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Abstract—We have considered the response of an ensemble
of uniaxial ferromagnetic nanoparticles placed into a fluid to an
alternating field in the presence of thermal bath. The attention
was paid to the absorbtion of the field energy as a result of
nanoparticles rotation in a viscous fluid. The influence of the inter-
particle interaction effects was studied numerically based on the
effective Langevin equation. Using the Barnes-Hut algorithm and
CUDA technology, the set of numerical results, which describes
the frequency dependence of the power loss, has obtained for
various system parameters.

Keywords—ferrofiuid; rigid dipole; effective Langevin equation;
MD-simulation; CUDA

I. INTRODUCTION

Ferrofluids are media composed of magnetic nanoparticles
of diameters in the range of 10-50 nm which are dispersed
in a viscous fluid (for example, water or ethylene glycol) [1],
[2]. These media combine the properties of both ferromagnetic
solids and liquids. These unique characteristics make fer-
rofluids an attractive candidate for performing different tasks
ranging from the delivery of rocket fuel into a spacecraft thrust
chambers under zero-gravity conditions to high-precision drug
delivery and magnetic fluid hyperthermia cancer therapy [3],
[4]. Namely the last application motivated us to study the
problem of energy dissipation of a ferromagnetic nanoparticle
in a periodic magnetic field.

A viscous induced rotation of nanoparticles is the dominant
mechanism of energy absorption and further ferrofluid heating
for a highly anisotropic particle of radius more than 20nm and
not very large frequencies ( 103 — 105MHz) [5]. To study this
kind of motion, the rigid dipole model, where the magnetic
moment is supposed to be locked into the crystal lattice [2], is
widely used. Within this framework, a number of results for the
dynamical and stochastic approximations were obtained. Here
and after we are focused on the last case. Since the Langevin
and Fokker-Plank formalism for such systems was developed
[2], [7], it was applied successfully on repeated occasions.
Thus, the power loss was found for a circularly-polarised [6],
[8] and a linearly-polarised [9] fields. The convenient form of
the Langevin equation for analytical and numerical treatment
was established in [10]. Based on the numerical simulation, all
these results were confirmed and extended in [8]. The work [9]
deserves a special attention because of the attempt of account
of the dipole interaction in the mean field approximation.
However, the problem above can not be solved analytically
and the numerical approach is demanded.
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To these purposes, the molecular dynamics simulation
method is often utilized. Based on it, a number of the magnetic
properties of ferrofluids was investigated. Thus, in the works
[11], [12] the ferrofluid structure and initial susceptibility were
studied, in [12] the simulation was used for the size distribution
determination, and the dynamical properties of ferrofluids were
studied in [13]. It is rather unexpected, but to study the power
loss, the model based on the Landau-Lifshitz equation, where
only damping precession of the magnetic moment is taken into
account [14], [15], is also used. Despite this approach is valid
under some circumstances, it is used primarily because of the
simpler equations of motion.

An excellent possibility of high-performance calculations
on common PC, which is based on the use of graphics process-
ing units for general-purpose computing (the so-called CUDA
technology), was unveiled by Nvidia company [16]. And now a
lot of scientific problems can be solved in inexpensive way and
without special facilities like clusters or supercomputers. The
collective dynamics of nanoparticles ensembles with the long-
range dipole interaction is a suitable problem to test CUDA.
Another decision to improve simulation performance is the
approximate calculations of dipole fields, which mainly takes
into account the nearest neighbours influence. The Barnes-
Hut algorithm is the most well known in this regard; it was
successfully implemented to ferrofluids simulation in [17].
Therefore, the main aim of the present study is to reveal
the role of the dipole interaction in a ferrofluid heated by an
alternating field using the MD simulation based on the effective
Langevin equation [10] and technique presented in [17].

II. MODEL AND METHODS

We consider the ensemble of equal spherical uniform fer-
romagnetic uniaxial nanoparticles of radius R, magnetization
M M = M = const), and density D. Following [10],
the rotational motion is described by the effective stochastic
equations
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where 6, are the spherical coordinates of the nanoparticle
magnetic moment, p is the vector defining the reduced co-
ordinates of the nanoparticle, k£ is the index number of the
nanopaticle in the ensemble, t = t/m is the dimensionless
time, 7, = 6n/M 2 is the characteristic relaxation time,
k = M?V/kgT is the ratio of the magnetic and thermal
energies, 7 is the fluid viscosity, V' is the nanoparticle volume,
kg is the Boltzmann constant, 7" is the thermodynamical tem-
perature, x,y, 2 denote the Cartesian components, z; = ju; (%)
(z# = 1,2,3) are the independent Gaussian white noises with

zero_means, (u;(t)) = 0 and delta correlation functions,
(ma(t)pa(t)) = 6(t = t').

