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As the title implies the article describes the possibility of taking into account the relativistic correction
to the field current density of the field emission of electrons from the metal. The article provides the reader
with some analytic generalization of the Fowler-Nordheim equation with the relativistic correction. The
relativistic correction to the Fowler-Nordheim equation makes it possible to take into account the influence
of the relativism on the field emission current. It is especially noted that the consideration of this correc-
tion is necessary in the case of sufficiently strong electric fields and relatively large interelectrode distanc-
es. It should be stressed that this correction is valid for fixed interelectrode distances that decrease with
increasing electric field strength. It means that for the electric field strength of 0.1 to 1 GV/m the interelec-
trode distance should not exceed values of 1 to 0.1 cm. First in the article it is spoken in detail about find-
ing of the electron wave function. Next the field emission current calculations are given. As a result the
transmission coefficient of the potential step from the Klein-Gordon equation within the framework of the
Fowler-Nordheim approximation is found. It is shown that in the case of the interelectrode distance less
than 1 cm, an analytical expression for the field electron emission current density is obtained. The conclu-
sion that usually relativistic correction does not exceed a tenth of a percent is made. But in the case of the
field electron emission from pulsars (where the work function and electric field strength are much higher)
the contribution of the relativistic correction about 10 % has been established.
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1. INTRODUCTION

The theory of electron emission in intense external
electric fields was written by Fowler and Nordheim in
the 20-ies of the last century [1]. Despite this, it is
widely used in various branches of physics in our days
too. Field emission currents not only from metals but
also from astrophysical objects and nanomaterials are
described by this theory [2-3]. Also this theory is widely
used for describing the dark currents from the con-
struction materials of the accelerating structures [4, 5,
9]. The authors of the article [1] mark that the emis-
sion becomes sensible for fields of rather more than
108 V/m and already is very large for fields of the order
of 10°V/m. Individual case of the big interelectrode
gaps should be noted. For the gap of about 1 cm and
the electric field strength near E = 108 V/m the electron
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motion becomes relativistic: y =— ~2. This means
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the need to use relativistic positions on such scales.
That’s why we will find the transmission coefficient of
the potential step from the Klein-Gordon equation
within the framework of the Fowler-Nordheim approx-
imation.

The aim of this article is to generalize the Fowler-
Nordheim theory to a relativistic case.

2. DERIVATION OF THE ELECTRON
WAVE FUNCTION

The Klein-Gordon equation in the case of an external
electric field can be written as:
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where ¢ is the electron energy, V is the barrier height,
— e is the electron charge, E is the electric field strength,
7 is the Planck constant, c is the speed of light, m is the
electron mass.

Let's write this equation in dimensionless coordi-
nates, considering that
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The Schrédinger equation (which was used by Fowler
and Nordheim [1]) in dimensionless coordinates is writ-
ten as

2
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We will use the Fowler-Nordheim approach, so we
need to satisfy the condition Ry << 1. This means that
for electric field strength E =108+ 10° V/m [1] the inte-
relectrode distance should not exceed 1 + 0.1 cm.

Then, the solution of equation (2) can be represented as
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W =y,+y,, where ¥ is the solution of the Fowler-
Nordheim equation [1]. Equation (1) can be written as

0 o
04wy + ay”;l + 39+ Ry o +9,) =0 (3)
According to the equation (2)
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At the same time, from [1] we know that
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v, =yH? (g yQJ . Therefore, given the fact that
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Yy >> W, equation (3) can be rewritten in the form:
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where f(y) = — Ry2W.
To solve the equation (4), we will use the method of

variation of parameters. Consider the solution of the
2

0
('/; +yw'=0
equation % . We already know [1] that the

solution of this equation is the following:
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Then the solution of equation (4) can be written as
v, = C()8, () +Co()8:(¥) (5)

where
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are the solutions of the homogeneous differential equa-
tion.

To find the Ci(y) and Ci(y), it is necessary to solve
the system

{ C (& () +C, (g3 =0,
C, (& (3)'+Cy (1)8,(»)' = f().

