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This paper presents an efficient method for recovery of SIMS signals from strongly noised blurred dis-

crete data. This technique is based on Tikhonov-Miller regularization where a priori model of solution is 

included. The latter is a denoisy signal obtained using the Kalman filter. This is an interesting estimation 

method, but it can only be used when the system is described precisely. 

By comparing the results of the proposed technique with those of the literature, our algorithm gives 

the best results without artifacts and oscillations related to noise and significant improvement of the depth 

resolution. While, the gain in FWHM is less improved than those obtained by the wavelet technique. 

Therefore, this new algorithm can push the limits of SIMS measurements towards its ultimate resolution. 
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1. INTRODUCTION 
 

Continuous developments in manufacturing technol-

ogies for microelectronic components imposes new re-

quirements for analysis techniques in-depth. In this 

context, secondary ions mass spectrometry, SIMS, is 

classified at the front range of techniques of characteri-

zation in-depth, because of its ability to detect all ele-

ments, high sensitivity, large dynamic range and depth 

resolution. It is an effective and powerful technique for 

analyzing almost any non-volatile material and for char-

acterizing very large and very thin structures [1-4]. De-

spite the considerable improvements carried out on 

SIMS technique, development of SIMS analysis is not as 

pronounced and rapid than that of manufacturing tech-

niques of materials. The depth resolution in SIMS anal-

ysis remains limited to meet the challenge imposed by 

modern microelectronics. It is therefore necessary to 

explore other ways to help the depth resolution to cross 

its instrumental and physical limitations so that it is 

synchronized with the needs of modern microelectronic 

technologies. The most used way to achieve this object is 

the signal processing. A prototype of this kind of signal 

processing is the deconvolution procedure. This is to go 

back to a better approach of the actual profile from the 

experimental profile. 

Deconvolution is a required operation in many signal 

processing applications such as system identification, 

spectroscopy, seismic processing, image deblurring, to 

name a few. This is an active area of research with many 

publications [2]. No universal algorithm has been devel-

oped so far. The reason lies in a diversity of applications 

and in the intrinsic ill-posedness of the problem [5-8]. 

The deconvolution of depth profiling data in SIMS 

analysis amounts to the solution of an appropriate ill-

posed problem in that any random noise in data leads 

to no unique and no stable solution (oscillatory signal 

with negative components, which are physically not 

acceptable in SIMS analysis). Thus, the results must be 

regularized. 

The removal of noise and restoration of signals has 

been one of the most interesting researches in the field 

of signal processing during the last years. Our algo-

rithm is an iterative algorithm, which is based on 

Tikhonov-Miller regularization and a model of solution. 

This latter is a denoised signal using Kalman filter, we 

are interested in the idea of denoising the signal from 

the measure, as a first step of treatment before apply-

ing other techniques of digital signal processing. 

 

2. EXPERIMENTAL 
 

2.1 SIMS System 
 

The equation characterizing the SIMS system is as 

follows: 
 

   ( )   ( )   ( )   ( )   ( )   ( ), (1) 
 

where yn(t) is the noised output signal, h(t) is the impulse 

response, x(t) is the input signal and n(t) is the noise. 

In the Fourier space, this equation becomes 
 

   ( )   ( )  ( )   ( )   ( )   ( ). (2) 
 

Dividing the two members of this equation by H(f), we 

obtain 
 

  ̃( )   ( )  
 ( )

 ( )
, (3) 

 

 ̃( ) is an estimate of X(f) obtained by dividing   ( ) by 

H(f). The noise takes on all its importance in this equa-
tion;  ̃( ) is composed of the real profile X(f) plus the 

noise N(f) strongly amplified by the term H – 1(f). There-
fore,  ̃( ) has a "saturated" noise spectrum at high 

frequencies and its image  ̃( ) in the time domain is 

highly oscillatory and unstable signal. 

Unfortunately, a signal is corrupted by various fac-

tors which produce a noise during acquisition or 

transmission. These noisy effects decrease the perfor-

mance of visual and computerized analysis. It is clear 

that the suppression of noise from the signal makes the 

processing easier. The denoising process can be de-
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scribed as to remove the noise while retaining and not 

distorting the quality of processed signal or image. The 

traditional way of denoising to remove the noise from a 

signal or an image is to use a low or band pass filter with 

cut off frequencies. However, the traditional filtering 

techniques are able to remove a relevant of the noise but 

they are incapable if the noise is present in the band of the 

signal to analyze [9]. Therefore, many denoising tech-

niques are proposed to overcome this problem [10-14]. 

