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Within the framework of the Kronig-Penny model, changes in the electron spectrum of a layered crys-

tal caused by intercalation are analyzed. Special attention is paid to both the geometric changes of the 

crystal and its energy characteristics during intercalation. The extraordinary behavior of the spectrum 

caused by the geometric intercalation factor is observed. 
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1. INTRODUCTION 
 

In nature, there are a number of so-called low-

dimensional structures or layered crystals which have 

sharp anisotropic properties. Such structures are packs 

of mono-atomic planes (packets) interconnected by 

covalent or ionic-covalent forces, whereas the connec-

tion between the packets is realized by much weaker, 

van der Waals, forces. Therefore, sometimes such 

structures are called quasi-two-dimensional structures. 

Among them, the most widespread are graphite, 

dichalcogenides of transition metals MX2 (Mo, Ta, Ti, 

W, Nb, Sn, Zr, Hf, V; X  S, Se, Te), compounds A3B6 

(A  Ga, In; X  S, Se, Te), and others. As an example, 

in Fig. 1a the layered crystal MoS2 is shown. Here, two 

packets, which are sets of monoatomic planes S-Mo-S, 

divided by van der Waals gap. GaSe takes the same 

shape, but with the Se-Ga-Ga-Se-packets. 

Important characteristics of the layered crystals are 

the packet thickness b and the distance a between the 

adjacent packets. For example, in MoS2 they are ~ 3 Å 

and ~ 6.5 Å respectively [1]. It has been experimentally 

established that in case of approaching the force of 

interaction between the layers (packets) to zero the 

layered crystals possess unique characteristics. Splen-

diani et al. [1] has found that in the case of a solitary 

layer MoS2 the quantum efficiency of its luminescence 

~ 104 times increased.  

This phenomenon once again emphasizes the ex-

traordinary manifestations of two-dimensionality and 

has a certain analogy with the unique properties previ-

ously found in well-known monocrystalline graphitic 

films [2]. 
 

 
 

а)    b) 
 

Fig. 1 – MoS2-type layered crystal: (a) pure (up to intercala-

tion) crystal and (b) intercalated crystal 
 

Various physical characteristics offers such a 

unique phenomenon of the layered crystals as interca-

lation or introduction of foreign atoms or organic and 

inorganic molecules into the van der Waals gap of the 

layered crystal [3]. Intercalation, in particular, can 

solve such an important problem as the creation (un-

like lithium-ion energy storage) of large-scale energy 

storage based on sodium and potassium. 

It is important to note some aspects of this phenom-

enon. As a rule, intercalated atoms fall into each van 

der Waals gap of the layered crystals. However, the so-

called n-stage ordering ( 1n  ) occurs (especially in 

graphite) when the intercalated atoms fill each n-th 

van der Waals gap [4].With a certain amount of inter-

calated atoms, the latter can form an ordered structure 

also in the van der Waals gap. 

Depending on the nature of the intercalated atoms, 

on their surroundings in the van der Waals gap, they 

can vary interlayer distances from 0.1 nm (in Li+-

intercalated compounds) to more than 5 nm. In the case 

when intercalated atoms are oligomers or polymers, 

such intercalated structures are called nanocomposites. 

The possibility of intercalation is also determined by 

the charge nature of the intercalated atom. Thus, in the 

chalcogenide intercalated compounds, the intercalated 

atoms are exclusively donor atoms or molecules, 

whereas in the graphite intercalated compounds, inter-

calated atoms can be both donors and acceptors. 

The intercalated layered crystals may be considered 

as superstructures, which are an infinite iterration of a 

primitive lattice on its period (in the case of a binary 

AB-system, this period is LA + LB, where LA, LB are 

the thicknesses of the A and B materials respectively) 

along the structure growth axis [5]. The layered crystal 

structure have similar AB-superstructure, in which A 

and B are the packet thickness and the thickness of 

van der Waals gap together with the intercalated atom, 

respectively. However, there is a difference in this 

analogy. The emergence of one-dimensional quantum 

wells and nanoheterostructures was the result of tech-

nological success, since the 70's of the last century. 

