between the TiN/SiC phases are
playing some role in the enhanced mechanical response. Our experi-
ments have clearly pointed to a change in the modulation period of the
samples, pointing to interfacial reactions, diffusion of ions or crystal-
lization of new phases. Additionally, our SIMS and XPS data clearly
point to interstitial reactions between TiN and SiC. Therefore it is
sensible to assume that crystallites at the boundaries of TiN and SiC can
be responsible for the hardness increment and the physico-chemical
changes in the samples.

3.2. Theoretical results and the interpretation of experimental data

To understand the dependency of the mechanical performance on
substrate temperature established above for multilayer TiN/SiC films,
and to stablish the feasibility of interstitial crystallites, we investigated
the TiN/SiC heterostructures generated at different temperatures (cf.
Sec. 2). Due to the nanocomposite nature of the films and their inherent
polycrystallinity, a simple, but representative, crystalline configuration
had to be selected. Thus, the TiN(001) was selected, since those re-
flections were predominant in the XRD spectra of the deposited films
(cf. Fig. 2), thus, our system is TiN(001)/SiC. In Fig. 9, the atomic
configurations of the heterostructures under consideration are shown at
different stages of elongation. In the low temperature B1-hetero-
structure, the epitaxial interfacial B1-SiC layer is preserved (the B1
heterostructure). However, this interfacial layer undergoes structural
transformation at high temperature. An analysis of the atomic config-
uration and structural functions (not shown here) of this high tem-
perature interface clearly shows that it consists of the 3C-SiC-like layers
(the B3 heterostructure). The amorphous SiC interface (the A0 hetero-
structure) is weakly influenced by heating up to 300 K. The heating to
1200 K and slow cooling to 300 K transform this interface to the

strongly distorted 3C-SiC layers (cf. Fig. 9, A1, ε=0.0). It follows that
both the B1- and a-SiC-interfaces transform into the 3C-SiC-like ones at
high temperature.

We also investigated the behaviour of the heterostructures under
tensile strain. The stress-tensile strain relations are shown in Fig. 10,
and the atomic configurations just after failure are shown in Fig. 9. The
ideal tensile strengths (σT, the maximum achieved stress under tensile
strain) of the B1, B3, A0 and A1 heterostructures are 16 GPa, 17 GPa,
8 GPa and 11 GPa, respectively. Taking into account this finding, one
can suppose that the three-layer 3C-SiC interface will be the most stable
one among other interfaces considered here. The weakest interface is
the A0 one (the a-SiC interface). So, the formation of the amorphous
interfaces in the TiN(001)/SiC heterostructures will lead to reducing
their mechanical performance. We note one interesting feature: all the
interfaces in the TiN(001)/SiC heterostructures after failure undergo
the same structural transformation. In this way, their structures become
close to the strongly distorted 3C-SiC (cf. Fig. 9). However, there are the
differences in the mechanisms of their failure. All the heterostructures
(except for the B3 heterostructure) fail due to the delamination of the
TiN and SiC layers. In the case of the B3 heterostructure, the interface is
so strong that the failure occurs mainly in the TiN slab (cf. Fig. 9).

For the sake of comparison, the ideal tensile strength of the TiN
(001)/one layer 3C-SiC heterostructure (∼12 GPa) [58] is lower than
that of the TiN(001)/three layer 3C-SiC heterostructure considered
here. On the other hand, the value of σT of the TiN(001)/one layer B1-
SiC heterostructure (24 GPa) [58] is much higher compared to the ideal
tensile strength of the TiN(001)/three layer B1-SiC heterostructure.
Based on these results, we can suppose that, for the TiN(001)/SiC
heterostructure, the thinner the B1-SiC interfacial layer, the higher its
strength. On the contrary, to reach the maximum strength, the B3-SiC
interface should consist of more than one 3C-SiC layer.

The question to be addressed is the origin of the temperature-in-
duced instability of the B1-SiC interface in the TiN(001)/SiC hetero-
structure. To answer this question, we investigated the behaviour of the
Δ5′ phonon soft mode for B1-SiC as a function of the Si-C bond-length
(RSi-C). In Fig. 11, we show the frequency of the Δ5′ soft phonon mode as
a function of RSi-C. The negative (imaginary) frequencies are present in
the phonon spectrum of B1-SiC for RSi-C > 2.136 Å. The Ti-N bond-
length in our heterostructures is 2.124 Å. It follows that the B1-SiC
interface is quite stable and can form between the TiN layers at low
temperatures. However, it becomes unstable with increasing tempera-
ture owing to lattice expansion when RSi-C becomes larger than 2.136 Å
(cf. Fig. 11).