The wave function must represent a wave that
moves to the right (to converge with large y). We can
find that Cz(y)gz(y) does not satisfy the condition if we
plot graphs of functions Ci(y)g1(y), Ca(y)ga(y). Therefore,
the solution of equation (4) is
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Let's find an explicit expression of Ci(y). To do this,
let's write y/; considering (5)

Ry’dy
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where
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The Hankel function can be represented in the fol-
lowing form by definition [6]:
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It is possible to calculate a1 and 1
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For evaluating a; we should use the corresponding
asymptotic values. It’s easy to see that ¢, = \/; . Consid-

ering 1 we can use the expression for the Wronskian of
the Bessel function of purely imaginary argument:
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Further we will use the asymptotic expression [6]
(when @ is large) for the denominator:

@~ |2 ’i[z%j
H% (2) \/;e . (7

Then,

It remains to calculate a2 and fe:
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We will use the similar methods for evaluating a2
and f2. Therefore, we can write that az =0. And the
expression for the Wronskian of the Bessel functions is:

-

Substituting the asymptotic expression (7) and the
Wronskian (9) into equation (8), we can find that

Py = _\/; .
Now we can write the expression for Ci(y) with suf-
ficient precision:
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We can substitute this expression after integration
into equation (6) and obtain an explicit form of the
wave function &1

3
2 il
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And now we can write the wave function of an elec-
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The wave function of an electron inside metal is [1]:
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3. CALCULATIONS OF THE FIELD EMISSION
CURRENT

The same symbols as in article [1] will be used in
the further calculations of V=C, ex= W, eE=F. Now
we need to stitch two solutions.

The boundary conditions at x =0 are:

1. Wis always continuous;

2. 0@¥/0x is continuous except the points where the

potential is infinite.

At x = +0 we then find:
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We should equate these values to ¥ and 0%/0x is

derived from (10) for x = — 0.
The penetration coefficient of the potential barrier
2

a . .
- and we can simplify
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is determined by the relation

) Fe
the resulting equation by leaving out factors which are
present in both a and a':
C-W)
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and @ is real and relatively large. In addition,
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The equations of continuity (11) can be written as:
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We will use the following relation to express the se-
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where a and  are real. Now we can write the transmis-

@ 737’”’ 5 sion coefficient of the potential barrier under the influ-
H%|le 2Q|= pn I (Q) +e’l, (Q) (14) ence of the electric field with relativistic correction. We

3 Sm( j can use (14) and (15) for solving equations (12) and (13)
and we will find

And now we can write
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skian of the modified Bessel function of the first kind:
so that
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B~e2.
Using the asymptotic values, we can also find that
a = 1. It is easy to see that the terms that independent
of k are dominant in the denominator (16). And we can
write with sufficient accuracy that:

400y Wy 1

C
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amn

Do | ot
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where E_ = M ¢
eh
It is easy to see that the expression for the trans-
mission coefficient consists of two parts. The first part
is nothing other than the transmission coefficient ob-
tained in [1] by Fowler and Nordheim. The second part
of expression (17) is a relativistic correction to this
expression. Therefore, the formula for the current den-
sity of field emission can be written in an analogous
way to article [1]:

5
. 2(C-W)\2(E
J= e 1+[[ e j [*S],

is the Schwinger limit.

5 c E
1 2
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where jg, = 7-e 3" € is the current
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obtained by Fowler and Nordheim [1], E is the electric
field strength; y is the work function; y is the thermo-
dynamic partial potential of an electron.

Fowler and Nordheim in their work [1] emphasize
that commonly measurable field emission current
starts for E values of about 108 V/m. To estimate the
relativistic correction, we use the average value of the
work function of metals of about y =4 eV. Therefore,
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the relativistic correction will be about 0.064 %. Since
the field emission current density increases exponen-
tially, this effect will be hardly visible experimentally.
But we can consider the electron field emission current,
for example, from pulsars, which is also described by
the Fowler-Nordheim equation [1]. In this case, when
magnetic field strength is B=108 T, the electric field
strength is up to E=10'2 V/m [7] and work function is
x = 100 keV [8]. The relativistic correction will be about
10 % and can make a significant contribution to the
field emission current density in this case.

