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Silicon whiskers with doping concentration of 2 x 1018 cm-3 were chosen to investigate magnetocon-
ductance in the range of 0-14 T at cryogenic temperatures under compressive strain up to —2 X 10-3
rel. un. The whiskers were doped with boron during the growth process by chemical vapor deposition
method, and the concentration of charge carriers, according to Hall studies, was about 2 X 108 cm-3. The
uniaxial strain of whiskers was carried out by fixing them to the substrates using thermal strain due to
the difference between the coefficients of thermal expansion of the crystal and the substrate material. Lon-
gitudinal magnetoresistance for unstrained and strained Si whiskers was studied in the temperature
range of 4.2 + 70 K. The unstrained whiskers have a quadratic dependence of the magnetoresistance on the
magnetic field induction. The strain leads to the appearance of negative magnetoresistance with sufficient-
ly large magnitude (up to 15 %). The possible reasons of the effect were discussed. The most probable rea-
son of negative magnetoresistance appearance is weak localization (WL) of the charge carriers. According
to calculations within the WL model, the coherence length L, and spin-orbit length Ls, are proportional to
T-053 and T-045, respectively. The latter one is closed to 7- 12 expected from the theoretical data for a two-
dimensional system. This fact is the evidence of the conclusion that conductance in Si whiskers mostly oc-
curs in the subsurface layers of crystals. Strain influence on spin-orbit splitting and the valence band spec-
trum was studied. As a result, the splitting of light and heavy hole branches was found under compressive
strain according to the k-p-method. The spin splitting energy for sub-band of heavy holes Aso was found to
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be 1.8 meV.
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1. INTRODUCTION

Theoretical and experimental studies of the magne-
toresistance of doped semiconductors indicate that the
causes of its occurrence are substantially cut off for the
metal and dielectric sides of the transition of the metal-
dielectric [1].

The theory of quantum corrections [2] works on the
metal side of the transition, which operates on three
main phenomena:

e interference of electron wave functions on average
trajectories that describe the processes of weak lo-
calization [3];

e the coherent interaction of electrons in their diffusion,
that is, the interaction in the diffusion channel;

e short-term binding of electrons in superconducting
pairs, namely, the interaction in the coupling chan-
nel.

On the dielectric side, in the case of the transposition
of highly localized charge carriers, other mechanisms [4]
are used to explain the effect:

e taking into account the scattering of tunneling
charge carriers at intermediate centers;

e narrowing of the impurity band in a magnetic field;

e gspin effects [5, 6].

Experimental confirmations of the contribution of the
phenomena described above to the field dependences of
the magnetoresistance were obtained in the investiga-
tion of the charge carrier transport in filament-shaped
crystals on the basis of silicon with an acceptor impuri-
ty concentration corresponding to the proximity to the
metal-dielectric transition from both metal and dielec-
tric sides [7, §].

However, the influence of strain on spin-orbit (SO)
splitting in silicon in the vicinity to MIT is insufficient-
ly studied. As shown by Bir and Picus in silicon [9], the
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influence of the SO interaction on the zone splitting is
manifested in significant deviations and nonlinear
growth of Aso under strain.

Significant SO interaction reduces the symmetry of
electron wave functions in the region of hopping con-
ductance. Using strain as a sensitive tool for the influ-
ence on the structure of the impurity band, which oc-
curs in the region of cryogenic temperatures, one can
obtain important information on the characteristics of
the low-temperature charge carrier transport in such
crystals.

2. EXPERIMENTAL PROCEDURE

The p-type silicon microcrystals were chosen as the
object of investigation with boron concentration corre-
sponding to the dielectric side of metal-insulator tran-
sition of 2 x 108 cm —3. Electrical contacts were estab-
lished by pulse welding using the method described in
[7], which provides the necessary ohmic contacts. Con-
ductivity was studied at a temperature of 4.2 K. For
these studies, crystals were cooled to liquid helium
temperature in the helium cryostat. The temperature
was measured by using the Cu-CuFe thermocouple
calibrated with CERNOX sensor. The magnetic field
effects of the whiskers were studied using the Bitter
magnet with the induction to 14 T and the field scan
time of 1.75 T/min. Stabilized electric current along the
whisker was created by the current source Keithley 224
in the range of 1-100 pA depending on the crystal re-
sistance. CERNOX sensor was used for magnetic
measurements, in particular for its thermostabiliza-
tion. It is weakly sensitive to magnetic field induction.
The change of its output signal in the field with induc-
tion B= 15T is about 1 %.
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3. EXPERIMENTAL RESULTS