The resulting reduced field (h = H/M) acting on the
nanoparticle consists of the dipole field and the external one
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where w = w7y and h are the dimensionless frequency and am-
plitude of the external circularly polarized field, respectively,
py; is the vector joining two nanoparticles, u; = M; /M is
the reduced magnetic moment of the j-th particle. Finally, the
forces acting on the nanoparticle can be written as
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where o, € are the parameters of the Lennard-Jones potential,

which models a steric repulsion. The power loss is calculated
in common way (see Eq.9 in Ref. [8]) with averaging over the
whole ensemble. The dipole field calculation is performed as
described in [17]. The system of equations 3 was solved by the
fourth-order Runge-Kutta method with the time quantification
step of 0.0057 in the range of 10007 (7 is the field period).
The video-card Nvidia GeForce 450 GTS was used for our
simulations.

III. RESULTS AND DISCUSSION

Since in the real applications the ensembles, not single
nanoparticles, are used, the inter-particle interaction can es-
sentially impact the response to the external field. And even if
the volume fraction is small enough (for example, 1 %), due
to the long-range dipole interaction and interaction caused by
the surfactant covering of each nanoparticle, the results can
be different compared with the single particle approximation.
Firstly, the dipole interaction intends to join particles into
dense clusters. Such formations are extremely undesirable on
the reasons of further metabolism and excretion. Secondly,
to prevent this clustering, the nanoparticles are coated with
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a surfactant providing repulsion. Competition of the above
mentioned interactions can modify the specific power loss of
each nanoparticle in a wide range, that is in focus of our
investigation.

In a wide sense, the inter-particle interaction increases
the magnetic energy and there are two consequences of this.
From the one hand, the regular component of motion becomes
strong due to the interaction, and the stochastic component, in
contrast, is suppressed. And at a glance, such suppression can
results in the increase in the power loss. From the other hand,
the interaction fixes the nanoparticles magnetic moments that
complicates the response to the external field. And this trend
leads to the decrease in the power loss. Due to the long-range
character of the dipole interaction, it is too hard to estimate its
role in the energy absorption of the external periodic field by a
ferrofluid. And to give a quantitative assessment, we performed
a set of numerical simulations.

As it was mentioned above, the interaction is followed by
the convergence of nanoparticles and cluster formation, which
obstruct further translational and rotational motion of particles.
At the same time, the clusters are an origin of a few phenomena
affecting the power loss. Thus, each nanoparticle tries to
reduce its energy and gets the equilibrium or quasi-equilibrium
state. And due to the thermal fluctuations, the nanoparticles
can switch between different states. These switchings break
the alignment in the clusters and frustrate the nanoparticles
magnetic moments. Under some circumstances this can leads
to the increase in the power loss. Finally, large fluctuations can
destroy the clusters completely and the nanoparticles response
to the external field becomes better. As a result, the power loss
increases that can be interpreted as the constructive role of
thermal noise. We have studied in-depth all these phenomena
including the influence of the system parameters on their
conditions of occurrence. In this regard, the volume fraction,
noise intensity, and surfactant characterizations are the most
interesting.

Let us consider the process of cluster formation in detail.
To minimize the magnetostatic energy, the nanoparticles should
be closer to each other. Then the magnetic moment of each
particle should be oriented along the resulting dipole field gen-
erated by other particles. Since the magnetic lines of force are
closed curves, there are two trends. Firstly, the nanoparticles
magnetic moments try to be aligned along one direction and
this leads to the chain-like cluster formation. Secondly, the
chain fragments tend to be arranged in the antiparallel way
and attract each other forming the antiferromagnetic structure.
The surfactant tries to prevent such agglomeration due to
steric repulsion. The competition between these two types
of interaction can lead to quite different results. We need
to underline that since the magnetization is important for
the performance of the hyperthermia method, it is reasonable
to synthesize nanoparticles with magnetisation as large as it
is possible. As a consequence, the intensity of the dipole
interaction will increase and the clusters will become denser.
Therefore, the actuality of the considered aspects will grow in
time.

Different system parameters affect on the cluster formation
process differently, and this influence is not always unambigu-
ous. As a rule, increase in the volume fraction promotes the
nanoparticles agglomeration that results in decay of the power
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Fig. 1. Simulation results: the volume fraction influence without clusters. The
system parameters: number of nanoparticles 4096, M = 310 G, R = 10 nm,
n = 0.006 P, h = 0.05, k = 10.

loss (see Fig. 1). We explain this by various cluster types.
‘When the volume fraction is small, the chain-like structures are
formed. They are characterized by weaker interaction and more
sensitive to the external field. For larger volume fraction, the
short chain fragments join each other forming denser structures
with the stronger interaction. And these aggregated structures
have a weak response to the external field. But there are some
exceptions from this trend. Firstly, when the noise intensity
is small enough, the role of the nanoparticles concentration
can be negligible. This happens because when the noise is
small, the formed clusters for different volume fractions have
the similar structure and remain stable. Secondly, the inverse
relationship of the power loss on the volume fraction can occur
that is shown in Fig. 2. When the inter-particle interaction
in the clusters is strong, remagnetization of the whole cluster
requires a stronger field, and, as a consequence, hysteresis loop
widens. This is the origin of the increase in the power loss on
the volume fraction for small frequencies (the curve for 5%
exceeds the curve for 3% in Fig. 2). This effect disappears for
larger frequencies, when the clusters do not reverse completely
during the field period, because strong interaction suppresses
the dynamics of each particle. Therefore, in contrary, the power
loss becomes smaller in comparison with the case of a lower
volume fraction.