4. CONCLUSIONS

This paper considers the possibility of taking into
account the relativistic correction to the current densi-
ty of the field emission of electrons from the metal. It is
shown that the consideration of this correction is nec-
essary in the case of sufficiently strong electric fields
and relatively large interelectrode distances. An ana-
lytic generalization of the Fowler-Nordheim equation
with the relativistic correction was made. In the case of
the interelectrode distance less than 1 cm, an analyti-
cal expression for the field electron emission current
density is obtained. It is shown that usually relativistic
correction does not exceed a tenth of a percent. But in
the case of the field electron emission from pulsars
(where the work function and electric field strength are
much higher), the contribution of the relativistic cor-
rection is about 10 %.
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VY craTTi onrrcaHa MOKJIMBICTH BPAXyBaHHS PEJIATHBICTCHKOI IIOMPABKY JI0 TYCTHHHU CTPYMY IIOJIBOBOI eMicil
eJIeKTPOHIB 3 Merauiry. [IpencrasiieHo fneske aHamTHYHe y3araibHeHHs piBusuaasa Oaynepa-Hopareiima 3 pe-
JIITUBICTCHKOIO TIONIPaBKoo. PensrusicTchka mompasBka piBasaaa Daynepa-Hopareiima mo3Bosisie BpaxyBaTtu
BIUIMB PEJIATHBI3MY Ha IIOJLOBHIM eMiciiiHumit ctpyM. BifisHaunmo, 1110 BpaxyBaHHS ITi€l TIOIPABKY € HeoOX1 -
HUM y BUIIQJKY JOCUTH CHJIBHUX EJICKTPUYIHUX TOJIB 1 BUTHOCHO BEJIMKHUX MIMKEJIEKTPOJHUX Bimcranei. Cori
MTKPECIINTH, IO 111 TIOTIPABKA CIIPABEIJINBA JIJIA (DIKCOBAHUX MIMKEJIEKTPOJHUX BIJCTAHEH, K1 3MEHIITYIOTHCS
31 301IBIIIEHHAM HAMPY/KEHOCT] eJIEKTPUIHOTO 1oJist. 1le o3Hauae, 110 1JIs1 HATIPYKEHOCTI eJIEKTP MIHOTO TI0JIS
Big 0.1 mo 1 I'B/m BizmcTanb Misk €JIeKTPOJaMu He TIOBUHHA IePeBUINyBaTH 3HadeHb Bix 1 10 0.1 cm. CouaTky B
CTATTI JIeTAJIBHO MIETHCS PO 3HAXOYKEHHSI XBIJIBOBOI (DYHKITI esieKTpoHy. Jasi HaBOIATHCS PO3PaXyHKHU
TIOJIBOBOI €MICIi €JIEKTPOHIB. ¥ peadyJibTaTi 3HAUIEHO KOeMIIlIEHT MPOXOKEeHHS ITOTEHIIaIbHOTO 6ap’epy 3 piB-
uauus Kieitrna-Topnona B pamrax mabmmxenns Daymepa-Hopareiima. OTpumano aHANTUIHAN BUPA3 IS
TYCTHHH CTPYMY IIOJISI €JIEKTPOHIB ¥y BHUIIAIKY MIsKeJIEKTPOIHOI BifcraHi MeHure 1 cm. 3po6JieHO BUCHOBOK, III0
3a3BUUAil PEJIATUBICTCHKA MOIPaBKa He IIEPEBUIIY€E TeCATOl YaACTUHU BICOTKA. AJle y BUIIAIKY II0JIBOBOI eJIeK-
TPOHHOI eMicii 3 myJibcapiB (e poboTa BUXOJIY Ta HATIPY:KEHICTh €JIEKTPUIHOTO I0JIsT Habarato BUINA) BHECOK
PEeJIATHBICTCHKOI IOMIPABKY CTAHOBUTE 0s1M3bK0 10%.

Kirouosi cnosa: IlonvoBa ewmicist, Temuosuit crpym, Pessitusiam, Pisusuus Kneitna-T'oprona, PiBasaus
®aynepa-Hopareima.
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