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The paper addresses a two-dimensional problem of propagation and interaction of extremely short op-

tical pulses in the array of carbon nanotubes in the presence of external high-frequency electric field. In 

particular, the effects governed by the external electric field are studied and the dependence of pulses 

propagation on the initial distance between the centers of the pulses is investigated. 
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1. INTRODUCTION 
 

Carbon nanotubes are novel graphene structures, 

which demonstrate unique properties and attract 

strong attention of different research groups. The dis-

covery in 1991 by Dr. Sumio Iijima [1] caused great 

interest among researchers engaged in the creation of 

materials with unusual physicochemical properties. In 

particular, such nanotubes have high electron mobility, 

high strength, dependence of conductivity on nanotube 

geometry and different non-linear effects   2-6], which 

can have attractive practical applications. 

Last years it was found that, in addition to the other 

non-linear effects, carbon nanotubes allow an existence of 

electromagnetic solitary waves, which propagate through 

the material. At the same time, there is a very important 

question related to the study of the propagation dynamics 

of multi-dimensional optical pulse localized in all coordi-

nates, also called “light bullets”  7]. For example, in [8] 

one observed a stable extremely short optical pulses in 

Bragg medium with carbon nanotubes. The authors of 

Ref. [9] showed the possibility of a stable propagation of 

two-dimensional pulses without taking into account the 

external high-frequency electric field, which can have a 

significant effect on the extremely short pulses propaga-

tion in the system. 

In the paper, we consider the properties of two 2D 

extremely short electromagnetic pulses and study a 

dependence of the pulses propagation through the ar-

ray of carbon nanotubes on the parameters of the sys-

tem. Duration of the considered pulses is about 10 – 12 

sec and an amplitude of the external electromagnetic 

field is 106 V/m.  

At the same time, the problem, which associated 

with the external magnetic field, re-mains unsolved. 

 

2. BASIC EQUATIONS 
 

Let us consider the propagation of two extremely 

short electromagnetic pulses in a medium of 2D zig-zag 

array of carbon nanotubes. The geometry of problem is 

shown in Fig. 1. 

In the figure, the electric field is spread in the array 

of carbon nanotubes and external high-frequency elec-

tric field is governed by harmonic function: 

0 0sinexE E w t . 

The dispersion law for zig-zag carbon nanotubes is 

written as follows:  
 

2( ) 1 4cos( )cos( / ) 4cos ( / )s zp ap s n s n       , (1) 

 

where 2.7   eV, 3 / 2a b  with the distance be-

tween adjacent carbon atoms 0.142b   nm, and (pz,s) 

stands for a quasi-momentum with the momentum 

component along carbon nanotube axis pz and s  0,.., 

n. Different signs in the formula (1) specify valence and 

conductance zones, correspondently.  
 

 
 

Fig. 1 – Geometry of the problem 
 

From the geometry of the system and the dispersion 

law it follows that the Hamiltonian of electron system 

in the presence of an external alternating electric field 

(and /E A c t    ) has the following form: 
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where ,ps psa a  are operators of creation and annihila-

tion of electrons, correspondently, (0,0, ( , , ))A A x y t  is 

a vector-potential, ( )s p  is the dispersion law of elec-

trons (1), in which  an electron interaction in one unit 

is taken into account, and 0E  is an amplitude of exter-

nal electromagnetic field. 

Maxwell equations in two-dimensional case are 

specified as follows: 
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Notice that according to the considered problem, the 

diffraction spread of the laser beam in z direction is 

neglected. 

Finally, a standard expression for the current den-

sity is following: 
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j v p A t a a

c w
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where ( ) ( )s sv p p p   , N is the concentration of elec-

trons in nanotubes ( 12~10N  sm – 2) [10], and the 

brackets  stand for the average value with the non-

equilibrium density matrix ( )t , i.e. 

( (0) ( ))B Sp B t . 

Let us decompose the carriers speed ( )sv p  into 

Fourier series. Then, since distribution function (0)  

is even, one obtains: 
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(5) 

Consider the pulses by the use of effective medium 

approximation [11, 12]. Since spatial size of the pulse is 

essentially greater than the size of nanotubes and dis-

tances between them, we vary the electromagnetic field 

at the points such that the distances between the 

points have the same order as the size of nanotubes. 

Consequently, the rate of the electric current through 

the system is represented by a sum of the current rates 

over the nanotubes. 

The considered extremely short pulses are charac-

terized by a duration imp ; hence: 
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where rel  is a relaxation time of the electromagnetic 

field in the system of carbon nanotubes. In the case of 

extremely short pulses, the values, which appear in the 

Eq. (6), are the following [10]: pulse duration imp  is ap-

proximately equivalent to 10 – 12 sec, and the frequency of 

external field is 14 15
0 2 10 2 10w       sec – 1. 

According to the above-presented approximation, let 

us calculate an average speed (5) of the carries over the 

oscillation period of the electromagnetic field, and then 

substitute the result into the formula (4). Then, sum-

mation of the obtained value over s   and p  results in 

the following: 
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Finally, Maxwell equation (3) in the dimensionless 

form with respect to the obtained values is written as 

follows: 
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(7) 

 

 

Notice that in the sum, which appears in Eq. (7), 

coefficients kR  are decreasing while k  is increasing. 

