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In the model of rectangular potential wells and barriers and the model of effective masses for an elec-
tron, using the exact solutions of the nonlinear cubic Schrédinger equation, a quantum-mechanical theory
of the stationary electronic spectrum and oscillator forces of quantum transitions taking into account elec-
tron-electron interaction in the Hartree-Fock approximation was developed.

The inclusion electron-electron interaction reduces the intensity of quantum transitions between the
first electron states and reduces the value of detected energy, it is shown by an example of a two-well plane
semiconductor nanostructure, that can function as an active zone of a quantum cascade detector.

Keywords: Quantum cascade laser, Quantum cascade detector, Electron-electron interaction, Cubic Schré-

dinger equation.

DOL: 10.21272/inep.10(6).06001

1. INTRODUCTION

In modern physics of semiconductor nanosystems,
both experimentalists and theorists pay considerable
attention to the study of physical processes occurring in
quantum cascade detectors (QCD) [1, 2] and lasers
(QCL) [3, 4]. Modern semiconductor compounds QCL
and QCD have a number of functional advantages and
features, including the ability to work in the infrared
range of electromagnetic waves and within the wave-
lengths that fall into the so-called "window of transpar-
ency" of the atmosphere. So the study of the influence
of dissipative processes, such as electron-phonon inter-
action, interaction with high-frequency electromagnetic
field, interaction with constant magnetic and electric
fields [5] is decisive in order to ensure the work effi-
ciency of mentioned nanodevices.

Problems of the studying the processes of electron-
electron interaction were considered mainly for open
nanosystems [6-8], which allows us to apply the theory
developed in these papers mainly to the QCL in which
the active band and the injector function as intercon-
nected within a single cascade, which was shown in
papers [5, 8]. Concerning the QCD, the active zone of
these nanodevices is separated from the rest of the cas-
cade (extractor) by a thick potential barrier, which is
due to the functional features of QCD [1, 2]. Taking
this into account, electron-electron interaction process-
es will conveniently to investigate by considering a
QCD separate active band in a closed nanostructure
model.

In the present paper, using the Hartree-Fock ap-
proximation, we obtain a model Hamiltonian that takes
into account the electronic interaction and obtains ex-
act solutions of the stationary nonlinear Schriédinger
equation. Using these solutions, the theory of station-
ary electronic states in two-element nanostructures is
developed, taking into consideration of electron-
electron interaction.
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2. NONLINEAR SCHRODINGER EQUATION.
ENERGY SPECTRUM OF AN ELECTRON

The plane closed two-well RTS (Fig. 1), which con-
sists of two layers-potential wells of the semiconductor
material In.Gai1-xAs and one layer — a potential barrier
of semiconductor material In:Gai-~As located in the
external environment is examined.
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Fig. 1 — Geometric and energy schemes of two-well RTS

We introduce the Cartesian system of coordinates
with the origin on the boundary between the external
environment and the surface of the input potential well
in such a way that its axis OZ will be directed perpen-
dicular to the RTS layers.

Applying an electron to a model of rectangular po-
tential wells and barriers with different effective elec-
tron masses in them (m,, m,), the effective electron

mass in the RTS can be given as:

m(z) =m, Z::O(H(Z—ZQP)—H(Z—22P+1))+ M
+m,(0(=2) +0(z —2,) —0(z — 24) + (2 — 23)) ,

The potential energy of an electron in the RTS is
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given by the equation:
3
U(z) = U(H(—Z) +2 0z —Zp)] ; )
p=1

where the coordinates of the boundaries of the RTS
environment are indicated (Fig. 1)

20=0;2 =b;2,=b+A; 2z, =b +A+b,, 3
6(z) = { 0,2<0, Heaviside step function.

1, z>0

The stationary wave functions and the energy spec-
trum of an electron in a closed RTS model are obtained
by solving the stationary Schrédinger equation:

H(2)¥(2) = E ¥(2), )
where
”e 1 8
H(Z)——E$%é+U(2)+Ueie(Z), (5)

Hamiltonian of the electron of a quasistationary prob-
lem.

The energy of the electron-electron interaction
U, ,(2) is based on the Hartree-Fock self-consistent
potential, as in the case of open nanosystems [6, 8]. In
this case U, ,(z) you can write in the form:

U,.(2)=[V, (e 2)|¥@E| d', ©)

where Vefe(z—z/ ) — the potential of electron-electron

interaction.
Considering the electron-electronic interaction un-
der these conditions is local

V, _ (z-2)= v8(z-2"), (7)

from equations (6) and (7) the known [6-8] expression is
obtained

/ NG, 2
U, (2) = [us(z-2) W) &' =o|¥@) . (8
The Schréodinger equation (4), taking into account

(5) and (8), takes the form known as the cubic Schro-
dinger equation [9, 10]:

—hjii3+U(z)+u\\P(z)\z ¥(z) = E ¥(2) (9)
2 0z m(z) 0z ’
where v - is the potential of the electron-electron in-

teraction, which is considered as a task parameter.