The p-type silicon whiskers with boron concentration
of 2 x 1018 cm~3 were chosen to investigate magneto-
conductance in the range of 0-14 T at 4.2 K under com-
pressive strain up to — 2 x 10-3 rel. un. The longitudi-
nal magnetoresistance for unstrained and strained Si
whiskers is studied and presented in Fig. 1. As evident
from Fig. 1, the unstrained whiskers have a quadratic
dependence of the magnetoresistance on the magnetic
field induction. The strain leads to the appearance of
negative magnetoresistance with sufficiently large
magnitude.
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Fig. 1 — Longitudinal magnetoresistance of Si whiskers at a
temperature of 4.2 K for samples: 1 — unstrained; 2 — strained

The possible reasons for the effect are a) a strongly
defective whisker structure; b) the presence of magnet-
ic impurity; c) size effect; d) week localization (WL).
The whiskers have perfect crystalline structure of vol-
ume and surface according to their growth conditions
by VLS mechanism.

They have no any magnetic impurities, which was
investigated by diamagnetic magnetization like that of
bulk silicon. Due to large whisker dimensions (of about
30 um in diameter), the quantum size effect is hardly
responsible for the observed negative magnetore-
sistance. The main reason for the effect is WL of the
charge carriers.

4. DISCUSSION

We proposed to use the WL model to describe the
behavior of the whisker magnetoconductance. The
magnetoconductance Ao(B) normalized by Go can be
presented in the form [10]:

solt)_olBe) (b,
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where f1is the factor of Maki-Thompson correction, B is
the magnetic field induction. Therefore,

G, =e*/2rxh, )

where Go is the quantum conductivity, f(x) is expressed
through the digamma function W(z)

J. NANO- ELECTRON. PHYS. 11, 02019 (2019)

f(z):‘lf[%+lj+ln(x). @

X

The parameter H, is connected with the electron
dephase time 7,, of the electron wave

2
¢ 4eDr,

4)

Accordingly, the parameter Hs, correlates with the spin-
orbit dephase time 7so

H, - fic ,
4eDr,,
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where D is the diffusion coefficient, ¢ is the velocity of
light.

The conductivity fluctuation of Ac(B) in the magnet-
ic field has been outlined based on experimental de-
pendencies of Si whisker magnetoresistance in a mag-
netic field using the following equation:

sc(B) o(0)(AR(B) .
G, G, [R(O) +(uH) J ©

where H is the magnetic field intensity, x is the Hall
mobility.

The obtained magnetic field dependence Ao(B) (see
Fig. 2) matches the theoretical one.
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Fig. 2 — Longitudinal magnetoconductance in Si whiskers at a
temperature of 4.2 K. Solid line corresponds to the theoretical
data, while circles denote experimental ones

As visible from Fig. 2, experimental and theoretical
data coincide very well at a temperature of 4.2 K that
allows us to determine H, and Hs parameters. The
obtained mentioned parameters allow to calculate the
coherence length (L,) and spin-orbit length (Lso) using
the equations

2 e
L P :DT(/, = 4%H(P
(7
I’ =Dr,=42H,
C

L, and Ls temperature dependencies in Si whiskers
have been calculated from (7). For one- and two-
dimensional systems the coherence lengths L, are pro-
portional to temperature as T-13 and T-95, respectively
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[11]. Coherence length Ly and spin-orbit length Ls are
proportional to 7-953 and 7945, respectively. The latter
one is closed to T-12 expected from the theoretical data
for a two-dimensional system. This fact is the evidence of
the conclusion that conductance in Si whiskers mostly
occurs in the subsurface layers of crystals.

According to D’yakonov-Perel spin mechanism [12]

dL,, =212, ®)

where d is the diameter of the whisker, Lo is the spin
processing length, Q is the spin processing frequency at
spin-orbit interaction. Spin processing length has been
calculated using the obtained data according to (8) and
the value of Lo =65 nm has been defined. Taking into
account the equation:

h
L, = — 9
? om'a ©

and the effective mass derived from [13], the Rashba
parameter a was found to be a=5x10-15eV x m,
which is in agreement with the literature data in Si
quantum wells 4 x 10-15 eV x m [14]. Substituting the
magnitude of wave number kr=5 X 108m~-1 [15] and
the Rashba parameter « into

Agp =2kpa, (10)

the spin splitting energy Aso can be obtained, which, in
this case, was found to be equal to Aso = 1.8 meV.

