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Abstract. In this study, the Ritz variational method has been applied to solve the bending problem of rectangular 

Kirchhoff plate resting on Winkler foundation for the case of simply supported edges and transverse distributed load. 

The problem was presented in variational form using energy principles to obtain the total potential energy functional. 

Ritz technique was then used to find the generalised displacement parameters which minimized the total potential en-

ergy functional; where basis functions were choose to apriori satisfy the boundary conditions. Analytical solutions 

were obtained which were found to be identical with Navier’s series solutions for the general case of arbitrary dis-

tributed transverse load, as well as the specific cases of point loads, sinusoidal load, uniform and linearly distributed 

loads. 
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1 Introduction 

Problems of the flexure of plates resting on elastic 

foundations are fundamental in geotechnical and structur-

al engineering and analysis. They are encountered in the 

analysis and design of foundations such as column foot-

ings, combined footings and raft foundations. They are 

also encountered in problems of structural analysis that 

are mathematical analogues of the plate on Winkler foun-

dation problem. Many theories exist for the analysis of 

the flexural behaviour of plates. They include: Lagrange 

plate theory, Germain theory, Kirchhoff theory, Von 

Karman theory, Reissner [1, 2] theory, Mindlin [3], 

Shimpi [4] theory, Reddy [5] theory, and other variants of 

Refined plate theory and shear deformation plate theories. 

Kirchhoff plate theory also called the classical thin plate 

theory is adopted in this paper. The fundamental hypothe-

sis of the Kirchhoff plate theory includes: 

1) straight lines normal to the plate’s middle surface 

remain straight after bending deformation; 

2) straight lines normal to the plate middle surface be-

fore deformation remain normal to the middle surface 

after bending deformation; 

3) the thickness of the plate does not change during 

flexural deformation. 

The Kirchhoff plate theory is a two dimensional ap-

proximation of the mathematical theory of elasticity ap-

plied to plates to determine the stress and deformation 

fields in thin plates subject to forces and moments under 

different restraint conditions. It is an extension of the 

Euler-Bernoulli beam theory, and assumes that a middle 

plane surface, neutral during deformation can be used to 

represent a three dimensional plate in two dimensional 

form (Mama et al, [6]). The obvious merits of Kirchhoff 

plate theory include: 

1) the problem is reduced to two dimensional one; 

2) the uncoupling of bending  and stretching behav-

iours; 

3) the linear nature of the governing partial differential 

equation; 

4) stresses can be calculated from the stress-

displacement relations; 

5) it is commonly applied. 

The most significant defect is the neglect of transverse 

shear deformation and its inability to model cases in 

which shear deformation plays a significant role. The 

interaction of soil on the foundation structure is repre-

sented by the soil reactive pressure distribution (Case-

lunghe and Erikson, [7]). 
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Many models exist for describing the soil interaction 

on the foundation structure. The elastic foundation mod-

els are classified as discrete parameter models, simplified 

elastic continuum models and elastic continuum models 

(Rajpurohit et al, [8]; Ghaitani et al, [9]). In discrete pa-

rameter models, the elastic foundation is modeled as a set 

of closely spaced discrete individual springs that may or 

may not be coupled to one another. In continuum models, 

the mathematical theory of elasticity is used to find com-

plex analytical expressions that describe the soil reaction. 

Simple elastic continuum foundation models are models 

that may be described as simplifications of the theory of 

elasticity formulation for the soil reaction. Discrete pa-

rameter foundation models include: Winkler [10], Paster-

nak [11], Filonenko-Borodich [12], and Hetenyi [13] 

foundation models, as well as generalised two- and multi-

parameter foundation models. 