Given the explicit form U(z) and the presence of in-
ter-electron interaction only within the RTS, we obtain
the system of Schrédinger equations to find the wave
function W(z) of the stationary problem:
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2 g2
_h d2+U—E’j‘P(z):O,
2m, dz
—0<2<0, 2z53<z<+4o,
1 d? 2
-——-E+0|¥(2)| |Y(2) =0, 10
oy d2 ()]() (10)
2p<z<z, 2,5z<Zz,,
n d?

_T?+U—E+u“{’(z)‘2 J‘P(z)—o, z, <z<z,
m, dz

The solutions of equations (10) must satisfy the

conditions of the continuity of the wave function and
the density of its flow at all limits of the system

(n—>+0):
Y@, =Y.,
1 d¥(2) _ 1 d¥(z2) , 11)
m(z) dz |,_, L m(z) dz |,_, .
(p=0,1,2,3)
Equations of the system (10) can be brought to the
form:
2
dk}lgz)—;{g‘l’(z):o, —0<2<0, z3<z<+m,
dz
2
d ‘{Igz) () - L RWA(2) =0, 2, <2 <2, 2,<z<z,
oz E
d*¥(z) a
77 —;(12‘{’(2) —Eklz‘{’s(z) =0,z <z<z,
(12)
where
k[f _ 2myE _ 2m E
2 ’ 2 ’
h f : (13)
2_2m0U_ 2 2_2m1U_k12
0 hz 0> A1 hz
and taken into account, that

Y(E,z)=VY"(E,z); ‘I—’(E,z)‘2 W(E,z) =VY3(E,z) for sta-

tionary electronic states.

Considering the necessity of fulfilling the condition
of the finiteness of the wave function in the domains
(—0<z<0)U(z; <z<+w) the solutions of equations

(13) can be represented as:

W)= {‘PO(Z) = A, —0<2z<0 , (14)

Y, (z)=Ae ™7, 2z, <z < oo,

Within the RTS, the Schrédinger equation can be
reduced to the following form:
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20A,

(U—E){ 1+
Y(z) =

2
dL(gl) +¥(&) _g‘{ﬁ(gl) =0, The exact solutions of the equations (15) are known,
g, E they can be represented by dJacobi elliptic functions
¢ =kyz, 2z,<z<z, 2z,<z<z,, (15) sn(x,k ) [11]:
d¥(S,) @ g ’
200 g -———w((,) =0,
P R T Y
$o = 112, 2z, <z<z,.
E(E-20A,) -E E -vA, - JE(E -20A
‘I’(z):\/\/ ( vA,) sn (ka—AZ)’ v , o4 ( va,) . 2p<z<z, 2z,<z<z,
v \VE - JE@E -204)) VA,

20A,

From the boundary conditions (11) we obtain a dis-
persion equation, from which the stationary spectrum
of an electron E, is determined. Since the RTS is

closed, the condition of valuation must be fulfilled:
T [W(E,2)dz =1, an

together with the boundary conditions (11), which al-
lows us to determine all the coefficients

Ay, A, Ay, Ay, A, and hence the complete wave func-
tion of the electron:

W(E, 2) =¥, (E,,2)0(-2) +

P (B, [0-2,)-0E-2)]+, (8
p=1

+¥,(E,,2)0(z—-2,),2,=0

where the wave functions in the corresponding areas of
the RTS are determined by the relations (15) and (16).

3. DISCUSSION OF THE RESULTS

Using the developed theory, the calculation of the sta-
tionary electronic spectrum and the oscillators forces of
the quantum transition in a two-well closed RTS with
In, ;,Ga,,,As — potential wells and Inj,,Al,,cAs — po-
tential barriers with taking into consideration the influ-
ence between the electron interaction was performed. The
geometric parameters of the RTS: the widths of the poten-
tial wells: b =b, =5.3 nm, the thickness of the potential
barrier: A =3 nm . Physical parameters of the RTS: the
effective mass of the electron in potential wells
my, =0.046m, and barriers m; =0.089m,, respectively,
the height of the potential barrier U =516 meV, m, is
the mass of the free electron.