4.1 Theoretical-group Aspects of Strain
Influence on Spin-orbit Splitting on the
Valence Band Spectrum

Let us consider the strain removal of the degenera-
cy of the band spectrum of Si at the point I', the mutual
influence of strain and spin-orbit splitting within the k-
p-method of perturbation theory, generalizing the well-
known consideration [16] to arbitrary strains, and, dis-
tinguishing geometric and theoretical-group aspects of
the theory. The concept of strain potential was intro-
duced from the very beginning of the development of
the basis of the band theory of solids by Brillouin [9] to
describe the electron-phonon interaction. In the case of
small strain, its influence is regarded as perturbation.
The strain tensor ¢ is generally defined as the change
of the metric space tensor gij in the associated (object-
related) coordinate system:

gij = 1/2 (gij — y). (11)

We denote by D(¢) the group-group representation,
which transforms the strain tensor. Such a schedule is
the basis of the canonical decomposition of the strain
tensor itself, as the basis of the group-group represen-
tation on a ball (isotropic) part and a deviator (aniso-
tropic non-chip part):

g; =1/38p(e) 9; + (¢; =1/ 38p(e) 3;), (12)

where Sp(e) = 3¢, is the strain tensor shaft. In un-

strained Si crystals, due to the point symmetry Op of
their crystalline lattice, without spin-orbit interaction
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and spin, the energy spectrum of the valence band has
a triple degenerate maximum in the center of the Bril-
louin zone-point I'. The wave functions of an arbitrary
quasiparticle at this point, with this approximation,
must have the symmetry of the irreducible representa-
tion of I's5'. Given the spin, this symmetry corresponds
to a six-degenerate energy state. As is well known [16],
significant spin-orbit interaction reduces the symmetry
of wave functions of a quasiparticle. The representation
I's5' becomes a condensation, which leads to a partial
degeneration at this point: the band spectrum has a
quadruple degenerate maximum, taking into account
the spin. The group of wave vectors is the sum of irre-
ducible representations of I'7t +I'st. In the group-
theoretical group, the perturbation of the symmetry of
a crystal can be represented as the result of a direct
product of the initial representation and representa-
tion, according to which perturbation is converted:

I'ss' x DA2) = T'7* + I's*, (13)

where D@/ ig the perturbation due to spin-orbit inter-
action (taking into account spin irreducible representa-
tion), I'st is the quadruple degenerate level; I'7* is a
two-dimensional (by spin) level that is spin-orbit split-
ted into the energy gap Aso; x is the direct multiplica-
tion of the corresponding composite and irreducible
representations.

From the group-theoretical point of view, strain dis-
turbance can be included in two ways. The first method
takes into account first the spin-orbit interaction, that
is, accounts the strain which is already in the partially
withdrawn degenerate state I'7* + I's*

(T'25' x DA2)) x D(e) = ('s* + I'7*) x D(e) =
= Ts*x D(e)) + I'7*. (14)

Under the influence of general strain (second rank
symmetric tensor), only the central symmetry and spin
degeneracy will remain in the point group of the crys-
tal, and, accordingly, all irreducible representations
will be connected and all degenerations (except for two-
dimensional spin) will be removed. In particular, the
I'7* strain of the crystal is not able to influence the spin
degeneracy of two-dimensional states. In fact, in this
method, strain removal of degeneration is investigated
only twice (without spin) of the degenerate level of I's*:
the splitting of the branches of the light and heavy
holes. The influence of strain and spin-orbit splitting
cannot be studied in this way. The spin-orbit split zone
of the I'7* shifts as a whole only with the general
change in the bandgap width. Thus, this corresponds to
a two-zone approximation in the k-p-method of pertur-
bation theory.

The strain genesis of the valence band in this way is
shown in Fig. 3.

This is marked by 6E strain splitting of the branch-
es of the light and heavy holes.