 

2.2 Denoising Using the Kalman Filter 
 

It is an infinite impulse response filter that estimates 

the states of a dynamic system from a series of incom-

plete or noisy measurements. Due to its effectiveness 

and efficiency, the Kalman filter is one of the most used 

algorithms in all areas of control systems. Many teach-

ing and research have been presented in this area. It is a 

topic of discussion of different authors in several applica-

tion fields [15-19]. 

The strength of this filter is its ability to predict pa-

rameters and rectify errors, not only of the sensors, but 

also of the model itself! 

The operation of the Kalman filter can be divided 

into two stages: 

• The first step is to predict the estimation accord-

ing to the model of the system. To do this, the Kalman 

filter takes the previous estimate of the parameters 

and the error and predicts the new parameters and the 

new error as a function of the system modelling. 

• The second step will update the prediction with the 

new measurements. These measurements, are noisy, will 

make it possible to obtain an estimation of the parame-

ters and the error from the made prediction. If the model 

has any errors, this update step will correct them. 

This study is based on the formula of the Kalman 

filter used in [21]. This filter can be applied to the sig-

nals of the following set: 
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This filter is of the following form: 
 

 ̂ (  )   ̂
 (    )  

 

 
  ̂ (    )    (     ̂

 (    )) (5) 

 

In this study, we use the Kalman filter for k  0. 

 

2.3 Proposed Algorithm 
 

The iterative methods make it possible to approach 

the desired solution by a series of iterations. Instead to 

apply the direct deconvolution of the measured profile, 

that is to say the inverse operation of the convolution, 

first of all, it must be denoised with a signal denoising 

technique (using the estimation by the Kalman filter), 

and then restore it (to retrieve the original profile based 

on the Tikhonov-Miller regularization). In our algorithm, 

the idea is to introduce a model of solution, which is a 

denoisy signal ( ̂(  )), using the Kalman filter. 

This algorithm is iterative, its mathematical formu-

lation, in the Fourier space, is the following: 
 

                     

{
 

  ̂    
     | |       
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3. RESULTS AND DISCUSSION 
 

3.1 Denoising of SIMS Profiles 
 

 
 

 
 

 
 

Fig. 1 – Results of denoising: (a) original signal, (b) denoised sig-

nal by wavelet shrinkage, (c) denoised signal by Kalman filter 
 

In this section, the denoising of the sample MD6, 

which contains six delta layers of boron in silicon, using 

two techniques (wavelets and the Kalman filter), is 

presented. 
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The wavelet denoising techniques offers high quali-

ty and flexibility for the noise problem of signals and 

image. The wavelet transform (WT) is a powerful tool of 

signal and image processing that have been successful-

ly used in many scientific fields such as signal pro-

cessing, image compression, computer graphics, and 

pattern recognition [2, 20]. 

It results that the signal obtained using the wave-

lets follows the original profile by using this process; 

high-frequency components above a certain threshold 

can be removed. A raw SIMS profile and the corre-

sponding denoisy profile are shown in Fig. 1. In partic-

ular, this figure shows that low-frequency components, 

which usually represent the main structure of the sig-

nal, are separated from high-frequency components. 

These preliminary results demonstrate the superior 

capabilities of the wavelet approach in SIMS profiles 

analysis rather than the traditional techniques. 

In this section the study is qualitative. While, in the 

case of denoising by the Kalman filter, it is noted that 

the second peak has disappeared. An important limita-

tion of such a method is that the Kalman filter makes it 

possible to take into account only a Gaussian noise 

model. The noise can generally be modeled by a Gauss-

ian model, but in some cases, another type of noise is 

required (Poisson noise). This restriction limits the use 

of the Kalman filter. 

 

3.2 Deconvolution of SIMS Profiles 
 

The results of the deconvolution of the sample MD6 

(six delta layer) in logarithmic scales is illustrated in 

Fig. 2. 

The deconvolution of this sample gives a good im-

provement in depth resolution and recovery of the orig-

inal signal shape. The exponential slopes have been 

completely removed giving well separated and symmet-

rical peaks. Compared with the results of the deconvo-

lution by Gautier’s algorithm [22], the profiles obtained 

by our approach are smooth and without artifacts 

which disturb the interpretation of the results ob-

tained. 

Gautier proposes to apply an empirical local confi-

dence level deducted from the reconstruction error on 

deconvoluted profiles. The goal is to separate the parts 

of the original signal profile of those artificially gener-

ated by the inversion process (deconvolution artifacts). 

In our view, a confidence level, that allows to take into 

account certain parts of the signal and prevent others, 

does not provide any information on the quality of in-

formation and does not find a meaning in the case of a 

SIMS signal. One of advantages of SIMS analysis is the 

high dynamic signal that limits the deconvoluted signal 

to a dynamic, that does not exceed two decades, does not 

reflect the original signal and the filtered parts by the 

confidence level can provide valuable information on the 

analysed sample. 