The simplest representation of soil reactive pressure 

distribution is provided by the classical Winkler founda-

tion  model which replaces the subgrade by a mechanical 

analogy made up of single bed of closely spaced inde-

pendent vertical springs, without interaction with one 

another. In the Winkler foundation idealization, the soil 

reaction at any point on the foundation (plate) is directly 

proportional to the deformation of the foundation (plate) 

at that point. Thus, analytically, 

 ( , ) ( , )sp x y k w x y , (1) 

where p(x, y) is the soil reactive pressure distribution 

at an arbitrary point (x, y) in the plate-soil interface area, 

w(x, y) is the corresponding vertical deformation and ks is 

the constant of proportionality, representing contact pres-

sure per unit deformation – commonly referred to as the 

Winkler coefficient or coefficient of subgrade reaction or 

simply the subgrade modulus. 

Hence in the Winkler model, ks is the only foundation 

parameter characterizing the elastic response of the soil, 

Winkler’s foundation has the basic demerit of resulting in 

a vertical deformation of only those springs alone that are 

located under the loaded region. Thus the Winkler model 

leads to discontinuity of vertical deformation at the edges 

of the loaded plate. In addition, the Winkler model im-

plies that a point undergoes vertical deformation that is 

independent of the vertical deformation of other adjoining 

points; which is not in line with elasticity findings. These 

shortcomings have led to the development of other dis-

crete parameter foundation models that account for the 

effect of shear interaction (Pasternak, [11]). However, the 

simplificity of the Winkler model and its long term famil-

iarity has ensured its usage till today. The Filonenko-

Borodich, and Pasternak foundation models are two pa-

rameter discrete parameter foundation models where the 

soil reaction pressure is given generally by (Pasternak, 

[11]): 

 2

1 2
( , ) ( , ) ( , )p x y k w x y k w x y   , (2) 

where k1 and k2 are two discrete parameters of the 

model, and 2
 is the Laplacian operator with respect to 

coordinates x, y. In the Kerr [14] model, a shear layer is 

introduced in the numerator Winkler foundation and the 

shear layer separates the elastic bed into two beds with 

two different spring constants, k1 for the first layer inter-

facing the plate and k2 for the second layer making con-

tact with a rigid base. 

The governing differential equation of the Kerr [14] 

foundation is given by 

 2 22

2

1 1

1
k G

p p k w G w
k k

       
 

, (3) 

where k1 is the spring constant of the first layer, k2, the 

spring constant of the second layer and w(x, y) is the de-

flection of the first layer, G is the shear modulus of the 

shear layer which separates the first and second layers in 

a Kerr foundation. 

The research [15] expanded the previous work done by 

Mama et al [6] by considering new particular types of 

distributed transverse load namely, bisinusoidal distribu-

tion and linear distribution over the entire plate domain 

and using the Fourier sine transform method. In addition, 

paper [15] considered and solved numerical problems for 

simply supported Kirchhoff plates resting on Winkler 

foundations for different values of the dimensionless 

Winkler parameter; for cases of uniformly distributed 

transverse load on the plate domain. 

Other researchers who have studied the plate on elastic 

foundation problem are: Althobaiti and Prikazchikov 

[16]; Zhong, Zhao and Hu [17]; Li, Zhong and Li [18]; 

Li, Zhong and Tian [19]; Li et al [20]; Zhang, Shi and 

Wang [21]; Agarana, Gbadeyan and Ajayi [22]; Are, 

Idowu and Gbadeyin [23]; Agarana and Gbadeyin [24]; 

Tahuoneh and Yas [25]; and Ye et al [26]. 

The research aim is to apply the Ritz variational meth-

od to obtain solutions for the flexural problem of simply 

supported Kirchhoff plate resting on Winkler foundation 

for cases of transversely distributed loads. The specific 

objectives include: 

1) to obtain the Ritz variational statement of the prob-

lem of Kirchhoff plate on Winkler foundation for the case 

of arbitrary distribution of transverse loads; 

2) to solve the variational problem using the energy 

minimization principle to obtain the general solution for 

the deflection for any distributed load as well as the cor-

responding internal force resultants; 

3) to obtain solutions for deflections and internal forc-

es for particular types of transverse loads namely: 