According to the second method of strain inhibition
and spin, the orbit interaction is taken into account sim-
ultaneously in the initially non degenerate state of I'25*:

(T'25' x DA2) x D(e) = (T's* + I'7*) x D(e)
(T'25' x DA2) x D(e) = (I's*x D(e)) + I'7*.  (15)
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Fig. 3 — The strain genesis of the valence band in a two-zone approximation
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Fig. 4 — The strain genesis of the valence band in a three-zone approximation

This method allows to simultaneously investigate the
influence of strain and spin-orbit interaction. It corre-
sponds to a three-zone approximation and is more com-
plex from the design point of view. The strain genesis of
the valence band in this way is shown in Fig. 4.

2

/ 2
H(e) = % HVex)+ h VV(ex)[p(e)o],  (16)

m2c*

where p = —iziV is the momentum operator, o=(q;,0,,0;)

is the Pauli matrix, V(e, x') is a self-consistent periodic
potential in the new strained (accompanying) axes of the
coordinate x' of the strained crystal. The operator H(g)
differs from the Hamiltonian of the unstrained crystal by
the substitution of the operator p with p'(e) and the poten-
tial V(x) with V(e, x"). The Pauli matrices do not change
with strain, since they are the basis of the spinor repre-
sentation of the SU(2) group, which obviously does not
depend on the strain of the crystal. At first glance, the
main perturbation is to change the potential Ve, x') for
strain, but it is not true in the case of degenerate zones.
Consider the perturbation within the linear theory of in-
finitesimal strains. An infinitesimal strain does not affect
the basic coordinate system x=x' and the conditions for
preserving the periodicity of the crystal lattice are trivial.
In the non-relativistic approximation in this case, the ma-
trix elements of perturbations include only the following
additional members associated with the strain:
Henm = Y5 Vimm & = Yij Diimm &ij, an

where Dipm is the strain potential.

In the cubic crystals in the center of the Brillouin zone
in accordance with the rules of selection, this relation be-
comes dependent only on the scalar part of the strain

Hewm = Dinm Sp(&‘), (18)

and since the perturbation matrix is actually a scalar,
the result of the strain effect on the energy spectrum in
the vicinity of the extremum can be only the general
displacement of the degenerate zone. Thus, the degen-
eration of degenerate zones is possible only within the
theory of finite strains, which change the basic coordi-
nate system. Let's also comsider the well-known meth-
ods, which are based on the decomposition of strained
disturbances of eigenfunctions to the first-order ele-
ments of the strain tensor in the form:
0, (m|V,|n)

?,(x) =@, (%) +Zij£i]‘ " g _g_

n m

(19)

where the sum is taken for all states m at En # En.
The average position for the i-th particle in a strained
state is determined by the following expression:
(¥') = N, P y'dy (20)

or, after integration,
(v)=(x'), +

24| € <Xl>0 + &4 Lmn

<n|xi Im><m | Vi |n> - (2D
E,-E,

In accordance with the selection rules for aniso-
tropic part of the strain, all matrix elements in the cen-
ter of the Brillouin zone are zero.

4.2 Calculation of the Energy Spectrum of the
Valence Band in a Two-Zone Approximation

In the general case of degeneration at the extremum
point, the energy spectrum is determined by the solu-
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tion of the secular equation for a strainably perturbed
Hamiltonian

Det|H;(k,2) - E(k, )5,

=0, (22)

the degree of which is determined by the symmetry
(irreducible representation) of the investigated level
relative to the group of the wave vector and depends on
the multiplicity of degeneration of this level in the ex-
treme point of Hamiltonian

H(k.e) = (A — 5/4B) K20 + (a — 5/4b) Sp(e) I + X, (B’k? + be,)d.” +1/\3Y,(D’kk; +de)[ 3., ],

where A, B, D are the standard zone parameters, a, b,
d are the constants of the strain potential, J; is the
angular momentum matrix, I is a unit matrix, [x] is the
vector multiplication.

The angular moments on this basis have the form

0 i8/z2 0 0
5 372 0 i 0
! 0 - 0 372
0 o 372 0
0 Bz 0 0
B2 o 1 0
J, - . @)
0o -1 0 B2
0 0 Bz o
3/2 0 0 0
0 1/2 0 0
J, =
o 0 -1u2 0
0 0 0 -3/2

The proper values of the Hamiltonian remain twice
degenerate in spin, and therefore the secular equation
in this case has at most two different solutions. For the
solution of the secular equation, we use the method of
the characteristic polynomial

E2=1/4Sp(Ha) = B*(L,k7) +1/2C°%

+|DdY, k| +1/2

In this relation, in addition to the known spectrum
(4), the necessity of a positive definiteness of the right-
hand side in arbitrary strains is taken into account.

