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This paper presents an efficient method for recovery of SIMS signals from strongly noised blurred dis-
crete data. This technique is based on Tikhonov-Miller regularization where a priori model of solution is
included. The latter is a denoisy signal obtained using the Kalman filter. This is an interesting estimation
method, but it can only be used when the system is described precisely.

By comparing the results of the proposed technique with those of the literature, our algorithm gives
the best results without artifacts and oscillations related to noise and significant improvement of the depth
resolution. While, the gain in FWHM is less improved than those obtained by the wavelet technique.
Therefore, this new algorithm can push the limits of SIMS measurements towards its ultimate resolution.
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1. INTRODUCTION

Continuous developments in manufacturing technol-
ogies for microelectronic components imposes new re-
quirements for analysis techniques in-depth. In this
context, secondary ions mass spectrometry, SIMS, is
classified at the front range of techniques of characteri-
zation in-depth, because of its ability to detect all ele-
ments, high sensitivity, large dynamic range and depth
resolution. It is an effective and powerful technique for
analyzing almost any non-volatile material and for char-
acterizing very large and very thin structures [1-4]. De-
spite the considerable improvements carried out on
SIMS technique, development of SIMS analysis is not as
pronounced and rapid than that of manufacturing tech-
niques of materials. The depth resolution in SIMS anal-
ysis remains limited to meet the challenge imposed by
modern microelectronics. It is therefore necessary to
explore other ways to help the depth resolution to cross
its instrumental and physical limitations so that it is
synchronized with the needs of modern microelectronic
technologies. The most used way to achieve this object is
the signal processing. A prototype of this kind of signal
processing is the deconvolution procedure. This is to go
back to a better approach of the actual profile from the
experimental profile.

Deconvolution is a required operation in many signal
processing applications such as system identification,
spectroscopy, seismic processing, image deblurring, to
name a few. This is an active area of research with many
publications [2]. No universal algorithm has been devel-
oped so far. The reason lies in a diversity of applications
and in the intrinsic ill-posedness of the problem [5-8].

The deconvolution of depth profiling data in SIMS
analysis amounts to the solution of an appropriate ill-
posed problem in that any random noise in data leads
to no unique and no stable solution (oscillatory signal
with negative components, which are physically not
acceptable in SIMS analysis). Thus, the results must be
regularized.

The removal of noise and restoration of signals has
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been one of the most interesting researches in the field
of signal processing during the last years. Our algo-
rithm is an iterative algorithm, which is based on
Tikhonov-Miller regularization and a model of solution.
This latter is a denoised signal using Kalman filter, we
are interested in the idea of denoising the signal from
the measure, as a first step of treatment before apply-
ing other techniques of digital signal processing.

2. EXPERIMENTAL
2.1 SIMS System

The equation characterizing the SIMS system is as
follows:

Ya(t) = h(O) * x(t) + n(t) = y(©) + n(®), (D

where y,(t) is the noised output signal, A(f) is the impulse
response, x(f) is the input signal and n(?) is the noise.
In the Fourier space, this equation becomes

LD =HE.XO + N =Y +NK). @

Dividing the two members of this equation by H(f), we
obtain

o N()

X() = XN +55, ®
X(f) is an estimate of X(f) obtained by dividing ¥, (f) by
H(f). The noise takes on all its importance in this equa-
tion; X(f) is composed of the real profile X(f) plus the
noise N(f) strongly amplified by the term H -(f). There-
fore, X(f) has a "saturated" noise spectrum at high
frequencies and its image X(t) in the time domain is
highly oscillatory and unstable signal.

Unfortunately, a signal is corrupted by various fac-
tors which produce a noise during acquisition or
transmission. These noisy effects decrease the perfor-
mance of visual and computerized analysis. It is clear
that the suppression of noise from the signal makes the
processing easier. The denoising process can be de-

© 2019 Sumy State University


http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
https://doi.org/10.21272/jnep.11(2).02021

N. DAHRAOUI, M. BOULAKROUNE, D. BENATIA

scribed as to remove the noise while retaining and not
distorting the quality of processed signal or image. The
traditional way of denoising to remove the noise from a
signal or an image is to use a low or band pass filter with
cut off frequencies. However, the traditional filtering
techniques are able to remove a relevant of the noise but
they are incapable if the noise is present in the band of the
signal to analyze [9]. Therefore, many denoising tech-
niques are proposed to overcome this problem [10-14].

2.2 Denoising Using the Kalman Filter

It is an infinite impulse response filter that estimates
the states of a dynamic system from a series of incom-
plete or noisy measurements. Due to its effectiveness
and efficiency, the Kalman filter is one of the most used
algorithms in all areas of control systems. Many teach-
ing and research have been presented in this area. It is a
topic of discussion of different authors in several applica-
tion fields [15-19].