– point load P0 applied at a known point (x0, y0) on the 

plate domain; 

– bisinusoidal distributed load over the entire plate 

domain; 

– uniformly distributed load over the entire plate do-

main; 

– linearly distributed load over the plate domain. 
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2 Research Methodology 

Kirchhoff plate theory was adopted for the plate while 
Winkler foundation model was used to describe the soil 
reaction pressure on the plate. Kirchhoff plate theory is 
based on the following kinematic assumptions: 

1) straight lines normal to the middle surface remain 
straight after deformation; 

2) straight lines normal to the middle surface remain 
normal to the middle surface after deformation; 

3) the thickness of the plate does not change during 
flexural deformation. 

Using the strain energy density for a generalised three 
dimensional state of stress, the generalized Hooke’s 
stress-strain law for isotropic elastic plates and the fun-
damental assumption of thin plate theory, the bending 
strain energy functional Ub for the Kirchhoff plate is ob-
tained by the following formula: 

 2 2 2
2 1

2
( ) ( )( )b xy xx yy

R

D
U w w w w dxdy       , (4) 

where R is the two dimensional domain of the plate on 

the xy coordinate plane, D is the plate flexural rigidity 

given by 

 
3

2
12 1( )

Eh
D 


; (5) 

h is the plate thickness, wxx denotes the second partial 

derivative of w(x, y) with respect to x, while wxy is the 

mixed partial derivative of w(x, y) with respect to x and y 

variables. 

The potential energy of the distributed transverse load 

p(x, y) is given by 

 ( , ) ( , )
R

V p x y w x y dxdy  . (6) 

The potential energy functional due to the Winkler 

foundation is given by: 

  21

2
( , )s

R

W k w x y dxdy  , (7) 

where ps(x, y) is the soil reactive pressure on the plate. 

The total potential energy functional   then becomes 

 b sU W V    ; (8) 

The problem of flexure under static transverse loads 

for Kirchhoff plate on Winkler foundation then reduces to 

one of finding the value of the deflection w(x, y) that 

minimizes the total potential energy functional expressed 

as the abovementioned equation; a problem situated in 

calculus of variations. Thus, for equilibrium of the Kirch-

hoff plate on Winkler foundation problem 

 0  , (9) 

where   denotes the first variation in the total po-

tential energy functional. 

Ritz variational method is based on the principle of 

minimum total potential energy functional for equilibri-

um. The principle states that the displacement field (func-

tion) that corresponds to the minimum total potential 

energy functional represents a state of equilibrium, pro-

vided the displacement function satisfies the given 

boundary conditions. Thus, the Ritz variational method 

seeks to obtain the displacement field defined over the 

plate domain such that the total potential energy func-

tional of the Kirchhoff plate on Winkler foundation carry-

ing known transverse distributed load is minimized. In 

the Ritz method, the unknown displacement field (func-

tion) w(x, y) is sought or defined in terms of a finite or 

infinite number of basis (shape or coordinate) functions 

as follows: 

 ( , ) ( ) ( )mn m n
m n

w x y w X x Y y
 

 , (10) 

where Xm(x) and Yn(y) are the basis (coordinate or 

shape) functions in the x and y coordinate directions re-

spectively, chosen such that they identically satisfy the 

end condition along the x and y directions respectively; 

and wmn are the generalised displacement parameters 

which are sought. 

For Kirchhoff plate on Winkler foundation, extremiza-

tion of the total potential energy functional (8) in terms of 

the unknown generalised displacement parameters wmn 

 0

mnw





 (11) 

allows obtaining the system of algebraic equations: 

 
1 1 1 1

mn mn mn
m n m n

k w F
   

   
  . (12) 

3 Results 

3.1 Arbitrary distributed load p(x, y) over  

the simply supported Kirchhoff plate 

A rectangular Kirchhoff plate of length a and width b 

resting on Winkler foundation as shown in Figure 1 was 

considered. 