b2 (3Zi5ii2 —(Sp(s))z) +d? 1 €%
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Hk,e) =Y a3 f (ko)X (23)
1 i

where constants a: provide the Hermitian H(k, ). In
accordance with the scheme of the strain genesis of the
valence band at point I' (see Fig. 3), strain disturbance
is included in the already considered spin-orbit interac-
tion in the Hamiltonian (two-zone approximation) rep-
resentation

L # J, (24)

H=Hs+HaI, Hs=SpHa=0,

H. = E, = Ak? + aSp(e). (26)

From such a schedule, the sufficiency of finding on-
ly the eigenvalues of the non-observable part of Hq fol-
lows.

Since SpHq =0, then characteristic polynomial has
a form:

E?+ @2(Ho) =0, 27
where
Sp(Hd?) = — 4¢2(Ho). (28)
Let us denote
Huk, €)= R+1/438S, (29)
where
R = 3, (B} + be;) I, (30)
S=X.(Dkk; +dey)[II; ], i)
Then

Sp(Ha?) = R2+ 1/3 S2 (31)
and after the transformations we obtain:
kR + | Bb(3 ke, — k? Sp@) +

i#j. (32)

Thus, the full range of holes in strained Si by the
first method (two-zone approximation) is equal to:

Ei(k,e) = AR? + a Sp(e) — (-1)! \[Eur |2, 142, , 1= 1,2; 3= Eum — Ao+ AR, (33)

where Ber = B2 k*+ C2(k12 ko2 + k12 k3? + ko? k3?),

i =Bb (3(k’s, + ks + k6y,) ~K*Sp(e)) +2Dd (kikysy + kkosy + okt ),

Be = 522) (61, — )" + (g — ) + (3~ ,)°) + @2 (602" + s +2”), 2= D2 3B,
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In formula (24), the term Sp(e) defines a displace-
ment of the valence band as a whole under the influ-
ence of a hydrostatic pressure and changes only the
band gap width, and the term Ee defines the splitting
of the zone at the point k& = 0 by the value

SE = 2.[E, . (34)

The values of the band parameters A, B, C in units
of A2%/2m and spin-orbit splitting are equal to 4.27,
—0.63, 5.03 and 1.8 meV, respectively.

It is known [17] that in practically significant cases
of mechanical value sensors, filamentous crystals are
usually in a uniaxially stressed state along the direc-
tion [111] (uniaxial stress ¢ || [111]) and the strain
tensor for this case in the coordinate system of the
strained whiskers has the form:

1 0 0
gp=¢|0 —v,, 0 |. (35)
0 0 -—wv,

where ¢ is the magnitude of the longitudinal strain of
the whiskers, that is, the strain transmitted to the
crystal in the sensors, v,;; is the corresponding Poisson

coefficient, which is the same for all directions perpen-
dicular to [111]

ve v :1/2(cn+2c12)—c44 36)
1 ¢ +2c,+¢Cy

where c11, c12, caa are the elastic constants, for silicon
v ~0.1838.

In the relations describing the energy spectrum in
strained crystals, the strain tensor is tied to the crys-
tallographic coordinate system. Using the transfor-
mations, we obtain the form of ¢ | | [111] in these axes:

nhorvo v
epn=€\v n vl (37)
yor o n
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The numerical values of y and y: coefficients are
0.394 and 0.211, respectively.

For such a form of strain, expressions describing
the energy spectrum are somewhat simplified:

Eik, ) = AkR2 + ane — (- 1) x
X \[Zp+ | YDA 7Y (k) | +3yd  (38)
E3 = ESO =— Aso + Ak2.

As can be seen from relation (38), in the two-zone
approximation, strain splitting of zones of heavy and
light holes does not depend on the sign of strain in e:

OE = 2ylde]. (39)
At E — 0, £ £ 0 we have the asymptotic expression:

Egi(k, &) = AR? + ape — (— 1)I x
x ( 7 |de | —signum(e) DY kke; 1143 ) (40)

In accordance with the relation (40), the isoenergy
surfaces look like ellipsoids only when E << §E, that is,
at low temperatures and significant strains. None of
these cases in the overwhelming majority of semicon-
ductor sensitive elements of mechanical sensors is not
realized.