The strength of this filter is its ability to predict pa-
rameters and rectify errors, not only of the sensors, but
also of the model itself!

The operation of the Kalman filter can be divided
into two stages:

* The first step is to predict the estimation accord-
ing to the model of the system. To do this, the Kalman
filter takes the previous estimate of the parameters
and the error and predicts the new parameters and the
new error as a function of the system modelling.

* The second step will update the prediction with the
new measurements. These measurements, are noisy, will
make it possible to obtain an estimation of the parame-
ters and the error from the made prediction. If the model
has any errors, this update step will correct them.

This study is based on the formula of the Kalman
filter used in [21]. This filter can be applied to the sig-
nals of the following set:

fk derivates exists, (f @, f®, ... f("))\

Y(B, L) = 4 f: |f(k)(t2) f(k)(t1)| <Lt — 1% ¥ )
Yty t,a € (0,1]; |
B=k+a J

This filter is of the following form:
Fr(ty) = Fn(tiy) + 2 af™ (tiy) + g (Xo — AF™(8121)) (B)
In this study, we use the Kalman filter for £ = 0.

2.3 Proposed Algorithm

The iterative methods make it possible to approach
the desired solution by a series of iterations. Instead to
apply the direct deconvolution of the measured profile,
that is to say the inverse operation of the convolution,
first of all, it must be denoised with a signal denoising
technique (using the estimation by the Kalman filter),
and then restore it (to retrieve the original profile based
on the Tikhonov-Miller regularization). In our algorithm,
the idea 1s to introduce a model of solution, which is a
denoisy signal (F(t;)), using the Kalman filter.

This algorithm is iterative, its mathematical formu-
lation, in the Fourier space, is the following:
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be _ H'Y+a|D*Xmoa ,,
n+l |H|2+al|D|2

Xmoa, = TF[F(t)] - (6)
%, =TF7YX,]

3. RESULTS AND DISCUSSION
3.1 Denoising of SIMS Profiles
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Fig. 1 — Results of denoising: (a) original signal, (b) denoised sig-
nal by wavelet shrinkage, (c) denoised signal by Kalman filter

In this section, the denoising of the sample MD6,
which contains six delta layers of boron in silicon, using
two techniques (wavelets and the Kalman filter), is
presented.
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The wavelet denoising techniques offers high quali-
ty and flexibility for the noise problem of signals and
image. The wavelet transform (WT) is a powerful tool of
signal and image processing that have been successful-
ly used in many scientific fields such as signal pro-
cessing, image compression, computer graphics, and
pattern recognition [2, 20].

It results that the signal obtained using the wave-
lets follows the original profile by using this process;
high-frequency components above a certain threshold
can be removed. A raw SIMS profile and the corre-
sponding denoisy profile are shown in Fig. 1. In partic-
ular, this figure shows that low-frequency components,
which usually represent the main structure of the sig-
nal, are separated from high-frequency components.
These preliminary results demonstrate the superior
capabilities of the wavelet approach in SIMS profiles
analysis rather than the traditional techniques.

In this section the study is qualitative. While, in the
case of denoising by the Kalman filter, it is noted that
the second peak has disappeared. An important limita-
tion of such a method is that the Kalman filter makes it
possible to take into account only a Gaussian noise
model. The noise can generally be modeled by a Gauss-
ian model, but in some cases, another type of noise is
required (Poisson noise). This restriction limits the use
of the Kalman filter.

3.2 Deconvolution of SIMS Profiles

The results of the deconvolution of the sample MD6
(six delta layer) in logarithmic scales is illustrated in
Fig. 2.

The deconvolution of this sample gives a good im-
provement in depth resolution and recovery of the orig-
inal signal shape. The exponential slopes have been
completely removed giving well separated and symmet-
rical peaks. Compared with the results of the deconvo-
lution by Gautier’s algorithm [22], the profiles obtained
by our approach are smooth and without artifacts
which disturb the interpretation of the results ob-
tained.

Gautier proposes to apply an empirical local confi-
dence level deducted from the reconstruction error on
deconvoluted profiles. The goal is to separate the parts
of the original signal profile of those artificially gener-
ated by the inversion process (deconvolution artifacts).
In our view, a confidence level, that allows to take into
account certain parts of the signal and prevent others,
does not provide any information on the quality of in-
formation and does not find a meaning in the case of a
SIMS signal. One of advantages of SIMS analysis is the
high dynamic signal that limits the deconvoluted signal
to a dynamic, that does not exceed two decades, does not
reflect the original signal and the filtered parts by the
confidence level can provide valuable information on the
analysed sample.