 

 

Figure 1 – Kirchhoff plate on Winkler foundation  

under arbitrary load, p(x, y) 
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The geometric and force boundary conditions at the 
simply supported edges are: w(0, y) = w(a, y) = 0; 

2 2

2 2
0 0( , ) ( , )

w w
x y x a y

x x

 
   

 
; w(x, 0) = w(x, b) = 0; 

2 2

2 2
0 0( , ) ( , )

w w
x y x y b

y y

 
   

 
. 

The displacement basis functions that satisfy the 
boundary conditions are: 

     ( ) sin sinm m

m x
X x x

a


   ; ( ) sin sinn n

n y
Y x y

b


   , (13) 

where m

m

a


  ; n

n

b


  . 

For simply supported plates, the Gaussian curvature 

given by ( 2

xy xx yyw w w ) contributes nothing to the total 

potential energy since its integral vanishes and   simpli-
fies to: 

 
2 2 21

2 2
( )

R R R

D
w dxdy kw pw dxdy       . (14) 

Let the arbitrary distributed transverse load be repre-
sented using Fourier sine series as 

 
1 1

( , ) sin sinmn
m n

m x n y
p x y p

a b

 

 

 
  . (15) 

where pmn are the Fourier coefficients of the distribut-
ed load, then 

2
2 2

2

1

2
mn

m n

D m n
w I

a b

              
      

 + 2

1 1

1

2
mn mn mn

m n

k w I p w I
 

 ,       (16) 

where 

 2 2

1

0 0

sin sin

a b
m x n y

I dxdy
a b

 
   . (17) 

Extremizing   with respect to the generalised coordi-
nates after simplifying allows obtaining 

 

 
2

2 2

mn
mn

p D
w

m n k

a b D


          
    

. (18) 

Using the dependence 

 
0 0

4
( , )sin sin

a b

mn

m x n y
p p x y dxdy

ab a b

 
   , (19) 

it can be obtained: 

 
2

2 2

sin sin

( , )
mn

m n

m x n y
p

a bw x y

m n k
D

a b D

 
 


             
     

 . (20) 

In this case, the bending and twisting moments are 

 

2 2

2
2 2

sin sinmn

xx
m n

m n m x n y
p

a b a bM

m n k

a b D

 
            
    

             
     

 ; 

 

2 2

2
2 2

sin sinmn

yy
m n

n m m x n y
p

b a a bM

m n k

a b D

 
            
    

             
     

 ; (21) 

 
2

2 2

1

cos cos

( )
mn

xy
m n

m n m x n y
p

a b a bM

m n k

a b D

 
     

    
          
    

 . 

3.2 Ritz variational solutions for  

point load P0 at (x0, y0) 

For the case of point load P0 applied at the arbitrary 

point x0, y0, within the plate domain, the Fourier series 

coefficient pmn is 

 0 0 0
4

sin sinmn

P m x n y
p

ab a b

 
 . (22) 

Then, the solutions for transverse deflections and 

bending moments become: 

  
0 0

0

2
2 2

4
sin sin sin sin

( , )
m n

m x n y m x n y

P a b a bw x y
abD m n k

a b D

 
   


          
    

  

  
2 2

0 0

0

2
2 2

4
sin sin sin sin

xx
m n

m x n ym n m x n y

P a b a a b bM
ab m n k

a b D

 
              
    

          
    


 (23) 

  
2 2

0 0

0

2
2 2

4
sin sin sin sin 

yy
m n

m x n yn m m x n y

P b a a a b bM
ab m n k

a b D

 
              
    

          
    


 

where m, n = {1, 3, 5, …}. 