4.3 Peculiarities of the Influence of Strain
on Spin-Orbit Splitting in Silicon

In order to take into account the spin-orbit splitting
zone (I = 3) having the symmetry of the representation
of I'7*, a known nonlinear strain of the energy spectrum
approximation in the vicinity of £ ~ 0 was obtained by
the method of invariant theory and corresponds to sim-
ultaneous perturbation of the 6-fold degenerate spec-
trum with symmetry I's5 '(three-zone approximation).

For this purpose we choose a simplified Hamiltoni-

an, respectively, in the direct product of bases Y. x o,

H(k, £) = Ak2I + aSp(e) I + 3%, ;(Bk* +bs;) (Jf ~1/ 3J2)+

+1/\BY, ;(Dkk; +de; )[JJ, |+ AI3%,d0, %), A=A, (41)

Here, the matrixes of the angular moments have a standard form

0 0 O 0 0 1 0 0 1
Ji=J0 0 =i, J2=|0 0 O], Js=1]0 0 O]. (42)
i 0 - 0 0 - 00

In the center of the Brillouin zone we have

H(0, £) = a Sp(e) I + 33Y, ,be;(J. —2/31%) +1/3Y, ;de; (3, ]+A/85,d,0,, i#j. (43)

The characteristic polynomial in such an approxi-
mation of the interaction has the form:

Eds® + ¢72(Ha)Ea — ¢73(Ha) = 0, (44)

where the scalar function @3(He) is determined by the
following invariant of the Hamiltonian matrix:

2077-6772/2019/11(2)02019(8)
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¢3(Ha) = Sp(Hd?). (45)

We denote the independent part of this Hamiltonian as
follows:

© 2019 Sumy State University
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Hua(e) =P+ 1/3Q+A/3Y,J.0,,

where
P=Y,a,(J7-2/31),
Q= Ziaii[JiJj]’ L#],

J. NANO- ELECTRON. PHYS. 11, 02019 (2019)
aii = 3beii , aij = 3de;j.
By analogy to expression (31) we have

Sp(Ho?) = — 4¢2(Ho) = Sp(P?) + 1/3Q2, (46)

where the following notation is introduced:

2
Sp(P?) = 3 ((“11 = Q)+ (0tyy — ) + (at _0‘11)2)’
SPQ)? = 4(a,” + a,” + ).

Sp(Ho?) = 6¢5(Ha) = Sp(P?) + % Sp(Q)+(A/3) Sp(J;0;)’ +4Sp(PQ?).

After the transformation we get

1 1

M) =— —A2- = ((0:11 —0lyy)? + (Al — Olgg)” + (g —a11)2) -1/ 3(0:122 oty + a132) ,

3 6

2 1 1 2
»(Ho) = ) (A/3)3 - 9 (0‘112 +ay,” +0‘332) + 97 (g + 0y + a33)3 3 0109033 _2/(3‘/5) Q0o30s,

1
+ 9 (0‘232(20‘11 Gty — Cty) + 0ty * (20t — 0ty —Qy3) + 0y ” (20, — 0y _%2))~

The roots of the characteristic polynomial are:
E1' = 2(¢2/3)Y2c0s(0/3),
Eo' = 2(¢2/3)Y2c0s(0/3 — 2/37), 47
Es' = 2(¢2/3)Y2cos(©/3 + 2/3 1),

where
0O = arccos(2@3(— ¢2/3) ~372). (48)

When starting energy from the zone of heavy holes,
the total displacements of all three zones under strain,
respectively, have the form:

EN0, ) = EY — A/3. (49)

In the case of whiskers with ¢ | | [111], the splitting
between heavy and light and heavy holes zones equals:

SE =2,[Z, +(A,,/3)* (cos(®/3) —cos(®/3+4/37)) (50)

-32(A,, 13)° | dys |
3/2
((a,78)7+2,)

® = arccos

Strain dependences of displacements and strain
splits of all three zones are calculated for e | | [111].
Initial shifts of the branches of the zones are also con-
ditionally reflected in the strain genesis of the valence
band, which was shown in Fig. 4. Significant increase
of spin-orbit splitting and fast saturation of 3E, as well as
insignificant dependence of shift of the light hole zone
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Cnin-opOiTasibHe pO3IIen/IeHHa BAJIEHTHOI 30HU B KPEMHI€BUX HUTKOIMIOAIOHUX KpUCTAJIaxX
mig giero medopmamii

