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The (TiZrNbHfTa)N/WN multicomponent coatings were deposited by vacuum arc evaporation under dif-
ferent substrate bias (—90 and —280 V). X-ray photoelectron spectroscopy was used for analyzing of com-
plex composition of investigated coatings by reflecting of atomic scale chemical interactions. The
structural investigations showed the formation of a simple disordered solid solution in (TiZrNbHfTa)N
layer, B-W,N phase in WN layer with fcc crystal structure and highly disordered bcc (1 10) and (2 2 0)
-oriented high-entropy alloy phases, regardless of the applied bias potential. It was shown that with
increasing of substrate bias from —90 to —280V, there is a slight decrease of hardness from 34 to 31

GPa and increase of Young’s modulus from 325 to 337 GPa, which can be explained by annihilation of
point defects and precipitation of relatively softer metallic phase.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the development on new scientific approaches and
new compositions of protective coatings is the paramount task of
modern material science. Due to their broad range of physio-
mechanical properties, like hardness, wear and corrosion resistivity,
thermal resistance, electrical conductivity and adhesion to sub-
strate, such materials can be used as protective or/and decorative
coatings for enhancement of life time and providing the necessary
properties for tools, machine parts and even medical devices [1].

One of the most promising approaches to the design of coatings
is combination of layers of two or more different materials [2]. One
of the successful manifestations of this approach is the multilayer
nitride coatings of transition metals. It is well known, that nitrogen
with transition metals can form mixed ion-metal-covalent bonds,
which contributes to the creation of a strong and hard material.
A large variety of preparation methods and vast composition range
allowed to obtain coatings with excellent characteristics: TiN/VN
[3], CrN/WN [4], TiVN/TiSiN [5] and etc. [6].

In the present work, we attempt to combine two types of thin
layers of (TiZrNbHfTa)N and WN into the (TiZrNbHfTa)N/WN
multicomponent coatings and investigated chemical bonds,
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structural-phase states and mechanical properties. Transition
d-metals with a high negative enthalpy of nitride formation are
used as constituent elements of the investigated systems for
obtaining the highest functional properties of the coatings.

2. Experiments

The new (TiZrNbHfTa)N/WN multicomponent coatings depos-
ited by vacuum arc evaporation. The surface was cleaned with ions
of the evaporated material before deposition. The cleaning time
was t=10min and the residual pressure in the chamber was
P=7.4 x 103 Pa (the deposition conditions are presented in the
Table 1). The deposition was carried out from two sources
(TiZrNbHfTa) and (W) with continuous rotation at a speed of
8 rpm. Steel discs (X12HIT steel) were used as substrates. The
thickness of investigated coatings was near 9 + 9.5 um, layer per-
iod was 25 nm for (TiZrNbHfTa)N and 8 nm for WN layers.

The XPS data were obtained using the monochromatic Al Ko
X-Ray source and Sphera Il photoelectron energy analyzer (Scienta
Omicron). All measurements were made in the ultra-high vacuum
chamber at a pressure around 10~ mbar. Spectra of core level lines
were taken at 20 eV pass energy and resolution of 0.1 eV. The crys-
tal structure was characterized by XRD PANalytical using filtered
Cu-Ko radiation (1.5418 A) with PIXcel 3D detector in Bragg-
Brentano geometry. Diffractograms were recorded in continuous
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Table 1
Deposition parameters.
Ne Sample LA Up, V Py, Pa
1 (TiZrNbHfTa)N/WN 190 -90 0.53
100
2 (TiZrNbHfTa)N/WN 190 —280 0.53
100

scanning mode at room temperature (300 K), with the 26 ranging
from 20.0° to —80.0° and scanning step was 0.006°. The nanoinden-
tation tests were performed at room temperature on (TiZrNbTaHf)
N/MoN coatings using Hysitron Tribolndenter TI 950 equipped
with a Berkovich diamond tip TI-0039 under a maximum load at
10 mN. The measurements were repeated 10 times and analyzed
by using the Oliver-Pharr methodology, which are described else-
where [7].

3. Results and discussions

Fig. 1 shows XPS core-level spectra for the (TiZrNbHfTa)N/WN
coating. The Nb 3d core-level spectrum (Fig. 1a) was de-
convoluted into 3 spin-orbit doublets. The spin-orbit split 3ds»
and 3ds; peaks at around 206.2 eV and 204.0 eV, respectively, cor-
respond to the binding energy of NbN [8]. The spit-orbit split dou-
blets at the high binding energy side of the spectrum are assigned
to NbO, (2048 eV (3d5/2) and 208.2 eV(3d3/2) [8]) and Nb205
(207.0 eV (3dsp2) and 209.5 eV(3ds)2)) phases. The Zr3d spectrum
can be fitted with 2 spit-orbit split doublets, which are assigned
to ZrN (179.8eV (3ds;;) and 181.7 eV(3ds;z) [9]) and ZrO,
(182.3 eV (3ds;2) and 184.4 eV(3ds)2) [8]) phases. The Ti 2p spec-
trum presents the asymmetrical Ti 2p3/2 and Ti 2p1/2 doublets,
which match TiN (455.4 eV (2p3/2) and 461.2 eV (2p1/2)), TiON
(456.7 eV (2p3/2) and 462.8eV (2p1/2)) and TiO, (458.3eV
(2p3/2) and 464.1 eV (2p1/2) [10]) phases. The Hf 4f spectrum
shows two Hf 4f5/2 and Hf 4f7/2 spin-orbit doublets, which could
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Fig. 1. XPS spectra of as-deposited (TiZrNbHfTa)N/WN multicomponent multilayer
coating.

be attributed to HfN (15.2 eV (4f7/2) and 16.1 eV (4f5/2) [11]) and
HfO, (16.8 eV (4f7/2) and 18.1 eV (4f5/2)) phases. Importantly,
faint traces of W and Ta were detected in the coating, but the
intensity of corresponding peaks was very low and overlap with
the other peaks, which make them inappropriate for an accurate
analysis.