When the point load is applied at the center of the 

plate (x0 = a/2, y0 = b/2), the maximum deflection and 

bending moments would occur at the plate center and are 

found as: 

   
2 2

0

2
2 2

4 2 2

2 2

sin sin

,
m n

m n

Pa bw
abD m n k

a b D

 
 


          
    

  

   
2 2

2 2

0

2
2 2

4 2 2

2 2

sin s  in

,xx
m n

m n m n

P a ba bM
ab m n k

a b D

 
            
    

          
    


 (24) 

   
2 2

2 2

0

2
2 2

4 2 2

2 2

sin s  in

,yy
m n

n m m n

P b aa bM
ab m n k

a b D

 
            
    

          
    


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For square plates on Winkler foundation where the 

point load P0 acts at the center (a = b), and the maximum 

deflection and bending moments occur at the center, and 

are given by: 

  
2 2

2

0

4

4 2 2 2

4 2 2

2 2

sin sin

,

( )
m n

m n

P aa bw
D ka

m n
D

 
 


 
   
 

 ; 

  
2 2 2 2 2

0 4

4 2 2 2

2 2
4

2 2

( )sin sin

,

( )

xx
m n

m n
m n

a bM P
ka

m n
D

 
 

  


  
 . (25) 

Additionally, Myy(a/2, b/2) = Mxx(a/2, b/2). 
 

3.3 Ritz variational solutions for transverse 

sinusoidal load 

In the case of transverse sinusoidal load 

0
( , ) sin sin

x y
p x y p

a b

 
 , the Fourier sine series coeffi-

cient for the sinusoidal load 
0

1 1,mnp p m n    

and 0 1 1,mnp m n   . Then by substitution into 

the Ritz variational solutions for arbitrary distribution of 

transverse load, the solutions for sinusoidal loads be-

come: 

0

2
2 2

sin sin

( , )

x ny
p

a bw x y

k
D

a b D




             
     

; 

 

2 2

0

2
2 2

sin sin

xx

x ny
p

a b a bM

k

a b D

           
    

          
    

; (26) 

 

2 2

0

2
2 2

sin sin
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. 

The maximum values of deflection and bending mo-

ments occur at the plate center, and are given by: 
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; (27) 
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. 

For square plates (a = b) it can be obtained: 
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Similarly, the maximum bending and twisting mo-

ments for square plates on Winkler foundation for the 

case of sinusoidal load are: 
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3.4 Ritz variational solution for uniformly 

distributed load p(x, y) = p0 = const 

The Fourier sine series coefficients for the uniformly 

distributed load are: 
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. (30) 

Then, the Ritz variational solutions become: 
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The bending moment distributions are: 
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The maximum moments occur at the center 

 
2 2
,a bx y   and are given by: 
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where r = a/b. 

For square plates (r = 1): 
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The twisting moments are: 
 

   0

2
2 2

4

2 2

1 16
cos cos

( )
xy

m n

m x n y

p a bM
ab m n k

Da b

 
 

 
 

  
    
   

 ; 

3

0

4

4 2 2 2 2

16 1 1

max

( )

( )

xy
m n

p a
M

b ka
m n r

D

 
 

  
 . (35) 

For square plates: 
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3.5 Ritz variational solutions for linearly 

distributed load p(x, y) = p0x/a 

The Fourier sine series coefficient for linearly distrib-

uted load p(x, y) = p0x/a is: 
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Then the deflection field (function) becomes: 
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At the plate center: 
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The bending moments are obtained from the moment-

displacement (moment-curvature) relations as: 

  
 

 

2 2 2 2

2

0

2 4
2

4 2 2

8
cos sin sin

( )

xx
m n

m x n y
m n r m

p a a bM
ka

m nr mn
D

 
 

   


 
    

 ; 

  
2 2 2

2

0 4

4 2 2 2 2

8

( )cos sin sin

( )

yy
m n

m x n y
n r m m

a bM p a
ka

mn m n r
D

 
 

  


 
   
 

 . (40) 