Thus, it enough to consider the first non-vanishing 

terms in the sum, and the equation obtains the form of 

double sine- ordon equation   13]. In the theory of sine-

Gordon equation, the possibility of the pulses amplifi-

cation in presence of external alternating field has been 

demonstrated. In particular, the pulses with small am-

plitude are unstable and tend to increase their area up 

to   with the changing of 1sgn( )R , while such a 

changing follows the theory of self-induced transparen-

cy applied to the inverted medium. Below, we consider 

the influence of the sign of R1 on the propagation and 

interaction of coupled 2D pulses. 

 

3. NUMERICAL RESULTS  
 

The equations were solved using the cross-type dif-

ference sche e   14]. The initial pro-file of each pulse 

had a Gaussian form. 

Dynamics of two pulses and its dependence on the 

amplitude of external field is E0 were studied in the 

case of two-dimensional array of zig-zag carbon nano-

tubes (11,0) without impurities. The initial size of both 

pulses was 0.3 × 1.3 m. 

The evolution of the waves intensity E2 (x,y,t) is 

presented in Fig. 2. 
 

 
 

Fig. 2 – Intensity of two electromagnetic pulses at different 

time moments, while the amplitude of external field is 

E0  0.5·107 V/m: initial pulse form, where distance between 

the centers of pulses is r  1.008 m; (а) t  0.7·10 – 13 s; (b) 

t  2.0·10 – 13 s; (c) 2.7·10 – 13 s; (d) 3.0·10 – 13 s 
 

From Fig. 2 it follows that the dynamics of a couple 

of pulses essentially differs from the dynamics of a sin-

gle pulse. In the case of a single pulse spreading, the 

pulse splits into two pulses with substantially different 

amplitudes, however, in the case of two pulses, all en-

ergy is focused at the area of interaction between the 
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pulses, and a diffraction spreading over a couple of ex-

tremely short optical pulses has not been observed. 

Two pulses are joining, and the maximal intensity is 

moving from the centers of the pulses to their common 

central area. A comparison of Fig. 2c and Fig. 2d shows 

that in the presence of an external high-frequency field, 

the couple of pulses reach its equilibrium, and then the 

pulses begin spreading with saving their form. 

As indicated above, the resulting evolution of the 

electromagnetic pulses is determined by the sign of the 

following value: 
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A comparison of two cases depends on R1(E0) is pre-

sented in Fig. 3. 

From Fig. 3 it follows that in the case of 

sgn(R1(E0))  0 the curvature of the pulse is greater 

than the one in the case of sgn(R1(E0))  0 In addition, 

notice that the diffraction spreading at the edges of the 

pulse becomes stronger. 

The nature of the interaction between two extreme-

ly short optical pulses depends on the initial distance r 

between the centers of the pulses. In contrast to the 

previous figures, where r  1.008 m was applied, evo-

lution of the waves intensity with r  1.890 m is 

shown in Fig. 4. 
 

 
 

Fig. 3 – Cross-section of electric field of two electromagnetic 

pulses at the time moment t  3.0·10 – 13 s: (a) E0  0.5·107 V/m 

(sgn(R1(E0))  0); (b) E0  2.5·107 V/m (sgn(R1(E0))  0). 1 r.u. 

along x-axis corresponds to 370 nm, 1 r.u. along E-axis corre-

sponds to 107 V/m 
 

Note, that for Fig. 4A the curve (b) is shifted to the 

left for clarity. The figure shows that one pulse with 

smaller amplitude spreads after the main pulses. The 

diffraction increases at the boundary of the interaction 

pulse and leads to the pulse profile distortion. Howev-

er, because of the pulse merger at the next time mo-

ments, diffraction weakens. In the case of 

sgn(R1(E0))  0 (see Fig. 4B), diffraction spreading is 

more pronounced as for the main pulses, and at their 

boundary interactions. 

In general, the observed propagation of 2D pulses is 

steady, and their curvature can be controlled by vary-

ing the amplitude Е0 of the external electromagnetic 

field. By such a control, the resulting diffraction is ei-

ther compensated or amplified by effective nonlineari-

ty, which depends on the sign of R1, and so – on the 

amplitude of the field Е0.  

 
 

Fig.4 – Electric field of two electromagnetic pulses at the time 

moment: t  3.0·10 – 13 s: (A) longitudinal section (E0  0.5·107 

V/m): (а) r  1.008 m; (b) r  1.890 m; (B) cross-section 

(r  1.890 m): (a) E0  0.5·107 V/m): (b) E0  2.5·107 V/m. 1 r.u. 

along x-axis corresponds to 370 nm, 1 r.u. along y-axis – 

300 nm, 1 r.u. along E-axis – 107 V/m 

 

4. CONCLUSIONS 
 

In the paper, we studied the propagation of 2D elec-

tromagnetic extremely short pulses through the zig-zag 

array of carbon nanotubes in presence of external electro-

magnetic field. We obtained the appropriate equations, 

which govern the pulses dynamics, and conducted numeri-

cal experiments, which demonstrated the evolution the 

system. 

As a result, the following two main observations re-

garding the considered pulses (“light bullets”) were ob-

tained: 

1. While initial distance between the centers is small, 

the pulses lead to join, so that the pulse with smaller am-

plitude is not observed. However, while this distance is 

relatively large, each “light bullet” is divided into two “bul-

lets” with different amplitudes, along with large dif-

fraction spreading. 

2. The propagation of 2D electromagnetic pulse in the 

carbon nanotubes is stable, the pulse is localized in both 

two coordinates. 

The obtained properties of 2D electromagnetic pulses 

in carbon nanotubes can be useful for fabrication graphene 

structures and devices for spot transmission and amplifi-

cation of extremely short optical pulses. 
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