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The H2O molecules adsorption effects over electronic transport properties of Armchair Graphene Nano-

ribbons (A-GNR) was theoretically studied using Non Equilibrium Green Function (NEGF) formalism 

along with Ab initio calculation. Three different orientations and adsorption sites are considered to calcu-

late the adsorption energies. The calculated adsorption energies for those orientations also suggest that 

adsorption in metallic A-GNR has much smaller effect on its transport properties. 
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1. INTRODUCTION 
 

In recent years, gaseous molecule adsorption in nano-

patterned material has been grabbed the attention of re-

searchers and scientists [1-3]. Since gas and vapor adsorp-

tion on these systems could change their electronic prop-

erties, therefore, these properties can be used to measure 

the sensing performance of the systems. Previously, re-

searchers concentrated to their work on the interaction of 

small gas molecules on graphene, such as CO, NO2 and 

NH3 with the pristine graphene in theory [4, 13, 14] and 

CO2 sensing using graphene sheet in experiment [5]. In-

terestingly, graphene is an interesting candidate for using 

as gas and vapor sensor due to its two dimensional char-

acter (thus maximizing the interaction of adsorbates on 

the graphene layer), low Jhonson noise which suggests 

that adsorption can leads notable relative changes in car-

rier concentration and few crystal defects [6]. As a result, 

the interaction between small molecules and graphene 

can be highly enhanced by introducing adsorption into 2D 

nanosheets of graphene. Ab initio method of a H2O mole-

cule with GNR is important for finding the interaction 

energy in order to meet some technological application 

such as the design and implementation of humidity sen-

sor. In this paper, it has been shown that water (H2O) 

molecules adsorbed on GNR cause defects in it which fa-

cilitate to electron-tunneling of the band gap and cause 

widening of graphene band gap to 0.206 eV [1]. 

However, the changes in resistance are directly influ-

enced by the amount of H2O adsorbed on the graphene [3]. 

We have considered the orientations and adsorption sites 

of H2O molecule on both semiconducting and metallic 

GNR to investigate the adsorption energies. Moreover, the 

strength of the molecular adsorbing is discussed in light of 

the highest occupied and lowest unoccupied molecular 

orbital commonly named as HOMO and LUMO respec-

tively. Electronic and transporting properties of these 

systems such as Device Density of States (DDOS), Elec-

trostatic Difference Potential (EDP), Conductivity (G) and 

Current-Voltage (I-V) characteristics are greatly influ-

enced by the adsorption of H2O. We have considered three 

cases such as semiconducting A-GNR (N  10), metallic A-

GNR (N  11) and cascade A-GNR to realize the effect of 

H2O adsorption on A-GNR to get an overview about com-

parison of their sensing performance. This paper discuss-

es the optimum area for adsorbing highest number of H2O 

molecules to get maximum current. Adsorbing excessive 

number of water molecule in correspondence to its opti-

mum value leads the decrement of sensing properties. To 

overcome this problem, a new device model has been pro-

posed. 

 

2. CALCULATION METHOD AND MODEL 
 

The electronic band structure of graphene was calcu-

lated very early on [7]. The valence electrons of carbon 

atoms in graphene are sp2 hybridized with the remaining 

pz carbon orbitals forming an extended -electron system 

that is responsible for the low energy transport and opti-

cal properties of graphene. The bonding π-states form the 

valence band and the antibonding *-states form the con-

duction band. These two bands touch at six points, the so 

called Dirac or neutrality points show zero bandgap sem-

imetal characteristics whereas nano-patterning of gra-

phene sheet can open up a bandgap upto ~ 1.4 eV [8], de-

pending on the chirality of nanoribbon it can be Armchair 

or Zigzag. Armchair GNR (A-GNR) and Zigzag GNR  

(Z-GNR) shows semiconducting or semimetallic behaviour 

depending on the number of carbon atoms, N along the 

width of the nanoribbon [9, 15]. 

In general humidity sensing through GNR is a process 

of vapour (H2O) adsorption in graphene surface where the 

oxygen ion in H2O. In this paper we investigate the 

change in electronic transport in GNR due to H2O adsorp-

tion. The electronic transport calculations were performed 

by implementing non-equilibrium Green’s function 

(NEGF) formalism [10, 11, 15]. Ballistic current through 

GNR sheet considering self-consistent field imposed by 
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H2O molecules is calculated using Launder’s equation. 
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where, q  charge of electron and h  Plank’s constant. 

  
  is the Fermi function of left electrode and   

  is the 

Fermi function for right electrode. 
 