The chemical composition of the deposited coatings were
determined by EDX-method: Samplel: N - 22.52%, Hf - 3.73%, W
- 25.09%, Zr - 12.56%, Nb — 11.45%, Ti - 20.14%; Ta — 4.51%; Sample
2: N - 18.37%, Hf - 2.8%, W - 42.35%, Zr - 7.84%, Nb - 7.32%,
Ti - 17.56%, Ta — 3.76%. The non-stoichiometric composition can
be associated with a low working gas pressure. A sharp decrease
in the nitrogen concentration is obviously due to the sputtering
of lighter atoms due to the high bias potential.

Disordered solid solution with a crystal lattice of the structural
type FCC NaCl is formed in (TiZrNbTaHf)N layers, which are based
on high-entropy alloy. In the WN layers, B-W,N phases were
observed (PDF 25-1257). All phases were oriented along (11 1),
(200)and (31 1) directions in both samples (see Fig. 2). The sim-
ilarity of structural states of different layers (relationship between
the preferential orientations of crystallites formed in layers) indi-
cates a correlation between the structures of the layers during their
growth. With increasing of substrate bias from —90V to —280V,
the general structural state of the coatings remains unchanged,
however the peak intensities, and therefore their grain size, show
important changes. For calculation of grain size, we used deconvo-
lution of most intense peaks: (TiZrNbTaHf)N(1 1 1) and WoN(11 1).
In this case, the “error” will be full width at half maximum of
peaks. The (TiZrNbTaHf)N(111) and W;,N(111) peaks have
dramatically increased, with an associated grain size of T=15+1nm
and T=12+1 nm respectively, which contrasts with the values
of —90V sample, with 1=45+08 and t=2.7+0.6nm for
(TiZrNbTaHf)N(11 1) and W,N(1 1 1) respectively. Additionally,
sample —280 clearly shows the apparition of (TiZrNbTaHf) (1 1 0)
with a grain size of 1=9.7+0.6 nm with bcc crystal structure.
The broad peaks at around ~38° and ~78° of the sample —280V
can be associated with precipitation of highly disordered bcc
(110) and (2 2 0)-oriented high-entropy alloy phase. It is also
worth noting that the application of high substrate bias leads to
depletion of nitrogen in the coating, which coincides with the
appearance of Me/Me chemical bonds. The literature is heavily
populated with the scientific works, which indicate that the sub-
strate bias play a decisive role on the growth processes of coatings.
It was shown that, the application of high substrate bias leads to
textural changes due to the enhanced mobility of deposited ions,
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Fig. 2. Typical X-ray diffraction patterns of (TiZrNbHfTa)N/WN multicomponent
multilayer coating depending on substrate bias.
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Fig. 3. Hardness and elastic modulus (a) of (TiZrNbHfTa)N/WN multilayer coatings vs. indenter displacement: —90 V and —280 V; b) load/unload - displacement curve; c)

image of nanoindentation imprint.

anisotropy in surface diffusivities and different type of cascade
effects [12-16].

The hardness and Young’s modulus of the (TiZrNbHfTa)N/WN
coating is 34 and 325 GPa at a substrate bias of —90V (see
Fig. 3). With increasing of substrate bias to —280V, there is a slight
decrease of hardness to 31 GPa and increase of Young’s modulus to
337 GPa. Favorable chemical affinity of constituent elements
towards nitrogen, formation of strong peaks from dense (11 1)
plane, difference between mechanical properties of different lay-
ers, suppression of dislocation motion are the main reasons of high
hardness of (TiZrNbHfTa)N/WN coatings. The possible explanation
of decreasing of mechanical properties under high potential bias is
annihilation of point defects and precipitation of relatively softer
metallic bcc phase at the expense of reducing of nitrogen concen-
tration. Also, the increment of grain size, observed from XRD, leads
to a decrease in hardness according to the Hall-Petch relationship.

4. Conclusion

1. The formation of phases with cubic fcc crystal lattice in both
layers of (TiZrNbTaHf)N/WN multilayer coatings is characteris-
tic for all deposition regimes. The application of high substrate
caused the increasing of the peak intensities of (TiZrNbTaHf)N
(111)and W,N(1 1 1), and precipitation of bcc metallic phase.

2. It was shown that mechanical properties of (TiZrNbTaHf)N/WN
multilayer coatings are not highly depend on substrate bias. The
hardness and Young’s modulus of the (TiZrNbHfTa)N/WN coat-
ing is 34 and 325 GPa at a substrate bias of —90V, 31 and 337
GPa - at —280 V.
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