Mancina [23] showed that the artifacts are not always
aberrations of the deconvolution, they may be struc-
tures but of low concentrations. An "artifact" that ap-
pears during deconvolution, can ultimately be an exist-
ing structure in the real profile, but it may be completely
hidden during the measurement or a poor distribution
of the dose due to the deconvolution method.
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Fig. 2 — Results of deconvolution of MD6 sample of boron in
silicon; (a) result of deconvolution using WT, (DRF1: 1q=19.8;
Au=8.16; 0z=17.3), (b) result of deconvolution using WT,
(DRF2: 24 =29.98; 1, = 10.74; 0z = 19.18), (c) result of deconvo-
lution using Kalman filter, (DRF2: As=29.98; 1. =10.74 and
oz =19.18)

The interpretation of the artifacts must be meas-
ured, especially if their dose is not negligible, and we
cannot eliminate them from the profiles. Analysis of
Mancina is very clear in our case, because we see the
presence of a more pronounced peak between peaks 5
and 6 to a depth of 190 nm in both cases of deconvolu-
tion (see Fig. 1a). The question that arises here is what
can be considered that this peak is an artifact?

The answer is clear: the fact that this small peak has
not disappeared like other artifacts located in depths of
110 and 145 nm (see Fig. 1b) when changing the DRF,
we can consider that this peak is not generated by the
analysis but it is an intrinsic characteristic of the sam-
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ple, so it is a full structure in which the concentration
is not negligible, at 9.1018/cm3. The interpretation of
the artifacts should be cautious, especially if their dose
is not negligible. It is important to report that we can-
not remove it automatically from the profiles.

In the case of the Kalman filter, one notices that the
deconvolved profile is totally devoid of artifacts. In
addition, the second peak does not appear. In a conven-
tional estimation method (for example, the least
squares method), a simple error in the modeling of the
system leads to an error in the estimation. The
strength of the Kalman filter is to integrate a term of
inaccuracy on the model itself, which allows it to give
correct estimates in spite of the modeling errors.

The strength of this filter is its ability to predict pa-
rameters and rectify errors, not only of the catch, but
also of the model itself!

4. CONCLUSIONS

This work focused on the improvement of depth res-
olution in secondary ions mass spectrometry. In this
context, an algorithm, based on Tikhonov-Miller regu-
larization and a model of solution, has been developed
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Hoga TexHoOJIOTiA e KOHBOJIIONII I BAOCKOHAJIEHH S INIMOUMHHU Pi3KoCTi
B MAaC-CIIEKTPOMETPil BTOPUHHUX 10HIB

N. Dahraoui!, M. Boulakroune?, D. Benatia!l

1 Electronics Department, Faculty of Engineer Sciences, University Batna 2, 05000 Batna, Algeria
2 Electrical and Automatic Department, National Polytechnic School of Constantine, 25000 Constantine, Algeria

¥V po6oTi 3aIpornoHoBaHO ePeKTUBHUI METO BiAHOBJIeHHsS curHaiis SIMS Bim CHIBHO POSMHUTHX IHC-
KpeTHux mmikiB. [lg meronuka rpyuryerbess Ha perynapusaiii Tuxonosa-Misepa, Je BKJIOYEHA alpiopHa
Mozesb poa3B’sasky. OcTaHHIN — 1@ IIyMONPUTHIYyOUWN CUTHAJ, OTPMMAHUN IIPM BUKOPHUCTAHHI (ijabTpa
Kanmana. Ile mikaBuii MeToq0M OIL[IHKM, ajie BiH MOe OyTH BUKOPUCTAHUMN TIIBKHU TOI1, KO MU MOKEMO

TOYHO OIIMCAaTH HAIIl 3Ppa30K.
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[TopiBHIOIOYM pe3yIbTaTH 3aIPOIIOHOBAHOI METOIWKHN 3 Pe3yJbTaTaMHU JITePaTypH, HAII aJITOPUTM JIa€
HaAWKpaI pe3ysabratu 6e3 apredakTiB 1 KOJIUBAHbD, MOB'I3aHMUX 3 IIIYMOM, 1 3HAYHOTO IOJIIIIIEHHS TJIHOWH-
HOTO aHAJI3y, Y TOH Yac K KOeMIIIeHT MICUIeHH MEHII MOJIINIIeHnH, HisK KoeIIlieHT, OTPUMaHUH MeTo-
oM BetBisieTiB. TakuM duHOM, 11eMf HOBUH aJITOPUTM MOIKE PO3ITUPUTH Mexki BumipioBaub SIMS no rpaunmd-
HOI PO3I1JIBHOI 31aTHOCTI.

Knouosi cnosa: Oinprp Kammana, Texmika mymompurHivenus, ['nmubmuni mpodini SIMS, Beiisier-
ycanka, Perynsipusariia Tuxonosa-Mintepa, [ymbuna piskocti.
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