    
  

 

   (    
   )    

  

 

where,     Boltzmann’s constant.   
    is the electro-

chemical potential at left or right contact and  ( ) is the 

transmission spectrum. 
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Here,   ( ) is Retarded Green’s function where S 

and H are overlap integral matrix and device Hamilto-

nian matrix respectively. Self-energy terms are repre-
sented by   ( ) and   ( ) respectively for left electrode 

and right electrode. Here    represents Trace of a matrix 

and     [     
 ]  and     ,     

 -.    is an infini-

tesimally positive number. Matrix   and   provides the 

atomistic description of GNR which is dependent on 

tight-binding PZ orbital hopping parameter, previously 

calculated by Reich et al. [12]. In our simulation we have 

calculated Device Density of States (    ), conductance 

( ) and Electrostatic difference potential (   ) using 

following equations. 
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where,  ( ) is the electrostatic potential calculated from 

Poisson’s equation using finite difference algorithm and 

  represents two dimensional space coordinates(     )  
In our work the effect of vapour adsorption is modelled 

by change in tight binding hopping parameter and local 

effective potential using ab-initio study. The adsorption 

energies is calculated as 
 

     *          (            )+  , 
 

where,           is the total energy of GNR with an ad-

sorbed H2O molecule,      and      are the total ener-

gies of pristine GNR (semiconducting or metallic) and 

isolated H2O molecule respectively and m is the number 

of adsorbed H2O molecule.  

 

3. RESULT AND DISCUSSION 
 

For the adsorption of H2O molecule on semiconduct-

ing or metallic GNR, we have considered three adsorp-

tion sites, namely on top of a carbon atom (T), the centre 

part of carbon hexagon (C) and the middle point of C-C 

bond (B). For all of three configurations, we have ana-

lysed different orientations of H2O molecule and calcu-

lated adsorption energies (Table 1). The centre part of 

carbon hexagon of semiconducting GNR as an adsorp-

tion site is shown the most interaction with H2O mole-

cule in order to get the highest binding energy. In this 

paper, two charge transfer mechanism is being consid-

ered. Firstly, if the HOMO is above the Fermi level of 

pristine GNR (the dirac point), there is a charge transfer 

to GNR from adsorbate and if the LUMO is below the 

Fermi level, charge transfer will take place to adsorbate 

from GNR. Secondly, the charge transfer between adsorb-

ate and GNR can be partially determined by the mixing of 

the HOMO and LUMO of adsorbates with GNR, which is 

known as hybridization. Three orientations have been 

considered of H2O molecule with respect to GNR surface: 

starting from the O atom, the O-H bonds pointing up (u), 

down (d) and parallel to GNR surface. 
 

Table 1 – The adsorption energy is determined by the orientation 

of adsorbate (u  pointing up, d  pointing down and n  pointing 

parallel) and adsorption sites (C  center of carbon hexagonal, 

T  top of carbon atom and B  the center point of C-C bond) 
 

Posi-

si-

tion 

Orien-

tation 

Adsorption 

Energy,   (eV) 

Distance, 

d(Å) 

Charge Trans-

fer, ∆Q(e) 

C u 22.98 4.35 0.025 

C d 23.55 4.85 – 0.013 

C n 25.31 4.13 0.018 

T u 21.82 4.32 0.025 

T d 20.26 4.70 – 0.012 

T n 24.01 4.15 0.019 

B u 20.91 4.30 0.025 

B d 23.30 4.70 – 0.012 

B n 24.01 4.15 0.017 
 

However, all properties are seems to be invariant 

with respect to the rotation of the axis perpendicular to 

surface and the oxygen atom, therefore we have consid-

ered only the centre of carbon hexagonal (C) as adsorp-

tion sites. It is found in semiconducting GNR that when 

O atom points to the GNR surface, there is significant 

charge transfer to the GNR which is shown in Fig. 1 (a) 

and Fig. 1 (b) but, if the H atom points to the GNR sur-

face, there is little charge transfer to H2O molecule.  

 
 

                                      (a) 

 
 

                                         (b) 
 

Fig. 1 – (a) Highest Occupied Molecular Orbital (HOMO) (b) 

Lowest Unoccupied Molecular Orbital (LUMO) of semicon-

ducting GNR (orientation  d, adsorption site  C) 
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It is to be noted that the formation of HOMO and LUMO 

of H2O molecules and their orientations play an im-

portant role in charge transfer mechanism. It is found 

that HOMO is located mostly on the O atom where LU-

MO is mostly located on the H atom. A small mixing of 

orbital between adsorbates and GNR above Fermi level 

is found in pointing up and pointing parallel direction, 

which causes a charge transfer to GNR from adsorbates. 

However, there is also a stronger mixing with the orbital 

below the dirac point as they are close to energy level 

but this does not induce any charge transfer because all 

the orbitals are filled. In pointing down direction, a 

strong interaction is taken place between the surface of 

GNR and the LUMO of adsorbates below the dirac point 

as a result some charge is transferred to H2O molecule 

from GNR due to the mixing of orbitals. However, there 

is a strong interaction in orbital above the dirac point, 

but this does not induce any charge transfer as all the 

orbitals are empty above Fermi level. Again, in pointing 

parallel direction, there is a strong interaction in HOMO 

but at the same time, there will almost same interaction 

in LUMO. There will be a charge transfer from the H2O 

molecule to GNR, but, because of the interaction with 

the LUMO, it will be smaller. However, we focus only 

semiconducting A-GNR as we have found that in case of 

metallic GNR, the adsorption effect have a smaller im-

pact over modifying the electronic properties.  
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