Modern epitaxial technology (metal-organic vapor dep-

osition, beam epitaxy) allow obtaining arbitrary na-

noscale thicknesses of materials A and B. In the case of 

the layered crystals, the change of a lattice parameter 

along the normal to the layers is the result of intercala-

tion, and such a change is exclusively a geometric 

change of the interlayer distance, since the thickness of 

the packet is practically unchanged. 

http://jnep.sumdu.edu.ua/index.php?lang=en
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On the other hand, such geometric factor is accom-

panied by changes in the energy spectrum both in 

quantum wells, superstructures, and in the intercalat-

ed layered crystal. Specific intercalated atoms (interca-

lated molecules)  can substantially change the potential 

of the interlayer space – both to increase and decrease 

it, and thus, change the degree of interlayer mixing.  

Such factors allow creating, in particular, the high-

effective energy storage based on potassium or sodium, 

as opposed to the lithium-ion storage [7]. 

 

2. MODEL 
 

The first descriptions of the electronic structure of 

quantum wells and superstructures were made [5-6] on 

the basis of the envelope function approximation. Fur-

ther theoretical models confirmed the conclusions of 

such an approximation, which gave not only a qualita-

tive understanding of the behavior of the electronic 

spectrum but also its agreement with experimental 

data. 

An analogy between superstructures and interca-

lated layered crystals allows us to use the conclusion 

[5] that the dispersion law in them inevitably must be 

determined from the transcendental equation 
 

  coskd = f E , (1) 

 

where in the case of intercalated layered  crystal k  is a 

quasi-momentum, d = a+b  is a lattice parameter 

along the normal to the layers ( a  is the interlayer 

distance, b  is the thickness of the packet). 

Equation (1) is valid regardless of the potential in-

side the primitive cell, but the function  f ε  essential-

ly depends on the form of such a potential. 

As noted above, an important consequence of the 

differences between interaction forces in the layer 

packet and interlayer interaction in a layered crystal is 

the fact that external compression mainly changes the 

width of the van der Waals gap. 

In the [8] the baric dependences of deformation coef-

ficients in graphite and A3B6-type layered crystals are 

presented. For axial, along with normal to the layers 

(along OZ), compression and hydrostatic compression p 

the deformation tensors have the following forms: 
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respectively. Here ijC  are elastic constants: 11 12C ,C de-

scribe the connection inside of the packets, and 33 13C ,C  

describe mainly interlayer bond. Since 11 12C ,C >>

33 13C ,C , then from Eq. (2), Eq.(3) it follows that in both 

cases the values of the coefficients zzu  coincide and 

equal 
2
13

1
zzu = p

C
 . 

The components of the deformation tensor in the 

plane of the layers are much smaller in comparison 

with zzu . Thus, the greatest effect of any mechanical 

action on the layered crystal is related with the change in 

 

 
 

Fig. 2 – Packets with intercalated atoms (at the top) and potential of the system (at the bottom) 
 

the width of the van der Waals gap at the practically 

invariable packet width. As the compression of the 

layered crystal increases, it becomes more and more 

isotropic [9]. For example, an increase of the low-

frequency mode   23 cm – 1 in GaSe at p  170 kbar 

up to 76 cm – 1 was a confirmation of this situation [9].  

In any crystal, an electronic spectrum determines 

its physical properties. The purpose of our work is a 

qualitative description of the phenomenon of intercala-

tion. To do this, we use the one-dimensional model of 

the layered crystal along the normal to it within the 

framework of the Kronig-Penny model [10], which is 

shown in Fig. 2. Here the barriers of thickness b , 

which simulate packets are separated by the van der 

Waals gaps a. We assume that intercalated atoms 

(molecules) fill each the van der Waals gap. The inter-

calation is accompanied by a change in the crystal size. 