Returning to our films, we will use these theoretical findings to
interpret film properties. As mentioned above, the low temperature
films have amorphous SiC layers and possess low hardness. It was
supposed that the formation of SiC crystallites in the SiC layers would
lead to improving the mechanical properties of the high temperature
films. This supposition is quite consistent with our theoretical results:
an increase in growth temperature leads to the formation of the 3C-SiC-
like interfaces in the TiN(001)/SiC heterostructures that are responsible
for their strengthening. On the other hand, the multilayer TiN/SiC films
with nanocrystalline TiN layers and very thin SiC layers (the thickness
was ∼0.6 nm), deposited under other conditions and at room tem-
perature, exhibit a superior hardness above 60 GPa [56,57]. According
to our calculations, in such structures will form the B1-SiC-like layers.
The ideal tensile strength of the TiN(001)/one layer B1-SiC hetero-
structure is comparable with that of the TiN(001)/three layer 3C-SiC
one (cf. Fig. 8 in Ref. [58] and Fig. 10 in the present investigation). So,
there are two ways to increase the strength of the TiN/SiC nanolayered
films: 1) the films should be deposited at low temperatures to provide
the formation of thin highly oriented B1-SiC layers; 2) the films should
be deposited at moderate substrate temperatures to guarantee the for-
mation of the heteroepitaxial cubic or hexagonal SiC interfaces that
contain more than one SiC monolayer.

Fig. 8. Nanohardness (H), Knoop hardness (HK) and elastic modulus (E) for single-layer
TiN and SiC films (◇△▲◆) and for TiN/SiC multilayers (●○) as a function of tem-
perature.
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4. Conclusions

Nanoscale multilayer TiN/SiC films were deposited at various sub-
strate temperatures using sequential magnetron sputtering of TiN and
SiC targets. The deposited films were studied by using XRD, XPS, FTIR,
TEM, SIMS techniques, as well as nano- and micro-indentation analysis.
First-principles molecular dynamics simulations of the TiN/SiC het-
erostructures were carried out to provide more precise analysis of the
multilayer films properties. The films deposited at low substrate tem-
peratures (up to 100 °C) represent the sequence of the nanocrystalline
TiN layers and the amorphous SiC (a-SiC) layers. A further increase in
substrate temperature led to the formation of the crystallites in both the
TiN and SiC layers. Therefore, the nanohardness, Knoop hardness and
elastic modulus increased abruptly to 32–34 GPa to 56 GPa and
330 GPa, respectively. It was found that the high temperature films
have distinct interfaces. The main bonds in the high temperature films
are Ti-N and Si-C originating from the TiN and SiC crystallites. Other
bonds, such as Ti-N-O, Ti-O, C-N and C-C, are supposed to be formed by
the atoms located at the interfaces. It is expected that C-N, (Ti,Si)C-N
and Ti-Si-(N,C) interfacial reactions take place due to the rich interface
energy, specially evidence by the remanence of the nanocomposite

structure of the coatings, scenario that could address the improvement
of mechanical response.

The calculations of the TiN(001)/SiC heterostructures generated at
various conditions showed that the B1-SiC interface is quite stable and
can be formed between TiN layers at low temperatures. However, it
becomes unstable with increasing temperature due to lattice expansion.
Based on the theoretical results, we suppose that, for the TiN(001)/SiC
heterostructure, the thinner the B1-SiC interfacial layer, the higher its
strength. On the contrary, to reach the maximum strength, the B3-SiC
interface should consist of more than one SiC layer.

Using the experimental and theoretical results of the present work
and those gained in other investigations, we come to the conclusion
that there are two ways to increase the strength of the TiN/SiC nano-
layered films: 1) the films are to be deposited at low temperatures to
provide the formation of thin epitaxial B1-SiC layers (for< 3 nm thick
films); 2) for thicker SiC layers (> 3 nm) the films are to be deposited at

Fig. 9. Atomic configurations of the TiN(001)/SiC hetero-
structures at different stages of elongation. The notation of
the samples is described in Sec. 2.

Fig. 10. Stress-tensile strain curves for the TiN(001)/SiC heterostructures generated
under different conditions.

Fig. 11. Frequency of the soft phonon mode Δ5′ [2π/a(1/4,0,0)] as a function of the
length of the Si-C bonds (RSi-C) for B1-SiC. The solid line is a polynomial fitting to the
calculated points. The vertical dotted line denotes RSi-C in TiN.

A.D. Pogrebnjak et al. Composites Part B 142 (2018) 85–94

92



moderate substrate temperatures to guarantee the formation of the
heteroepitaxial cubic or hexagonal SiC interfaces that contain more
than one SiC monolayer.

The results presented in this paper provide useful guidance to re-
searchers who are interested in the synthesis of nanolayered thin films
based on transition metal nitrides. Nevertheless, further studies are
needed in order to investigate the nanocrystalline evolution of the in-
terstitial crystals and their influence on the overall mechanical beha-
viour of nanocomposite layers, especially the apparition and role of
(Ti,Si)C-N and Ti-Si-(N,C) interfacial phases.
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