Calculations of the stationary spectrum E, and os-
cillator forces f, , of quantum transitions were per-

formed depending on the position d =8 +b, of the in-

ternal potential barrier in the total potential well. The
values of the parameter v were selected in relation to

U—E_lJ 1-,. 1+
an| 12— A) ¢1+2"A3 -1 U_E z <z<z,.
v ﬁ U-E 1+\/1+207A3

U-E

the energy value E =E /2

0.01E}, 0.1E,, E, . The results of those calculations and

calculations performed without taking into account the
electronic interaction are presented at the Fig. 2 a, b.
Fig. 2 shows, that for all values of the parameter v

the dependence E, = E (d) for the first two stationary

equal  to:

electronic states are qualitatively identical: each of the
dependences forms respectively one and two maxima
for the first and second states respectively. In this case,
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Fig. 2 — The dependences of the stationary electron spectrum
and the forces of oscillators of quantum transitions from the

potential barrier position d =b, +b,

06001-3

.(16)



I.V. BoYko, O.A. BAGRII-ZAYATS H.B. TSUPRYK, Y.M. STOIANOV

the calculated values of the energies of the correspond-
ing states for the same value of magnitude d are dif-
ferent, they increase with increasing value v . As can
be seen from Fig. 2a, for small values v, the calculated
dependencies are close to those calculated without in-
cluding electron-electron interaction. With increasing
v, the magnitudes of the energies of the first station-
ary state increase more than the energy of the second
stationary state, so the values of the energies of quan-
tum transitions between stationary states decrease.

To study the influence of electron-electron interac-
tion on the intensity of quantum transitions between
the first and the second stationary states of nanosys-
tems, dependences of the oscillator strengths of quan-
tum transitions f, =/f,(d) were calculated. Fig. 2b

shows that for small values v the oscillator’s force ac-
tually repeats the dependence calculated without tak-
ing into account the electron-electron interaction. Fur-
ther increase v leads to a significant decreasing of the
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oscillator force value, and the intensity of the quantum
transitions. Consequently, we can conclude that elec-
tron-electron interaction can act as a significant dissi-
pative factor, which in particular, in QCD can cause
deviations in the operation of the nanodevice not allow-
ing the detection of the required frequencies of elec-
tromagnetic waves and deducing the QCD of the coher-
ent state.

4. CONCLUSIONS

In presented paper, with the use of found solutions
of the stationary nonlinear Schriédinger equation, the
quantum-mechanical theory of stationary electronic
states and the forces of oscillators of quantum transi-
tions in a two-well closed plane nanosystem with the
influence of electronic interaction has been developed.

The electron-electron interaction causes a decrease
in the energy of the quantum transition and the inten-
sity of these transitions, it is shown in this paper.

EnexrpoH-ejIeKTPOHHA B3AEMOJIiA ¥ INIOCKUX 3AKPUTHUX
HAIIBIPOBIJHNKOBUX HAHOCTPYKTYpPax

I.B. Boiiro!, O.A. Barpiit-Basane?, I'.B. Hympuxk!, }0.M. Croanos!?

1 TeproninibCoKuli HAUIORAILHUL MmexHIuRul YHidepcumem imeni leana Ilynios,
8ysi. Pycora, 56, 46001 Tepnonins, Yipaina
2 JIBH3 «Teproninvcvrull 0epicasruil meouurull yrisepcumem imeri Isana Iopbauoscvrkozo MO3 Yipainuy,
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VYV Mopmesi MpsSIMOKYTHHX HOTEHINIAJBHUAX AM Ta 0ap’epiB Ta Moaesi epeKTUBHUX Mac [JiA eJIeKTPOHA, 3
BUKOPHUCTAHHAM OTPHMAHHUX TOYHHUX PO3B A3KIB HeJIHIMHOro KybGiuHoro piBHsHHA lllpeminrepa, po3suHeHa
KBaHTOBO-MeXaHIUYHA TEOpis CTAI[IOHAPHOTO €JIEKTPOHHOIO CIIEKTPY Ta CHJI OCIIMJIATOPIB KBAHTOBUX ITE€PEXO-
IiB 3 ypaxyBaHHAM eJIEeKTPOH-eJIeKTPOHHOI B3aemoxii y HabmmkerHi Xaprpi-Pora. Ha mpuknami gsosamuol
IJIOCKOT HAINBIPOBIIHUKOBOI HAHOCTPYKTYPH, 10 MOke (DYHKIIIOHYBATH AK aKTUBHA 30HA KBAHTOBOTO Kac-
KaJIHOTO JIeTeKTOpa MOKA3aHo, 10 BPpaXyBaHHA MisK eJIeKTPOHHOI B3aeMOJIil 3MEeHIIye IHTeHCHBHICTD KBaH-
TOBUX ITEPEXO/IIB MisK MEePIINMHU eJIEKTPOHHUMY CTAHAMHU TA 3MEHIIy€e BeJIMUNHY JIeTeKTOBAHOI eHepril.

Knrouori cnosa: Ksanrosuit kackaguuit mazep, KBaurosuit kackaguuit nerexrop, Esnexrpon-enexrporHa-

B3aemomisa, Kybiune pisasaus [pemxinrepa.
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