Since such changes, as noted, practically does not 

change the thickness of the layers (i.e. b ), then in the 

calculations below we choose characteristic for a series 

of layered  crystals constant 8.0b  nm. 

It is known that the solution of the stationary 

Schrödinger equation, namely 
 

 
 

    
2

0
2

d ψ x
+ E V x ψ x =

dx
  (4) 

 

for a crystalline system, is  the Bloch function: 
 

      expψ x = u x jkx  (5) 

In Eq. (5)  u x  is the Bloch factor. 
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After substituting Eq. (5) into Eq.(4), for the Bloch 

factor we obtain the following homogeneous differential 

equation with constant coefficients  
 

  
2

2 22 0i i
i i2

d u du
+ jk k β u =

dxdx
   (6) 

 

Its solutions have the following form [11]: 
 

      1i 2iexp expi i iu x = A s x + B s x , 

 

where,  1i is = j k β  ,  2i is = j k+ β  are the roots of 

the characteristic Eq.(6). 

Thus, 
 

        exp expi i i i iu x = A j β k x + B j β + k x   (7) 

 

Here 1i =  corresponds to the interval 0,x a    of 

the potential well, in which 
 1

1 2

2m E V
β α =


  ( 1V  

is the level of the bottom of the well; the case of 1V = 0 

will be considered as the bottom of the well of the non-

intercalated layered  crystal), and 2i =  is the barrier 

interval in which 
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The unknown quantities in Eq.(7) can be obtained 

from the conditions of continuity and smoothness of the 

envelope at the boundary of the barrier-well and from 

its periodicity with the period d = a+b . In the ob-

tained system of linear equations, the values of A1, B1, 

A2, B2 will be non-trivial only in case when the deter-

minant formed from the coefficients of A1, B1, A2, B2 is 

equal zero. The expansion of such a determinant leads 

to the equation 
 

  
2

cos sin sin cos cos
2

2α + β
k a+ b = αa βb+ αa βb

αβ
   (8) 

 

Thus, this equation coincides with Eq.(1) in which 

in the case of Kronig-Penny model the  f E  is of  the 

concrete form. 

 

3. ANALYSIS OF ELECTRONIC STATES IN THE 

INTERCALATED LAYERED CRYSTALS 
 

Let us consider the solution of Eq. (8) with an em-

phasis on the parameters, which are important in the 

process of intercalation. The introducing of foreign 

atoms (molecules) into the van der Waals gap changes 

its size, а, and practically does not change the size of 

the packets, b . On the other hand, foreign atoms, de-

pending on their nature, can change the value of the 

potential of the well, 1V , namely both raise and lower 

it. The size of the interlayer distance, a, is a flexible 

parameter in the model consideration of the formulated 

problem. 

As stated above, we use the one-dimensional model 

Kronig-Penny. It should be noted that a similar model, 

in addition to the work quoted above [5], was used to 

study MQW structures [12], which are widely used as 

materials in the lighting industry, solar cells etc. MQW 

structures are a periodic set of pairs of materials with 

different electrical characteristics. Using the Kronig-

Penny model for their description, the authors in [5] 

analyzed the energy spectrum at different potentials of 

the barrier and of its thickness. 

The transcendental Eq.(8) was solved by using the 

Maple, Mathematica and Fortran software packages as 

a search for the graphic intersections of the left and 

right sides of this equation. Since the cosine is bounded 

by the interval  1,1 , its intersection with  Ef is 

possible only in such interval. In Fig.3 such intersec-

tions are presented, for example, for the parameters 

1.0a =  nm, 0.8b=  nm, 0 1.0V = eV, 1 0.2V = eV. For 

the ground state the intersection  f E  with 1 (A) cor-

responds to the bottom of the zone, and the intersection 

 f E  with – 1 (B) – to its top, and the energy distance 

between adjacent intersections  f E with – 1 (B – D) is 

the band gap between the zones of the ground and the 

first excited states. Similar contents have other inter-

sections for the higher excited states. 
 