Mancina [23] showed that the artifacts are not always 

aberrations of the deconvolution, they may be struc-

tures but of low concentrations. An "artifact" that ap-

pears during deconvolution, can ultimately be an exist-

ing structure in the real profile, but it may be completely 

hidden during the measurement or a poor distribution 

of the dose due to the deconvolution method. 

 

 

 
 

Fig. 2 – Results of deconvolution of MD6 sample of boron in 

silicon; (a) result of deconvolution using WT, (DRF1: d  19.8; 

u  8.16; g  17.3), (b) result of deconvolution using WT, 

(DRF2: d  29.98; u  10.74; g  19.18), (c) result of deconvo-

lution using Kalman filter, (DRF2: d  29.98; u  10.74 and 

g  19.18) 
 

The interpretation of the artifacts must be meas-

ured, especially if their dose is not negligible, and we 

cannot eliminate them from the profiles. Analysis of 

Mancina is very clear in our case, because we see the 

presence of a more pronounced peak between peaks 5 

and 6 to a depth of 190 nm in both cases of deconvolu-

tion (see Fig. 1a). The question that arises here is what 

can be considered that this peak is an artifact? 

The answer is clear: the fact that this small peak has 

not disappeared like other artifacts located in depths of 

110 and 145 nm (see Fig. 1b) when changing the DRF, 

we can consider that this peak is not generated by the 

analysis but it is an intrinsic characteristic of the sam-
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ple, so it is a full structure in which the concentration 

is not negligible, at 9.1018/cm3. The interpretation of 

the artifacts should be cautious, especially if their dose 

is not negligible. It is important to report that we can-

not remove it automatically from the profiles. 

In the case of the Kalman filter, one notices that the 

deconvolved profile is totally devoid of artifacts. In 

addition, the second peak does not appear. In a conven-

tional estimation method (for example, the least 

squares method), a simple error in the modeling of the 

system leads to an error in the estimation. The 

strength of the Kalman filter is to integrate a term of 

inaccuracy on the model itself, which allows it to give 

correct estimates in spite of the modeling errors. 

The strength of this filter is its ability to predict pa-

rameters and rectify errors, not only of the catch, but 

also of the model itself! 

 

4. CONCLUSIONS 
 

This work focused on the improvement of depth res-

olution in secondary ions mass spectrometry. In this 

context, an algorithm, based on Tikhonov-Miller regu-

larization and a model of solution, has been developed 

and compared with others proposed in the literature. 

In comparison, the results obtained by the Kalman 

filter are devoid of artifacts and oscillations. While, the 

gain in FWHM is less improved than those obtained by 

the wavelet technique. But the gain of peak’s maximum 

is better, for example, in peak 6, the gain of maximum 

is 1.82 in the case of wavelet (Fig. 1a) but in the case of 

Kalman filter (Fig. 1c) the gain is 1.94. 

The Kalman filter is therefore an interesting esti-

mation method, but it can only be used when we can 

describe our system precisely. If it is impossible to find 

the modeling of the system, then it is preferable to turn 

to other methods (such as the Monté-Carlo method, for 

example, which is a statistical method, but which re-

quires considerable computing power). Another im-

portant limitation of such a method is that the Kalman 

filter makes it possible to take into account only a 

Gaussian noise model. In general, the noise can be 

modeled in a Gaussian way, but in some cases, another 

type of noise is required (notably in image processing 

where Poisson sounds are frequently used). This re-

striction then limits the use of the Kalman filter. 
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У роботі запропоновано ефективний метод відновлення сигналів SIMS від сильно розмитих дис-

кретних піків. Ця методика ґрунтується на регуляризації Тихонова-Міллера, де включена апріорна 

модель розв’язку. Останній – це шумопригнічуючий сигнал, отриманий при використанні фільтра 

Калмана. Це цікавий методом оцінки, але він може бути використаний тільки тоді, коли ми можемо 

точно описати наш зразок. 
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Порівнюючи результати запропонованої методики з результатами літератури, наш алгоритм дає 

найкращі результати без артефактів і коливань, пов'язаних з шумом, і значного поліпшення глибин-

ного аналізу, у той час як коефіцієнт підсилення менш поліпшений, ніж коефіцієнт, отриманий мето-

дом вейвлетів. Таким чином, цей новий алгоритм може розширити межі вимірювань SIMS до гранич-

ної роздільної здатності. 
 

Ключові слова: Фільтр Калмана, Техніка шумопригнічення, Глибинні профілі SIMS, Вейвлет-

усадка, Регуляризація Тихонова-Міллера, Глибина різкості. 

 

 