Bending moments at the plate center, is given by: 
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For square plates (r = 1): 
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The Ritz variational solutions for the maximum deflec-

tion and maximum bending moments which occur at the 

plate center  
2 2
,a bx y   for square simply supported 

Kirchhoff plate resting on Winkler foundation for values 
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 (43) 

equal K = 0, 1, 3, and 5 have been determined and pre-

sented in Table 1 for the case of uniformly distributed 

transverse load p0 over the entire plate domain. Similarly, 

the Ritz variational solutions for the maximum deflection 

and maximum bending moments for square simply sup-

ported Kirchhoff plates resting on Winkler foundations 

for values of K equal to K = 0, 3, 5 and 7; for the case of 

sinusoidal load distribution over the plate domain have 

been determined and are shown in Table 2. 
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Table 1 – Ritz variational solution for deflection and bending 

moment coefficients for simply supported square Kirchhoff 

plate on Winkler foundation under transverse uniform load  

(for Poisson’s ratio 0.3) 

ka4/D K 
wxx,  

×10–3pa4/D 

Mxx,  

×10–2pa2 

Myy,· 

×10–2pa2 

Mxy,  

×10–2pa2 

0 0 4.062 4.790 4.790 – 

1 1 4.053 4.809 4.809 2.943 

81 3 3.348 3.910 3.910 2.456 

625 5 1.507 1.575 1.575 1.181 

Table 2 – Ritz variational solutions for maximum deflection and 

bending moment coefficients for simply supported square 

Kirchhoff plate on Winkler foundation under transverse sinus-

oidal load (for Poisson’s ratio 0.3) 

ka4/D K 
wxx,  

×10–3pa4/D 

Mxx,  

×10–2pa2 

Myy,· 

×10–2pa2 

Mxy,  

×10–2pa2 

0 0 2.566 3.293 3.293 1.797 

1 1 2.560 3.285 3.285 1.792 

81 3 2.125 2.726 2.726 1.487 

625 5 0.986 1.265 1.265 0.069 

2401 7 0.358 0.460 0.460 0.025 

4 Discussion 

The Ritz variational method has been effectively used 

in this study to solve the flexural problem of simply sup-

ported rectangular Kirchhoff plate resting on a Winkler 

foundation, when the plate domain is subjected to trans-

versely distributed loads. The problem was presented in 

variational form using the principle of minimization of 

the total potential energy functional. The total potential 

energy functional was obtained using the stress-strain 

laws, the geometric relations in the strain energy density 

expression together with the considerations of work done 

by the externally applied distributed loads, and soil reac-

tive forces. The total energy functional for the problem 

was obtained as Equation (28). The variational statement 

of the problem was then expressed as Equation (29). The 

displacement shape functions that satisfy the simply sup-

ported conditions at the plate edges were given as Equa-

tions (38) and (39). The Ritz variational solution obtained 

for any arbitrary distribution of transverse load was given 

as Equaton (52) where the arbitrary load distribution 

could be described using Fourier sine series. The bending 

and twisting moments were found using the moment 

curvature relations as Equations (57), (58) and (59). From 

the general solutions obtained for arbitrary load distribu-

tions, solutions were obtained for the following specific 

cases: 

1) point load P0 acting at a point (x0, y0) in the plate 

domain where 
0

0 ,x a   
0

0 y b  ; 

2) sinusoidal load distribution over the entire plate sur-

face; 

3) uniform load distribution over the entire plate area; 

4) hydrostatic (linear) distribution of load over the en-

tire plate. 

 

Ritz variational solutions obtained for the deflections 

and bending moments for the case of point load P0 acting 

at point (x0, y0) on the plate are given as equations (23). 

Their maximum values for square thin plates on Winkler 

foundations were obtained as equations (24) and (25). 

For the case of transverse sinusoidal load, the deflec-

tions and bending moments were obtained as equations 

(26). Their maximum values for square Kirchhoff plates 

on Winkler foundations were found at the plate center as 

equations (27), (28) and (29). 