When the temperature increases, the thermal fluctuations
break the order, and this affects on the ferrofluid response
differently. While the magnetic energy per one nanoparticle
is larger than the thermal one, but not so large to exclude
the essential fluctuations during the field period, a very in-
teresting effect can occur. Each nanoparticle in cluster is in
the equilibrium or quasi-equilibrium state, which is caused by
the resulting dipole field. The nanoparticles magnetic moments
fluctuate around these states predominantly. And when rare,
but significant fluctuations occur, the nanoparticles perform
transitions between the equilibrium states. Such phenomenon
is similar to the relaxation of the magnetic moment in the
fixed uniaxial nanoparticle, which was described in [19], or
to the field-induced switching in the same particle, which
was considered in [18]. The transition process proceeds fast
enough, but during it each nanoparticle is in a frustrated state
and characterized by a high energy in the external field. There-
fore, the power loss increases, especially for high frequencies,
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Fig. 2. Simulaion results: the volume fraction influence with clusters for-

mation. The system parameters: number of nanoparticles 4096, M = 310 G,
R =10 nm, n = 0.006 P, h = 0.05, k = 25.
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Fig. 3. Simulaion results: the influence of nanoparticles switching in clusters.
The system parameters: number of nanoparticles 4096, M = 310 G, R =
10 nm, n = 0.006 P, h = 0.05, volume fraction 1%.

when the time of one transition becomes comparable with the
field period. The phenomenon described requires a number of
conditions, since a lot of factors influences the ratio between
the thermal and deterministic energies, i.e. noise intensity,
surfactant parameters and cluster types. Thus, in Fig. 3 this
phenomenon is reflected in the behaviour of the curve for
k = 25. As seen, for small frequencies, the curves for k = 25
and x = 40 coincide. But while the frequency increases, the
curve for k = 25 tends to the curve for k = 40 and intersects
it.

Finally, when the thermal energy is comparable with the
magnetic one, the thermal fluctuations completely prevent the
cluster formation. Despite the noise suppresses the response
of each nanoparticle to an external field, for the interacting
ensemble the noise leads to quite different results. Since
the nanoparticles in dense clusters are strongly bonded and
weakly exposed to the external field, the thermal fluctuations
increase the nanoparticle response, and, correspondingly, the
energy absorbed from the external periodic field. We interpret
this as the constructive role of noise. The results of the set
of simulations confirming this phenomenon are depicted in
Fig. 4. As seen, the power loss curves for a larger noise
intensity are above than the curves for a smaller one. This
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Fig. 4. Simulaion results: the influence of thermal fluctuations breaking the
clusters. The system parameters: number of nanoparticles 4096, M = 310 G,
R =10 nm, n = 0.006 P, h = 0.05, volume fraction 3%.

is especially expressed for high frequencies, when the field-
induced oscillations of the nanoparticles leading to destruction
of the clusters. At the same time, at low frequencies the curve
for k = 25 almost coincides with the curve for k = 40 because
in both cases the similar clusters are formed, and they are not
completely broken by the thermal noise.

IV. CONCLUSIONS

We have considered the response of an ensemble of uni-
axial ferromagnetic nanoparticles placed into a fluid to an
alternating field in the presence of thermal bath. The attention
was paid to the absorbtion of the field energy as a result of the
nanoparticles rotation in a viscous fluid. The influence of the
inter-particle interaction effects was studied numerically based
on the effective Langevin equation. Using the Barnes-Hut
algorithm and CUDA technology, the set of numerical results,
which describes the frequency dependence of the power loss,
has been obtained for various system parameters.

Since the power loss of the ensemble is defined by the
dynamics of each particle, the inter-particle dipole interaction
has a critical impact to the ensemble susceptibility to an
external periodic field. Due to the cluster formation, each
nanoparticle is in the strong in the characteristics can cause
quite different structures of the ensemble. Therefore, the power
loss is sensitive to the system parameters. The interaction
effects especially are actual for low frequencies, when clusters
inverse the magnetization during the field period.

The thermal noise and the inter-particle interaction are
the competing factors. The fluctuations can partially break
the nanoparticles order in the clusters or destruct the clusters
completely. In the first case, the effect of significant increase in
the power loss for high frequencies is observed. We explain this
by rare switchings of the nanoparticles in the clusters between
the quazi-equilibrium states formed by the resulting dipole
field. The switching process is characterised by a frustrated
state, within which the energy consumption is high enough.
The resulting power loss here can be almost equal to the value
of the single particle limit.

When the noise intensity is large, the clusters are destroyed,
but in the interacting ensemble this leads to the power loss
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increase as a consequence of the better response of the
nanoparticles to an external field. And under certain other
conditions, the larger noise intensity corresponds to the larger
power loss values. Therefore, we talk about the constructive
role of thermal noise.
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