                 
 

Fig. 3 – Dependence and graphical solution of Eq. (8). Its 

nontrivial solutions are possible in interval [-1, 1] 
 

The values of such intersections were obtained for 

each 1 0.2, 0.1, 0.0, 0.1, 0.2, 0.3V =    eV when the 

widths of the van der Waals gap were 

0.3, 0.4 0.5, 0.6, 0.7, 0.8, 0.9,1. 0a = , , i.e., it was taken 

into account both geometric factor and the energy fac-

tor induced by intercalation. 

The obtained two band gaps, i.e. those between the 

ground and the first excited zones, Eg1, and between 

two lowest excited zones, Eg2, as a function of the width 

of the well a  and of the potential 1V  in it,  are pre-

sented in Fig. 4. Their analysis shows that: 

• For the whole set of the values a , Eg1 is monoton-

ically decreasing function with the growth of the van 

der Waals gap 1V . A similar behavior of Eg2 for all 

values a  (except for 0.4a  nm, where Eg2 increases 

insignificantly) is observed; 

• For all fixed values of 1V , with the growth of the 

width a  of the van der Waals gap, Eg1 at first increases 

(up to 0.5a  nm), and then decreases; Eg2, on the 
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contrary, at  first decreases, reaches its minimum at 

the values a  where Eg1 reaches a maximum, and then 

increases; 

• For any value of the parameters 1a,V  the width 

of the allowed zone of the ground state is less than the 

width of the allowed zone of the excited state. This fact 

is clear from the point of view of the tunneling effect, 

according to which the tunneling of the electron from 

the ground state (and hence its blurring) is less than 

the tunneling from the higher states. 

It turns out that the growth of the bandgap width Eg1 is 

only in the case of those van der Waals gap widths a  

when the ground and first excited states are subbarri-

er. For those a  in which the first excited state becomes 

over-barrier, Eg1 decreases with the increase of a . 

Fig. 5 shows the dependence of electronic states on 

the potential 1V  of the well with the width of the pack-

age 0.8b=  nm and with the value of its potential 

0 1.0V =  eV for two values of the width of the well: 

0.3a =  nm and 0.7a =  nm. In the case of 0.3a =  nm, 

the first excited state is an over-barrier for all 1V ; 

whereas in the case of 0.7a =  nm, there is its transi-

tion from a subbarrier to an over-barrier state. 

 

 

 

a b 

 

Fig. 4 – Dependences of the band gap Eg1 (a) and Eg2 (b) on the width of the well a  and on the potential 1V  in it (width 

b  0.8 nm, and potential V0  1.0 eV) 
 

0.3=a  nm 
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0.7=a  nm 

      
1V   – 0.2 1V   – 0.1 1V   0.0 1V   0.1 1V   0.2 1V   0.3 

 

Fig. 5 – Dependence of electronic states on potential V1 of a well in the Kronig-Penny model with a packet width b  0.8 nm and 

with its potential V0  1.0 eV for the case of width of  well a  0.3 nm and a  0.7 nm. Dark areas are the widths of allowed bands 
 

4. CONCLUSIONS 
 

We considered the phenomenon of intercalation as a 

simultaneous manifestation of both the geometric 

change of the layered crystal and the variation of the 

van der Waals gap potential caused by the intercalated 

atom. The both factors depend on the characteristics of 

the intercalated atom – its size, charge state, interac-

tion with the crystalline matrix. The obtained results 

have established the monotonically decreasing nature 

of the  widths of the band-gaps with the increase in the 

van der Waals gap potential V1  at arbitrary values of 

its thickness a. In contrast, the dependence of the 

widths of such band-gaps with different fixed V1 on a is 

of nonmonotonic character. We will note that mechani-

cal compression can be an additional factor of the 

change in a, and therefore it can cause the unusual 

behavior of the gaps. 
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