The Ritz variational solution for the case of uniformly 

distributed transverse load were found for deflection and 

bending moments as equations (31) and (32). The maxi-

mum values for deflection and bending moments for 

square Kirchhoff plate on Winkler foundation were found 

as equations (31), (33) and (34). 

The Ritz variational solutions for linearly distributed 

transverse load on the Kirchhoff plate on Winkler foun-

dation were obtained as equations (38) and (40). The 

deflections and bending moments were obtained at the 

plate center as equations (39) and (41). For square Kirch-

hoff plate on Winkler foundation, the solutions for linear 

loads are Equations (42). Here the maximum values may 

not occur at the plate center due to the non-symmetrical 

load distribution with respect to the plate center. 

The Ritz variational solutions obtained for square 

Kirchhoff plate on Winkler foundation for the case of 

uniform transverse load and simply supported edges 

shown tabulated in Table 1 for various values of the di-

mensionless parameter K show that the maximum deflec-

tions and bending and twisting moments at the plate cen-

ter decrease as the elastic stiffness of the Winkler founda-

tion, measured by parameter K increases. It is further 

observed that the Ritz variational solutions obtained in 

this study for Kirchhoff plate on Winkler foundation with 

simply supported edges (x = 0, x = a, y = 0, y = b) yielded 

mathematical closed form solutions which were identical 

with the solutions obtained using a Navier double Fourier 

sine series method for the problem. 

5 Conclusions 

As a result of the presented research, the following 

conclusions are made. 

The Ritz variational method yielded mathematically 

closed form solutions for the deflection, and bending 

moments for the rectangular Kirchhoff plate on Winkler 

foundation with simply supported edges, and under trans-

verse distributed load. 

The analytical closed form solutions obtained were ex-

act within the limitations and foundational assumptions 

of the classical Kirchhoff thin plate theory and the Win-

kler foundation model used in the problem formulation. 

The Ritz variational solutions were exactly identical 

with the solutions obtained using Navier trigonometric 

series method for the same problem. 

The Ritz variational solutions obtained were exact be-

cause exact shape functions were used in the displace-

ment trial function. 
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The Winkler foundation has the effect of diminishing 

the maximum deflections and bending moments at the 

center of the plate for symmetrical loads about the plate 

center. 

The use of displacement functions with orthogonality 

properties simplified the resulting definite integrations 

and simplified the process of minimization of the total 

potential energy functional. 

Convergence of the expressions obtained for the dis-

placements were faster than those obtained for the bend-

ing moments. 

Convergence of the expressions obtained for the case 

of concentrated load on the plate was very slow due to the 

singularity property of the point load, and its representa-

tion by many terms of the Fourier sine series. 
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Застосування варіаційного методу Рітца для дослідження  
вигину прямокутної пластини на вінклеровій основі 

Іке Ч. Ч. 

Державний університет науки і технології м. Енуґу , П.M.Б. 01660, м. Енуґу, Нігерія 

Анотація. У роботі застосовано варіаційний метод Рітца до роз’язання задачі вигину прямокутної 
пластини на вінклеровій основі під дією поперечного навантаження за умов відповідності гіпотезам Кірхгофа 
для випадку шарнірно закріплених країв. Поставлена задача представлена у варіаційній формі із 
застосуванням принципу мінімуму функціонала повної потенціальної енергії пластини. Для отримання 
узагальнених переміщення застосовано метод Рітца для функцій переміщення, що задовольняють 
кінематичні граничні умови задачі. Шляхом застосування тригонометричного ряду Фур’є отримані 
аналітичні розв’язки для загального випадку довільно розподіленого навантаження. Додатково розглянуто 
окремі випадки, зокрема, для прикладення сили у точці, навантаження за синусоїдальним законом розподілу, 
а також для рівномірного та рівнозмінного навантажень. 

Ключові слова: варіаційний метод Рітца, гіпотеза Кірхгофа, вінклерова основа, функціонал повної 
потенціальної енергії, узагальнені переміщення, базисні функції переміщення. 
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