Anaromit Hpyskuwnin, Irop Ocrposewbrmii, IOpiit Xosepro, Haramia Jlax-Karyit

Haujionanvruii ynisepcumem «/Ivgicorka nonimexuirkar, eyn. C. Bandepu, 12, 79013 Jlveis, Yipaina

MarHiTonpoBiAHICT HUTKOIIOMIOHUX KPUCTAJIB Si 3 KOHIIEHTPAINEn Jerywodol moMimeu 2 x 1018 cm -3
IOCITIKYBAIN B iHTepBaJsIi MardiTHuX moJriB 0-14 Ta npu kpioreHHnx TeMmepaTypax 3a gedopMaiiii CTUCKY
0 — 2 x 10-3 Bign. ox. JleryBanHs KpucTaiB 00poM 3IIHCHIOBAIM y IIPOIEC POCTY METOLOM XIMIYHOIO IIa-
podasHOro ocaayKeHHsA 1 KOHIIEHTPAIIIA HOCIIB 3apsy, 3riJHO XOJUIIBChKUX BUMIPIOBAHB, CTAHOBUJIA IIOPS/I-
Ky 2 x 1018 em—3. OgHOBICHY HedopMAalliio HUTKOIIOMI0HNX KPUCTAIB 3M1ACHIOBAJIN IILJIAX0OM iX 3aKpIIjIe HHS
Ha MIKIaJKaX 3 BUKOPUCTAHHAM TePMIYHOI JedopMarliil 3a paxyHOK PI3HHIN KoeiIieHTiB Te pMIiYHOro Po-
3IIMPEeHHS KpHCTaJia 1 MaTepiay migraagku. Jloc/mimaeHo MO3I0BKHIA MATHITOOIID A1 HeaeopMOBaHUX
1 mecpopmoBaHux 3paskiB Si B inTepBasi Temmepatyp 4.2 + 70 K. HemedopmoBani spaskyn MaoTh KBaapaTH-
YHY 3aJIeKHICTh MATHITOOIIOPY Bif IHAYKITI Mar"iTHOro 1mojsd. JedopMallia MpUBOOKUTE 10 IIOSBU BEJIUKOTO
BI'€MHOTO MATHITOOIIOPY 3 MAKCHMAJIBHOK BEJMYIUHOIO0 A0 15 %. OGroBopo0THECS MOKINBI IPUYUHH IIHOTO
ederry. Hait6ibmr BiporiqHoO MPUYXHOKN BUHUKHEHHS Bl €MHOTO MATHITOOIIOPY € CJIa0Ka JIOKAJIi3allisa Ho-
CliB 3apsay. 3rigHo 3 Po3paxyHKAMHU y MOAesIl cabKol JIOKaIi3allii HOCIIB 3apsamy IOKas3aHo, IO JTOBKHHA
KOrepeHTHOCTI L, 1 ToBxkuHA cIiH-0pbiTanbHOI B3aeMonii Ls, mpomopiritiaa 7'-0-53 1 7'~ 045, BinmoBigHo, 1o Bi-
JIIOBiZae TeopeTuyHUM naHuM 1'- 2 st neoBuMipHOi cucremu. le cBiqUmMTh TIPO Te, 110 OCHOBHUIM BHECOK Y
IPOBIAHICT, HUTKOMIOMIOHMX KPHMCTAJIB Si BHOCATH TPAHCIIOPT HOCIIB 3apsny y HPHUIIOBEPXHEBHUX IIapax
kpucrais. Jlocmimrerno BImB gedopMariii Ha CHOiH-0pOITAIbHE POSIIEIIEHHST Ta CIIeKTDP BAJEHTHOI 30HU
HUTKOIOMIOHUX KpHCTaiB. B pe3ysprari po3paxyHKIB 3rifHO K-p-MeTomy BHSIBJIEHO 3HAYHE DOSLIEILIEHHS
TUJIOK JIETKHUX 1 BAXKKHUX JIPOK i Jieio gecpopmartii crucky. OTprMaHO €Hepriio CIH-0pOITAJIFHOTO PO3IIer-
JIEHHS ITII30HU BAYKKUX JIPOK Aso, AKa CTAHOBUTH 1.8 meB.

Knrouori cnosa: HurtromomiGui kpumcramm Si, Maraitonposinaicts, CriH-opOiTasabHe pO3MIEIIEHHS,

Jledopmanrris.
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